Recognition Method of Potassium-Rich Lithium Brine Reservoir in Nanyishan
-
摘要:
油井调查显示,在柴达木西部以南翼山为代表的储油构造区,广泛分布含钾、锂等有用元素的深层卤水,在古近纪-新近纪不同层位均有分布,具有极大的社会经济价值. 根据构造及地层岩性特征,认为卤水储存空间为孔隙、裂隙型,由于南翼山地区含水层在声波测井曲线中响应特征并不明显,传统以声波测井为约束条件的波阻抗反演技术难以有效识别卤水储层,到目前为止,对该类型卤水在各层位的赋存状态仍没有好的判识方法. 因此,基于神经网络的联合反演技术,将对卤水层响应更明显的感应测井信息与地震信息相结合,利用神经网络极强的特征模式快速提取能力,融合感应测井、地震波形、地震属性、波阻抗等数据,获得了能够更精确反映富钾锂卤水储层的三维感应数据体,提高了卤水储层的识别能力,为预测南翼山富钾锂卤水在纵向和横向的分布提供了重要依据.
Abstract:The survey of oil wells shows that deep brine containing useful elements such as lithium and potassium is widely distributed in the oil storage structure area represented by Nanyishan in the west of Qaidam. The brine is distributed from the Paleogene to the Neogene and has great social and economic values. According to the structural and stratum lithology characteristics, the brine storage space is considered to be pores and fractures. As the response characteristics of the aquifer in the acoustic logging curve are not obvious in the Nanyishan area, it is difficult to effectively identify the brine reservoir by the traditional impedance inversion technology with acoustic logging as a constraint. There is still no suitable method to identify the occurrence state of this type of brine in each layer. For this reason, in this study it combines seismic information with induction logging information that has a more obvious response to the brine layer based on the neural network joint inversion technology, and uses the strong extraction ability to feature pattern of neural network and integrates induction logging, seismic waveform, seismic attributes, impedance and other data to obtain a three-dimensional induction data volume that can more accurately reflect the lithium-potassium brine reservoir, which improves the identification ability of the brine reservoir. In the paper it provides an important basis for predicting the vertical and horizontal distribution of potassium-rich lithium brine in Nanyishan.
-
Key words:
- Nanyishan /
- deep brine /
- earthquake inversion /
- neural network /
- Qaidam Basin /
- mineral geology
-
图 1 南翼山地区地理位置(据张宁生等,2006修改)
Fig. 1. Location of Nanyishan (modified from Zhang et al., 2006)
表 1 柴达木盆地西部古近系和新近系地层划分
Table 1. Division of Paleogene and Neogene strata in the west of Qaidam Basin
地质年代(Ma) 界 系 统 组 地层代号 ~2.8 新生界 第四系 全新统 七个泉组 Q1+2 更心统 2.8~5.1 新近系 上新统 狮子沟组 N$ {}_{2}^{3} $ 5.1~12.0 上油砂山组 N$ {}_{2}^{2} $ 12.0~24.6 下油沙山组 N$ {}_{2}^{1} $ 24.6~40.5 中新统 上干柴沟组 N1 40.5~52.0 古近系 渐新统 下干柴沟组 E3 52.0~65.0 始新统 路乐河组 E1+2 古新统 注:据党玉琪等(2004). -
[1] Cao, H.F., Xia, B., Fan, L.Y., et al., 2007. Formation Mechanism and Distribution Rule of Nanyishan Fractured Reservoirs. Natural Gas Geoscience, 18(1): 71-73, 77 (in Chinese with English abstract). [2] Dang, Y.Q., Chen, Z.L., Shi, Z.J., et al., 2004. Reservoir Characteristics of Nanyishan Shallow Oil Pool in West of Qaidam Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 31(5): 498-504 (in Chinese with English abstract). [3] Fan, Q.S., Ma, H.Z., Tan, H.B., et al., 2007. Hydrochemical Anomaly and Resources Evaluation of the Oil Field Brines in the Typical Area of Western Qaidam Basin. Journal of Salt Lake Research, 15(4): 6-12 (in Chinese with English abstract). [4] Feng, C., Dai, L.M., Liu, X.J., et al., 2020. Logging Classification and Recognition of Lacustrine Mixed Sedimentary Reservoirs in First and Second Members of Shahejie Formation in Bohai Sea. Earth Science, 45(10): 3677-3692 (in Chinese with English abstract). [5] Fu, J.L., Wu, C., Shu, S.L., et al., 2006. Study on the Characteristics and Influencing Factor for the Enrichment of Potassium, Lithium, and Boron in the Oil Field Waters of Western Qaidam Basin. Journal of Salt Lake Research, 14(4): 22-25 (in Chinese with English abstract). [6] Fu, J.L., Yu, S.S., Li, S.J., et al., 2005. Availability of Tertiary Oilfield Water Resources in Western Qaidam Basin. Journal of Salt Lake Research, 13(3): 17-21 (in Chinese with English abstract). [7] Gan, G.Y., Wei, C.Z., Chang, Q.P., et al., 2002. Characteristics and Forming Conditions of Lake-Facies Carbonate-Rock Oil and Gas Pools in the Nanyishan Structure of the Qaidam Basin. Petroleum Geology & Experiment, 24(5): 413-417 (in Chinese with English abstract). [8] Haas, A., Dubrule, O., 1994. Geostatistical inversion: A Sequential Method of Stochastic Reservoir Modeling Constrained by Seismic Data. First Break, 12(11): 561-569. https://doi.org/10.3997/1365-2397.1994034 [9] Hampson, D. P., Schuelke, J. S., Quirein, J. A., 2001. Use of Multiattribute Transforms to Predict Log Properties from Seismic Data. Geophysics, 66(1): 220-236. https://doi.org/10.1190/1.1444899 [10] Hou, X.H., Fan, F., Zheng, M.P., et al., 2017. Development and Utilization of Potash Resources of Saline Lakes in Qinghai Province. Science & Technology Review, 35(12): 67-71 (in Chinese with English abstract). [11] Huang, H., Liu, C.L., Zhang, S.W., et al., 2014. Application of Geophysical Detection Method to Exploration of Deep Potassium Rich Brine Formation: A Case Study of Jiangling Depression. Mineral Deposits, 33(5): 1101-1107 (in Chinese with English abstract). [12] Jiao, P.C., Liu, C.L., Bai, D.M., et al., 2005. Application of Self-Potential Technique to the Exploration of Potassium-Rich Brine in Lop Nur, Xinjiang. Acta Geoscientica Sinica, 26(4): 381-385 (in Chinese with English abstract). [13] Li, H.P., Zheng, M.P., Hou, X.H., et al., 2015. Control Factors and Water Chemical Characteristics of Potassium-Rich Deep Brine in Nanyishan Structure of Western Qaidam Basin. Acta Geoscientica Sinica, 36(1): 41-50 (in Chinese with English abstract). [14] Liu, F., Li, J.M., Zeng, T., et al., 2007. Pliocene Carbonate Reservoir Characteristics of Nanyishan in Qaidam Basin, China. Inner Mongolia Petrochemical Industry, (12): 364-367 (in Chinese with English abstract). [15] Pramanik, A. G., Singh, V., Vig, R., et al., 2004. Estimation of Effective Porosity Using Geostatistics and Multiattribute Transforms: A Case Study. Geophysics, 69(2): 352-372. https://doi.org/10.1190/1.1707054 [16] Tan, H.B., Cao, C.D., Li, T.W., et al., 2007. Hydrochemistry Characteristics and Chemical Evolution of Oilfield Brines of the Paleogene and Neogene in Western Qaidam Basin. Journal of Palaeogeography, 9(3): 313-320 (in Chinese with English abstract). [17] Tang, L.J., Jin, Z.J., Dai, J.S., et al., 2002. Regional Fault Systems of Qaidam Basin and Adjacent Orogenic Belts. Earth Science, 27(6): 676-682 (in Chinese with English abstract). [18] Velis, D. R., 2008. Stochastic Sparse-Spike Deconvolution. Geophysics, 73(1): R1-R9. https://doi.org/10.1190/1.2790584 [19] Wang, X., Yan, P., Yu, J.H., et al., 2021. Seismic Detection for Hydrocarbon in Mud Volcano-Rich Area Southwest to the Dongsha Island. Earth Science, 46(2): 621-631 (in Chinese with English abstract). [20] Xing, W.L., Chen, Q.S., 2013. Analysis of Potash Resource Security in China. China Mining Magazine, 22(12): 11-14 (in Chinese with English abstract). [21] Yan, J.G., Hou, L., Zhao, Y.H., et al., 2013. Application of Seismic Exploration Method in East Sichuan Deep-Seated Potassium-Rich Brine Exploration. Engineering Sciences, 15(10): 59-65 (in Chinese with English abstract). [22] Yang, R.J., Li, Y.W., Tian, H.Y., 2014. Analysis and Countermeasure Study on Environmental Impact of Lithium Resources Development in Qinghai Saline Lake. Environment and Sustainable Development, 39(2): 91-94 (in Chinese with English abstract). [23] Yang, Z.Z., Hua, X.R., 2009. Application of EH-4 System to Salt Mine Detection in Mangkang County of Tibet. Chinese Journal of Engineering Geophysics, 6(2): 212-215 (in Chinese with English abstract). [24] Yao, X.H., Chen, D.Q., Sun, X., et al., 2008. Reservoir Micro Characteristics of Well Nanqian 3-6 in Nanyishan Structure, Qaidam Basin. Qinghai Petroleum, 26(1): 11-13 (in Chinese). [25] Yu, W.W., Feng, L., Du, Y.Y., et al., 2016. Reservoir Prediction Technology Based on Joint Inversion of Logging-Constrained and Neural Network. Progress in Geophysics, 31(5): 2232-2238 (in Chinese with English abstract). [26] Zhang, N.S., Ren, X.J., Wei, J.X., et al., 2006. Rock Types of Mixosedimentite Reservoirs and Oil-Gas Distribution in Nanyishan of Qaidam Basin. Acta Petrolei Sinica, 27(1): 42-46 (in Chinese with English abstract). [27] Zheng, M.P., Hou, X.H., Yu, C.Q., et al., 2015. The Leading Role of Salt Formation Theory in the Breakthrough and Important Progress in Potash Deposit Prospecting. Acta Geoscientica Sinica, 36(2): 129-139 (in Chinese with English abstract). [28] Zheng, M.P., Zhang, Z., Zhang, Y.S., et al., 2012. Potash Exploration Characteristics in China: New Understanding and Research Progress. Acta Geoscientica Sinica, 33(3): 280-294 (in Chinese with English abstract). [29] 曹海防, 夏斌, 范立勇, 等, 2007. 柴达木盆地西部南翼山裂缝油气藏形成机制及分布规律. 天然气地球科学, 18(1): 71-73, 77. doi: 10.3969/j.issn.1672-1926.2007.01.012 [30] 党玉琪, 陈子炓, 施泽进, 等, 2004. 柴达木盆地西部南翼山浅油藏储层特征. 成都理工大学学报(自然科学版), 31(5): 498-504. doi: 10.3969/j.issn.1671-9727.2004.05.010 [31] 樊启顺, 马海州, 谭红兵, 等, 2007. 柴达木盆地西部典型地区油田卤水水化学异常及资源评价. 盐湖研究, 15(4): 6-12. doi: 10.3969/j.issn.1008-858X.2007.04.002 [32] 冯冲, 代黎明, 刘晓健, 等, 2020. 渤海海域沙一二段湖相混积岩储层测井分类与识别. 地球科学, 45(10): 3677-3692. doi: 10.3799/dqkx.2020.129 [33] 付建龙, 吴蝉, 舒树兰, 等, 2006. 柴达木盆地西部油田水钾硼锂富集规律及影响因素研究. 盐湖研究, 14(4): 22-25. doi: 10.3969/j.issn.1008-858X.2006.04.004 [34] 付建龙, 于升松, 李世金, 等, 2005. 柴达木盆地西部第三系油田卤水资源可利用性分析. 盐湖研究, 13(3): 17-21. doi: 10.3969/j.issn.1008-858X.2005.03.006 [35] 甘贵元, 魏成章, 常青萍, 等, 2002. 柴达木盆地南翼山湖相碳酸盐岩油气藏特征及形成条件. 石油实验地质, 24(5): 413-417. doi: 10.3969/j.issn.1001-6112.2002.05.005 [36] 侯献华, 樊馥, 郑绵平, 等, 2017. 青海盐湖钾盐资源开发利用及产业发展. 科技导报, 35(12): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201712017.htm [37] 黄华, 刘成林, 张士万, 等, 2014. 深层富钾卤水的地球物理探测技术及应用——以江陵凹陷为例. 矿床地质, 33(5): 1101-1107. doi: 10.3969/j.issn.0258-7106.2014.05.018 [38] 焦鹏程, 刘成林, 白大明, 等, 2005. 应用自然电场法寻找地下富钾卤水的探讨. 地球学报, 26(4): 381-385. doi: 10.3321/j.issn:1006-3021.2005.04.016 [39] 李洪普, 郑绵平, 侯献华, 等, 2015. 柴达木西部南翼山构造富钾深层卤水矿的控制因素及水化学特征. 地球学报, 36(1): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201501006.htm [40] 刘菲, 李建明, 曾婷, 等, 2007. 柴达木盆地南翼山上新统碳酸盐岩储层特征. 内蒙古石油化工, (12): 364-367. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH200712164.htm [41] 谭红兵, 曹成东, 李廷伟, 等, 2007. 柴达木盆地西部古近系和新近系油田卤水资源水化学特征及化学演化. 古地理学报, 9(3): 313-320. doi: 10.3969/j.issn.1671-1505.2007.03.009 [42] 汤良杰, 金之钧, 戴俊生, 等, 2002. 柴达木盆地及相邻造山带区域断裂系统. 地球科学, 27(6): 676-682. doi: 10.3321/j.issn:1000-2383.2002.06.004 [43] 王潇, 阎贫, 于俊辉, 等, 2021. 东沙岛西南泥火山区的地震烃类检测. 地球科学, 46(2): 621-631. doi: 10.3799/dqkx.2020.069 [44] 邢万里, 陈其慎, 2013. 中国钾盐资源安全简析. 中国矿业, 22(12): 11-14. doi: 10.3969/j.issn.1004-4051.2013.12.003 [45] 阎建国, 侯磊, 赵玉红, 等, 2013. 地震勘探方法在川东深层富钾卤水勘探中的应用. 中国工程科学, 15(10): 59-65. doi: 10.3969/j.issn.1009-1742.2013.10.008 [46] 杨荣金, 李彦武, 田海燕, 2014. 青海盐湖锂资源开发的环境影响分析及对策研究. 环境与可持续发展, 39(2): 91-94. doi: 10.3969/j.issn.1673-288X.2014.02.027 [47] 杨震中, 化希瑞, 2009. EH-4系统在西藏芒康县盐矿探测中应用研究. 工程地球物理学报, 6(2): 212-215. doi: 10.3969/j.issn.1672-7940.2009.02.016 [48] 姚熙海, 陈登钱, 孙玺, 等, 2008. 柴达木盆地南翼山构造南浅3-6井储层微观特征. 青海石油, 26(1): 11-13. [49] 余为维, 冯磊, 杜艳艳, 等, 2016. 测井约束与神经网络联合反演储层预测技术. 地球物理学进展, 31(5): 2232-2238. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201605048.htm [50] 张宁生, 任晓娟, 魏金星, 等, 2006. 柴达木盆地南翼山混积岩储层岩石类型及其与油气分布的关系. 石油学报, 27(1): 42-46. doi: 10.3321/j.issn:0253-2697.2006.01.009 [51] 郑绵平, 侯献华, 于常青, 等, 2015. 成盐理论引领我国找钾取得重要进展. 地球学报, 36(2): 129-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201502001.htm [52] 郑绵平, 张震, 张永生, 等, 2012. 我国钾盐找矿规律新认识和进展. 地球学报, 33(3): 280-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203002.htm