• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义

    封铿 李瑞保 裴先治 李佐臣 刘成军 裴磊 陈有炘 陈国超 杨再兵

    封铿, 李瑞保, 裴先治, 李佐臣, 刘成军, 裴磊, 陈有炘, 陈国超, 杨再兵, 2022. 东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义. 地球科学, 47(4): 1194-1216. doi: 10.3799/dqkx.2021.116
    引用本文: 封铿, 李瑞保, 裴先治, 李佐臣, 刘成军, 裴磊, 陈有炘, 陈国超, 杨再兵, 2022. 东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义. 地球科学, 47(4): 1194-1216. doi: 10.3799/dqkx.2021.116
    Feng Keng, Li Ruibao, Pei Xianzhi, Li Zuochen, Liu Chengjun, Pei Lei, Chen Youxin, Chen Guochao, Yang Zaibing, 2022. Zircon U-Pb Chronology, Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area, East Kunlun Orogenic Belt. Earth Science, 47(4): 1194-1216. doi: 10.3799/dqkx.2021.116
    Citation: Feng Keng, Li Ruibao, Pei Xianzhi, Li Zuochen, Liu Chengjun, Pei Lei, Chen Youxin, Chen Guochao, Yang Zaibing, 2022. Zircon U-Pb Chronology, Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area, East Kunlun Orogenic Belt. Earth Science, 47(4): 1194-1216. doi: 10.3799/dqkx.2021.116

    东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义

    doi: 10.3799/dqkx.2021.116
    基金项目: 

    国家自然科学基金项目 41502191

    国家自然科学基金项目 41472191

    国家自然科学基金项目 41172186

    中央高校基本科研业务费专项资金项目 310827161002

    中央高校基本科研业务费专项资金项目 310827161006

    中央高校基本科研业务费专项资金项目 310827173702

    陕西省自然科学基础研究计划 2020JM-229

    青海省国土资源厅—中国铝业公司公益性区域地质矿产调查基金项目 200801

    详细信息
      作者简介:

      封铿(1995-),男,硕士研究生,主要从事构造地质学研究. ORCID:0000-0001-8880-0720. E-mail:fengkeng521@163.com

      通讯作者:

      李瑞保,E-mail:liruibao0971@163.com

    • 中图分类号: P548

    Zircon U-Pb Chronology, Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area, East Kunlun Orogenic Belt

    • 摘要: 东昆仑造山带东段波洛斯太地区出露一套晚三叠世中酸性火山岩,对研究古特提斯洋关闭及碰撞造山过程具有重要意义.通过对该火山岩进行详细的锆石U-Pb年代学、地球化学和Hf同位素研究来确定其形成时代、岩石成因和构造环境.研究结果表明,英安岩加权平均年龄为233.4±1.3 Ma和234.7±1.5 Ma,形成时代为晚三叠世.火山岩SiO2含量为64.57%~71.27%,全碱含量(ALK)为7.53%~8.07%,Na2O/K2O值为0.84~1.01,Mg#值为35.66~45.39,A/CNK为1.0~1.1之间,表现为弱过铝高钾钙碱性系列.岩石轻、重稀土元素分馏明显,表现为轻稀土富集、重稀土亏损的特征,具有弱的负Eu异常.英安岩的锆石εHft=235)为-4.81~+0.09,对应的二阶段模式年龄为1 059~1 309 Ma,岩石成因研究表明英安岩为陆壳富长石杂砂岩和少量基性岩部分熔融的产物.综合区域地质资料认为该英安岩形成于后碰撞构造环境,进一步说明东昆仑造山带于晚三叠世早期古特提斯洋已关闭,并转化到后碰撞构造演化阶段.

       

    • 图  1  中央造山带构造格架图(a)(许志琴等,2013)和东昆仑造山带(东段)地质简图(b)

      ①阿尔金左行走滑断裂;②东昆中断裂(东昆中缝合带);③东昆南断裂;④布青山南坡断裂

      Fig.  1.  Tectonic map of central orogenic belt (a) and simplified geological map of East Kunlun orogen (eastern part) (b)

      图  2  波洛斯太区域地质简图(a)和火山岩采样位置图(b)

      Fig.  2.  Simplified geological map of Boluositai area (a) and geological route section showing volcanic rock sampling location (b)

      图  3  英安岩镜下照片

      Pl.斜长石;Q.石英

      Fig.  3.  Micrograph features of dacites

      图  4  波洛斯太英安岩(XRD17064-3)锆石CL图像(a)、锆石U-Pb年龄谐和图(b)和206Pb/238U加权平均年龄图(c)

      Fig.  4.  CL images of zircons (a), zircon U-Pb concordia diagram (b) and weighted mean age diagram (c) from Boluositai dacites (XRD17064-3)

      图  5  波洛斯太英安岩(XRD17064-4)锆石CL图像(a)、锆石U-Pb年龄谐和图(b)和206Pb/238U加权平均年龄图(c)

      Fig.  5.  CL images of zircons (a), zircon U-Pb concordia diagram (b) and weighted mean age diagram (c) from Boluositai dacites (XRD17064-4)

      图  6  波洛斯太地区英安岩主量元素判别图解

      a.SiO2-Zr/TiO2×0.001图解,据Winchester and Floyd,1977;b.SiO2-K2O图解,据Rickwood,1989

      Fig.  6.  Major element discrimination diagrams for the Boluositai dacite

      图  7  英安岩的主量元素Harker图解

      Fig.  7.  Harker diagrams for the dacites

      图  8  英安岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

      图a据Boynton(1984);图b据Sun and McDonough(1989

      Fig.  8.  Chondrite-normalized REE distribution pattern (a) and primitive mantle-normalized trace element spider diagram of the dacites (b)

      图  9  英安岩tHf(t)(a)和CMF-A/MF图解(b)(Altherr et al., 2000

      Fig.  9.  tHf(t) (a) and CMF-A/MF plots (b)(Altherr et al., 2000)

      图  10  英安岩(Yb+Ta)-Rb(a)和(Y+Nb)-Rb图解(b)

      图据Pearce,1996;图例同图 6

      Fig.  10.  (Yb+Ta)-Rb (a) and (Y+Nb)-Rb plots (b)

      表  1  英安岩锆石(XRD17064/3)LA-ICP-MS测年结果

      Table  1.   LA-ICP-MS results of zircons from the dacites (sample No., XRD17064/3)

      样品点号 含量(10-6 Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 谐和度
      Th U 比值 比值 比值 年龄(Ma) 年龄(Ma) 年龄(Ma)
      1 199.00 339.75 0.586 0.050 5 0.002 3 0.255 6 0.010 7 0.037 1 0.000 5 220 107 231 9 235 3 98%
      2 393.84 587.87 0.670 0.052 0 0.002 1 0.266 1 0.012 7 0.037 0 0.000 8 283 94 240 10 234 5 97%
      3 243.59 477.06 0.511 0.070 5 0.002 1 0.364 2 0.010 3 0.037 6 0.000 4 943 63 315 8 238 3 72%
      4 128.77 185.70 0.693 0.056 5 0.002 1 0.567 9 0.020 9 0.072 9 0.000 8 472 83 457 14 454 5 99%
      5 175.48 373.55 0.470 0.052 0 0.002 3 0.263 0 0.011 3 0.036 8 0.000 5 287 100 237 9 233 3 98%
      6 295.72 711.06 0.416 0.050 0 0.001 5 0.252 8 0.007 8 0.036 7 0.000 4 195 70 229 6 232 3 98%
      7 586.04 837.80 0.699 0.054 0 0.001 7 0.273 6 0.007 9 0.036 9 0.000 5 372 70 246 6 234 3 95%
      8 62.27 75.65 0.823 0.050 9 0.004 2 0.256 6 0.019 3 0.037 3 0.000 8 235 193 232 16 236 5 98%
      9 96.67 193.16 0.500 0.049 1 0.012 1 0.246 1 0.064 9 0.036 4 0.001 0 154 502 223 53 231 6 96%
      10 80.37 131.13 0.613 0.051 5 0.004 5 0.256 7 0.020 1 0.036 5 0.000 8 265 202 232 16 231 5 99%
      11 636.04 1 081.82 0.588 0.051 1 0.001 5 0.259 9 0.008 2 0.036 9 0.000 5 243 67 235 7 233 3 99%
      12 421.73 419.53 1.005 0.052 8 0.002 2 0.265 8 0.010 3 0.036 8 0.000 4 320 90 239 8 233 3 97%
      13 275.43 798.18 0.345 0.053 8 0.001 3 0.515 4 0.013 0 0.069 5 0.000 7 361 54 422 9 433 4 97%
      14 193.26 418.29 0.462 0.053 0 0.003 2 0.271 7 0.016 7 0.037 2 0.000 6 332 137 244 13 235 4 96%
      15 343.52 673.94 0.510 0.053 1 0.002 4 0.273 6 0.012 9 0.037 3 0.000 5 332 102 246 10 236 3 96%
      16 396.54 807.72 0.491 0.052 7 0.005 4 0.267 9 0.026 4 0.037 0 0.001 0 322 233 241 21 234 6 97%
      17 231.65 307.22 0.754 0.060 4 0.002 6 0.303 4 0.013 3 0.036 5 0.000 5 617 93 269 10 231 3 84%
      18 418.24 565.15 0.740 0.050 6 0.002 1 0.256 9 0.010 6 0.036 9 0.000 4 220 101 232 9 234 2 99%
      19 1798.48 4 020.07 0.447 0.050 5 0.001 0 0.286 5 0.005 7 0.041 2 0.000 3 217 46 256 5 260 2 98%
      20 254.65 412.57 0.617 0.053 2 0.002 4 0.268 4 0.012 0 0.036 6 0.000 3 339 100 241 10 232 2 95%
      21 85.51 110.14 0.776 0.050 5 0.004 9 0.247 3 0.020 8 0.036 5 0.000 8 220 207 224 17 231 5 96%
      22 154.02 286.25 0.538 0.064 2 0.002 8 0.312 3 0.013 3 0.035 5 0.000 4 746 92 276 10 225 3 79%
      23 362.32 636.90 0.569 0.049 2 0.002 1 0.274 1 0.011 5 0.040 5 0.000 3 167 102 246 9 256 2 96%
      24 229.38 309.63 0.741 0.051 5 0.005 2 0.261 3 0.026 1 0.037 1 0.000 9 261 231 236 21 235 5 99%
      25 207.12 383.99 0.539 0.049 6 0.002 3 0.251 5 0.011 0 0.037 1 0.000 5 189 103 228 9 235 3 97%
      26 118.99 164.12 0.725 0.091 6 0.005 6 0.470 4 0.030 6 0.037 1 0.000 7 1 461 116 391 21 235 4 49%
      27 112.50 156.33 0.720 0.050 9 0.004 1 0.257 2 0.020 6 0.037 0 0.000 7 239 185 232 17 234 4 99%
      28 175.70 423.84 0.415 0.051 7 0.002 4 0.258 2 0.010 6 0.036 4 0.001 2 272 114 233 9 230 8 98%
      29 480.21 1 435.26 0.335 0.060 9 0.002 0 0.313 0 0.010 1 0.037 4 0.000 5 635 71 276 8 236 3 84%
      30 121.09 242.70 0.499 0.067 1 0.003 3 0.344 5 0.017 3 0.037 4 0.000 5 839 104 301 13 237 3 76%
      31 155.21 343.52 0.452 0.053 4 0.002 1 0.271 0 0.011 0 0.036 8 0.000 5 346 89 244 9 233 3 95%
      32 185.64 289.17 0.642 0.053 4 0.002 4 0.272 2 0.012 5 0.036 9 0.000 4 346 102 244 10 234 3 95%
      注:删除线表示不参与年龄计算.
      下载: 导出CSV

      表  2  英安岩锆石(XRD17064/4)LA-ICP-MS测年结果

      Table  2.   LA-ICP-MS results of zircons from the dacites (sample No., XRD17064/4)

      样品点号 含量(10-6 Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 谐和度
      Th U 比值 比值 比值 年龄(Ma) 年龄(Ma) 年龄(Ma)
      1 619.03 742.17 0.83 0.052 0.001 0.270 0.007 0.037 0 322 63 243 6 236 3 97%
      2 344.97 398.98 0.86 0.048 0.002 0.248 0.009 0.036 0 143 92 225 8 233 3 96%
      3 168.24 275.99 0.61 0.057 0.002 0.295 0.010 0.037 0 506 83 263 8 237 3 89%
      4 461.23 770.47 0.59 0.052 0.001 0.273 0.006 0.037 0 324 59 245 5 238 2 96%
      5 125.91 275.46 0.45 0.063 0.008 0.399 0.087 0.042 0.001 739 285 341 63 267 9 75%
      6 89.53 185.97 0.48 0.060 0.003 0.343 0.019 0.041 0.006 633 70 229 6 261 3 86%
      7 106.96 121.11 0.88 0.049 0.004 0.247 0.020 0.036 0 176 196 225 17 232 4 96%
      8 64.28 191.95 0.33 0.054 0.048 0.359 0.848 0.092 0.014 387 1287 312 743 572 87 41%
      9 166.41 352.19 0.47 0.052 0.003 0.265 0.018 0.037 0 265 152 239 14 236 3 98%
      10 725.38 649.68 1.12 0.053 0.002 0.269 0.008 0.037 0 339 80 242 7 233 3 96%
      11 154.55 181.61 0.85 0.051 0.003 0.301 0.028 0.042 0.002 220 130 267 22 267 12 99%
      12 375.66 666.45 0.56 0.085 0.008 0.512 0.058 0.044 0.001 1317 187 420 39 278 6 59%
      13 394.01 670.41 0.59 0.054 0.001 0.314 0.01 0.042 0.001 369 62 277 8 267 6 96%
      14 203.90 444.62 0.46 0.053 0.002 0.266 0.011 0.037 0 309 91 240 9 233 3 97%
      15 1 019.24 2 802.66 0.36 0.051 0.001 0.262 0.005 0.037 0 257 39 236 4 234 3 99%
      16 196.70 247.23 0.80 0.053 0.004 0.270 0.019 0.037 0.001 343 167 243 15 234 4 96%
      17 146.39 253.97 0.58 0.048 0.002 0.274 0.016 0.042 0.002 83 107 246 13 266 14 92%
      18 103.13 252.10 0.41 0.049 0.004 0.253 0.021 0.037 0.001 200 102 229 17 237 6 96%
      19 56.95 106.90 0.53 0.109 0.014 0.650 0.087 0.043 0.001 1785 227 508 54 271 5 39%
      20 61.67 191.25 0.32 0.054 0.002 0.401 0.018 0.054 0.001 383 93 342 13 336 5 98%
      21 190.91 262.97 0.73 0.057 0.005 0.324 0.031 0.041 0.001 487 209 285 24 261 5 91%
      22 47.51 109.17 0.44 0.053 0.003 0.270 0.017 0.037 0.001 328 153 243 13 234 4 96%
      23 161.48 314.04 0.51 0.052 0.003 0.269 0.013 0.037 0 300 147 241 10 236 2 97%
      24 175.05 165.25 1.06 0.069 0.004 0.348 0.020 0.037 0.001 885 133 303 15 236 4 75%
      25 127.17 251.04 0.51 0.092 0.043 0.577 0.305 0.041 0.002 1470 1002 463 199 259 10 43%
      26 604.14 1 695.24 0.36 0.051 0.001 0.305 0.011 0.043 0.001 254 66 270 8 272 6 99%
      27 83.20 113.95 0.73 0.072 0.008 0.421 0.044 0.043 0.004 991 214 357 32 274 24 73%
      28 293.45 403.63 0.73 0.055 0.002 0.320 0.012 0.043 0.002 406 96 282 9 272 10 96%
      29 171.39 435.16 0.39 0.052 0.002 0.262 0.012 0.037 0 287 107 236 9 233 3 98%
      30 115.37 330.97 0.35 0.053 0.002 0.270 0.009 0.037 0.001 343 38 243 7 233 3 95%
      31 105.66 202.35 0.52 0.052 0.003 0.264 0.014 0.037 0.001 283 116 238 11 234 4 98%
      32 136.12 181.63 0.75 0.047 0.006 0.264 0.034 0.042 0.002 54 293 238 27 263 15 90%
      注:删除线表示不参与年龄计算.
      下载: 导出CSV

      表  3  英安岩主量元素(%)和微量元素分析结果(10-6

      Table  3.   Geochemical data of major (%) and trace (10-6) elements for dacites

      样品编号 XRD17064-1 XRD17064-2 XRD17064-3 XRD17064-5 XRD17064-8
      岩性 英安岩 英安岩 英安岩 英安岩 英安岩
      SiO2 66.56 71.27 66.80 68.46 64.57
      TiO2 0.46 0.25 0.52 0.37 0.62
      Al2O3 16.58 14.89 15.53 16.19 17.00
      Fe2O3T 3.72 2.44 3.95 3.12 4.41
      FeO 2.18 1.50 2.23 1.72 2.64
      MnO 2.18 1.50 2.23 1.72 2.64
      MgO 1.33 0.58 1.30 1.11 1.56
      CaO 2.67 1.65 2.90 2.02 3.00
      Na2O 3.81 3.69 3.94 3.66 3.74
      K2O 3.76 4.38 4.00 4.10 3.79
      ALK 7.58 8.07 7.95 7.76 7.53
      Na2O/K2O 1.01 0.84 0.99 0.89 0.99
      P2O5 0.11 0.08 0.18 0.10 0.18
      LOI 0.76 0.61 0.55 0.64 0.83
      Li 18.47 14.61 20.46 13.63 20.60
      Be 1.89 2.36 1.89 1.95 1.60
      Sc 12.93 11.72 15.97 14.28 15.16
      V 50.55 21.61 46.77 33.78 61.27
      Cr 5.52 4.18 3.75 3.06 12.16
      Co 6.24 3.11 5.88 4.26 7.47
      Ni 3.64 3.13 3.68 2.63 7.49
      Cu 6.45 10.36 8.20 4.41 7.87
      Zn 68.31 44.27 64.85 59.60 105.20
      Ga 20.28 20.11 21.52 19.93 21.70
      Rb 141.30 151.60 163.20 162.30 178.90
      Sr 269.30 119.40 324.70 233.00 362.70
      Zr 227.30 220.60 311.20 236.70 299.20
      Nb 12.81 15.41 12.75 13.57 12.36
      Mo 0.12 0.69 1.04 2.41 0.89
      In 0.04 0.07 0.10 0.01 0.02
      Cs 10.45 7.94 12.08 7.01 12.87
      Ba 913.50 708.20 1 378.00 425.20 785.00
      Hf 5.72 6.08 7.17 6.19 6.92
      Ta 0.97 1.19 1.07 0.94 0.84
      W 0.53 0.62 0.84 0.59 0.89
      Tl 0.51 0.51 0.65 0.33 0.40
      Pb 16.62 16.09 14.53 20.47 10.62
      Bi 0.19 0.16 0.15 0.21 0.13
      Th 12.93 13.34 12.66 14.37 13.97
      U 2.58 3.47 2.64 3.27 2.60
      Y 26.22 29.47 25.46 27.31 25.97
      La 45.35 38.07 64.33 50.06 62.21
      Ce 78.88 77.26 118.80 93.30 105.40
      Pr 10.97 9.87 14.34 11.96 14.20
      Nd 40.03 36.72 50.91 43.92 50.53
      Sm 7.40 7.32 8.33 7.88 8.50
      Eu 1.76 1.30 2.51 1.66 2.25
      Gd 6.08 5.80 7.45 6.88 7.28
      Tb 0.95 1.00 1.03 1.05 1.05
      Dy 4.69 5.07 4.67 5.04 4.82
      Ho 0.87 0.94 0.87 0.96 0.92
      Er 2.79 2.73 2.83 29.12 28.81
      Tm 0.36 0.40 0.35 0.38 0.35
      Yb 2.48 2.76 2.40 2.65 2.50
      Lu 0.39 0.43 0.39 0.44 0.42
      Mg# 45.39 35.66 43.38 45.24 45.22
      A/CNK 1.09 1.08 0.96 1.15 1.08
      LREE 184.39 170.54 259.22 208.78 243.09
      HREE 18.60 19.12 19.98 46.52 46.15
      LREE/HREE 9.91 8.92 12.98 4.49 5.27
      ΣREE 202.99 189.66 279.20 255.30 289.24
      δEu 0.80 0.61 0.98 0.69 0.87
      下载: 导出CSV

      表  4  英安岩锆石(XRD17064-4)LA-ICP-MS Lu-Hf同位素分析结果

      Table  4.   The Lu-Hf isotopic compositions of zircons from the dacites

      测点号 Age(Ma) 176Yb/177Hf 2δ 176Lu/177Hf 2δ 176Hf/177Hf 2δ εHf(t) tDM1(Ma) tDM2(Ma) fLu/Hf
      1 235 0.117 496 0.000 049 0.002 381 0.000 020 0.282 504 0.000 049 -4.70 1 098 1 303 -0.93
      2 235 0.090 349 0.000 049 0.001 911 0.000 027 0.282 540 0.000 049 -3.33 1 032 1 233 -0.94
      4 235 0.060 378 0.000 041 0.001 448 0.000 017 0.282 593 0.000 041 -1.41 945 1 135 -0.96
      7 235 0.047 850 0.000 066 0.001 059 0.000 010 0.282 603 0.000 066 -1.00 921 1 114 -0.97
      9 235 0.038 177 0.000 038 0.000 926 0.000 003 0.282 578 0.000 038 -1.85 952 1 158 -0.97
      10 235 0.114 572 0.000 064 0.002 454 0.000 021 0.282 547 0.000 064 -3.19 1 038 1 226 -0.93
      14 235 0.044 474 0.000 032 0.000 971 0.000 002 0.282 572 0.000 032 -2.07 962 1 169 -0.97
      15 235 0.093 404 0.000 049 0.002 095 0.000 010 0.282 638 0.000 049 0.09 896 1 059 -0.94
      16 235 0.088 949 0.000 058 0.001 952 0.000 025 0.282 557 0.000 058 -2.74 1 008 1 203 -0.94
      18 235 0.105 707 0.000 065 0.002 339 0.000 025 0.282 585 0.000 065 -1.83 979 1 156 -0.93
      22 235 0.024 508 0.000 053 0.000 576 0.000 009 0.282 493 0.000 053 -4.81 1 062 1 309 -0.98
      23 235 0.031 516 0.000 035 0.000 765 0.000 003 0.282 537 0.000 035 -3.28 1 006 1 231 -0.98
      29 235 0.063 878 0.000 042 0.001 515 0.000 006 0.282 562 0.000 042 -2.51 990 1 192 -0.95
      30 235 0.048 747 0.000 051 0.001 170 0.000 007 0.282 576 0.000 051 -1.94 961 1 162 -0.96
      31 235 0.050 411 0.000 050 0.001 209 0.000 013 0.282 604 0.000 050 -0.97 923 1 113 -0.96
      下载: 导出CSV
    • [1] Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. https://doi.org/10.1016/S0024-4937(99)00052-3
      [2] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
      [3] Bian, Q. T., Luo, X. Q., Yin, L. M., et al., 2001. Discovery of Ordovician Acritarch in Buqingshan Ophiolitic Mélange, East Kunlun. Chinese Science Bulletin, 46(2): 167-171(in Chinese). doi: 10.1360/csb2001-46-2-167
      [4] Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278
      [5] Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
      [6] Cai, X. F., Liu, D. M., 2008. Identification of the Triassic Lower and Upper Turbidite Fan of East Kunlun. Marine Geology Letters, 24(6): 1-8, 32(in Chinese with English abstract).
      [7] Chen, F. K., Siebel, W., Satir, M., et al., 2002. Geochronology of the Karadere Basement (NW Turkey) and Implications for the Geological Evolution of the Istanbul Zone. International Journal of Earth Sciences, 91(3): 469-481. https://doi.org/10.1007/s00531-001-0239-6
      [8] Chen, G. C., Pei, X. Z., Li, R. B., et al., 2019. Lithospheric Extension of the Post-Collision Stage of the Paleo-Tethys Oceanic System in the East Kunlun Orogenic Belt: Insights from Late Triassic Plutons. Earth Science Frontiers, 26(4): 191-208(in Chinese with English abstract).
      [9] Chen, G. C., Pei, X. Z., Li, R. B., et al., 2020. Late Palaeozoic-Early Mesozoic Tectonic-Magmatic Evolution and Mineralization in the Eastern Section of the East Kunlun Orogenic Belt. Earth Science Frontiers, 27(4): 33-48(in Chinese with English abstract).
      [10] Chen, S. J., Li, R. S., Ji, W. H., et al., 2010. The Permian Lithofacies Paleogeographic Characteristics and Basin-Mountain Conversion in the Kunlun Orogenic Belt. Geology in China, 37(2): 374-393(in Chinese with English abstract).
      [11] Chen, Y. X., Pei, X. Z., Li, R. B., et al., 2011. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510-521(in Chinese with English abstract).
      [12] Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469
      [13] Deng, H. B., He, L., Yao, B., et al., 2018. Formation Age and Geochemical Characteristics of Dishantou Monzonitic Granite in Estern Kunlun Orogenic Belt. Northwestern Geology, 51(4): 60-69(in Chinese with English abstract).
      [14] Deng, J. F., Luo., Z. H., Su, S. G., 2004. Petrogenesis, Tectonic Environment and Mineralization. Geological Publishing House, Beijing (in Chinese).
      [15] DePaolo, D. J., Daley, E. E., 2000. Neodymium Isotopes in Basalts of the Southwest Basin and Range and Lithospheric Thinning during Continental Extension. Chemical Geology, 169(1/2): 157-185. https://doi.org/10.1016/S0009-2541(00)00261-8
      [16] Dickinson, W. R., 2008. Accretionary Mesozoic-Cenozoic Expansion of the Cordilleran Continental Margin in California and Adjacent Oregon. Geosphere, 4(2): 329. https://doi.org/10.1130/ges00105.1
      [17] Ding, Q. F., Jiang, S. Y., Sun, F. Y., 2014. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 205: 266-283. https://doi.org/10.1016/j.lithos.2014.07.015
      [18] Ding, S., Huang, H., Niu, Y. L., et al., 2011. Geochemistry, Geochronology and Petrogenesis of East Kunlun High Nb-Ta Rhyolites. Acta Petrologica Sinica, 27(12): 3603-3614(in Chinese with English abstract).
      [19] Dong, Y. P., He, D. F., Sun, S. S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006
      [20] Dong, Y. P., Sun, S. S., Santosh, M., et al., 2021. Central China Orogenic Belt and Amalgamation of East Asian Continents. Gondwana Research, 100: 131-194. https://doi.org/10.1016/j.gr.2021.03.006
      [21] Feng, C. Y., Wang, S., Li, G. C., et al., 2012. Middle to Late Triassic Granitoids in the Qimantage Area, Qinghai Province, China: Chronology, Geochemistry and Metallogenic Significances. Acta Petrologica Sinica, 28(2): 665-678(in Chinese with English abstract).
      [22] Feng, K., Li, R. B., Pei, X. Z., et al., 2020. Zircon U-Pb Dating and Geochemical Characteristics of Dagele Granite in the Eastern Margin of East Kunlun Orogenic Belt, China and Their Tectonic Implications. Journal of Earth Sciences and Environment, 42(4): 442-463(in Chinese with English abstract).
      [23] Gao, H. C., Sun, F. Y., 2021. NW China: Petrogenesis and Implications for a Transition from Subduction to Post-Collision Setting of the Paleo-Tethys Ocean. Geological Journal, https://doi.org/10.1002/gj.4104.
      [24] Gao, Y. B., Li, W. Y., Qian, B., et al., 2014. Geochronology, Geochemistry and Hf Isotopic Compositions of the Granitic Rocks Related with Iron Mineralization in Yemaquan Deposit, East Kunlun, NW China. Acta Petrologica Sinica, 30(6): 1647-1665(in Chinese with English abstract).
      [25] Gardner, M. C., Bergman, S. C., Cushing, G. W., et al., 1988. Pennsylvanian Pluton Stitching of Wrangellia and the Alexander Terrane, Wrangell Mountains, Alaska. Geology, 16(11): 967. https://doi.org/10.1130/0091-7613(1988)0160967:ppsowa>2.3.co;2 doi: 10.1130/0091-7613(1988)0160967:ppsowa>2.3.co;2
      [26] Guo, X. Z., Jia, Q. Z., Li, J. C., et al., 2019. Geochronology and Geochemical Characteristics of Syenogranite from the Zhamaxiuma Area in East Kunlun and Their Tectonic Significance. Acta Geologica Sinica, 93(4): 830-842(in Chinese with English abstract).
      [27] Guo, Z. F., Deng, J. F., Xu, Z. Q., et al., 1998. Late Palaeozoic Mesozoic Intracontinental Orogenic Process and Intermedate Acidic Igneous Rocks from the Eastern Kunlun Mountains of Northwestern China. Geoscience, 12(3): 51-59(in Chinese with English abstract).
      [28] He, D. F., Dong, Y. P., Liu, X. M., et al., 2016. Tectono-Thermal Events in East Kunlun, Northern Tibetan Plateau: Evidence from Zircon U-Pb Geochronology. Gondwana Research, 30: 179-190. https://doi.org/10.1016/j.gr.2015.08.002
      [29] Hou, G. J., Wang, G. C., Zhang, K. X., et al., 1999. Superimposed Folds and Corresponding Deformation Mechanism in Foreland Basins in Eastern Kunlun Orogenic Zone. Earth Science, 24(2): 125-128(in Chinese with English abstract).
      [30] Hu, Y., Niu, Y. L., Li, J. Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205-222. https://doi.org/10.1016/j.lithos.2015.05.004
      [31] Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
      [32] Huang, X. K., Wei, J. H., Li, H., et al., 2021. Zircon U-Pb Geochronological, Elemental and Sr-Nd-Hf Isotopic Constraints on Petrogenesis of Late Triassic Quartz Diorite in Balong Region, East Kunlun Orogen. Earth Science, 46(6): 2037-2056(in Chinese with English abstract).
      [33] Jiang, C. F., Wang, Z. Q., Li, J. Y., 2000. The Opening and Closing Tectonics in Central Orogenic Belt, China. Geological Publishing House, Beijing (in Chinese).
      [34] Jiang, G. L., Zhang, S. M., Liu, K. F., et al., 2014. Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in Qilian-Qaidam-East Kunlun Area. Earth Science, 39(8): 1000-1016(in Chinese with English abstract).
      [35] Jung, S., Pfänder, J. A., 2007. Source Composition and Melting Temperatures of Orogenic Granitoids: Constraints from CaO/Na2O, Al2O3/TiO2 and Accessory Mineral Saturation Thermometry. European Journal of Mineralogy, 19(6): 859-870. https://doi.org/10.1127/0935-1221/2007/0019-1774
      [36] Kong, J. J., Niu, Y. L., Hu, Y., et al., 2020. Petrogenesis of the Triassic Granitoids from the East Kunlun Orogenic Belt, NW China: Implications for Continental Crust Growth from Syn-Collisional to Post-Collisional Setting. Lithos, 364/365: 105513. https://doi.org/10.1016/j.lithos.2020.105513
      [37] Li, B. L., Sun, F. Y., Yu, X. F., et al., 2012. U-Pb Dating and Geochemistry of Diorite in the Eastern Section from Eastern Kunlun Middle Uplifted Basement and Granitic Belt. Acta Petrologica Sinica, 28(4): 1163-1172(in Chinese with English abstract).
      [38] Li, C. N., 1992. Trace Element Petrology of Igneous Rocks. China University of Geosciences Press, Wuhan(in Chinese).
      [39] Li, J. C., Guo, X. Z., Kong, H. L., et al., 2021. Geochronology, Geochemical Characteristics and Geological Significance of A-Type Granite from the Langmaitan Area, East Kunlun. Acta Geologica Sinica, 95(5): 1508-1522(in Chinese with English abstract).
      [40] Li, R. B., Pei, X. Z., Li, Z. C., et al., 2012. Geological Characteristics of Late Palaeozoic-Mesozoic Unconformities and Their Response to Some Significant Tectonic Events in Eastern Part of Eastern Kunlun. Earth Science Frontiers, 19(5): 244-254(in Chinese with English abstract).
      [41] Li, R. B., Pei, X. Z., Li, Z. C., et al., 2015. The Depositional Sequence and Prototype Basin for Lower Triassic Hongshuichuan Formation in the Eastern Segment of East Kunlun Mountains. Geological Bulletin of China, 34(12): 2302-2314(in Chinese with English abstract).
      [42] Li, R. B., Pei, X. Z., Li, Z. C., et al., 2020. Late Silurian to Early Devonian Volcanics in the East Kunlun Orogen, Northern Tibetan Plateau: Record of Postcollisional Magmatism Related to the Evolution of the Proto-Tethys Ocean. Journal of Geodynamics, 140: 101780. https://doi.org/10.1016/j.jog.2020.101780
      [43] Li, R. B., Pei, X. Z., Pei, L., et al., 2018. The Early Triassic Andean-Type Halagatu Granitoids Pluton in the East Kunlun Orogen, Northern Tibet Plateau: Response to the Northward Subduction of the Paleo-Tethys Ocean. Gondwana Research, 62: 212-226. https://doi.org/10.1016/j.gr.2018.03.005
      [44] Li, R. S., Ji, W. H., Yang, Y. C., et al., 2018. Geology of Kunlun Mountain and Its Adjacent Area. Geological Publishing House, Beijing (in Chinese).
      [45] Li, S. J., Sun, F. Y., Feng, C. Y., et al., 2008. Geochronological Study on Yazigou Polymetallic Deposit in Eastern Kunlun, Qinghai Province. Acta Geologica Sinica, 82(7): 949-955(in Chinese with English abstract).
      [46] Li, S. Z., Zhao, S. J., Yu, S., et al., 2016. Proto-Tehtys Ocean in East Asia(Ⅱ): Affinity and Assmbly of Early Paleozoic Micro-Continental Blocks. Acta Petrologica Sinica, 32(9): 2628-2644(in Chinese with English abstract).
      [47] Li, W. Y., Li, S. G., Guo, A. L., et al., 2007. Zircon SHRIMP U-Pb Ages and Trace Element Geochemistry of Kuhai Gabbro and Derni Diorite in the Southern East Kunlun Tectonic Belt, Qinghai Province—Constraints on the Southern Boundary of the Late Neoproterozoic-Early Ordovician "Qi-Chai-Kun" Ocean. Science in China (Series D), 37(S1): 288-294(in Chinese).
      [48] Li, X. W., Huang, X. F., Luo, M. F., et al., 2015. Petrogenesis and Geodynamic Implications of the Mid-Triassic Lavas from East Kunlun, Northern Tibetan Plateau. Journal of Asian Earth Sciences, 105: 32-47. https://doi.org/10.1016/j.jseaes.2015.03.009
      [49] Li, Z. C., Pei, X. Z., Liu, Z. Q., et al., 2013. Geochronology and Geochemistry of the Gerizhuotuo Diorites from the Buqingshan Tectonic Mélange Belt in the Southern Margin of East Kunlun and Their Geologic Implications. Acta Geologica Sinica, 87(8): 1089-1103(in Chinese with English abstract).
      [50] Liu, C. D., Zhou, S., Mo, X. X., et al., 2003. Constraints of Petrochemistry and 40Ar/39Ar Aging of Post-Collision Granites in Eastern Kunlun Orogenic Belt. Journal of East China Geological Institute, 26(4): 301-305(in Chinese with English abstract).
      [51] Liu, H. T., 2005. Petrology, Geochemistry and Geochronology of Late Triassic Volcanics, Kunlun Orogenic Belt, Western China: Implications for Tectonic Setting and Petrogenesis. Geochemical Journal, 39(1): 1-20. https://doi.org/10.2343/geochemj.39.1
      [52] Liu, J. L., Sun, F. Y., Li, L., et al., 2015. Geochronology, Geochemistry and Hf Isotopes of Gerizhuotuo Complex Intrusion in West of Anyemaqen Suture Zone. Earth Science, 40(6): 965-981(in Chinese with English abstract).
      [53] Liu, T. J., 2015. Geologic Features, Provenance Nature and Tectonic Significance of Hongshuichuan Formation Located in the Southern Slope of the East Kunlun Orogenic Belt(Eastern Part)(Dissertation). Changan University, Xi'an(in Chinese with English abstract).
      [54] Liu, Y. H., Mo, X. X., Yu, X. H., et al., 2006. Zircon SHRIMP U-Pb Dating of the Jingren Granite, Yemaquan Region of the East Kunlun and Its Geological Significance. Acta Petrologica Sinica, 22(10): 2457-2463(in Chinese with English abstract).
      [55] Liu, Z. Q., Pei, X. Z., Li, R. B., et al., 2011. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication. Acta Geologica Sinica, 85(2): 185-194(in Chinese with English abstract).
      [56] Ludwig, K. R., 2003. Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
      [57] Luo, M. F., Mo, X. X., Yu, X. H., et al., 2015. Zircon U-Pb Geochronology, Petrogenesis and Implication of the Later Permian Granodiorite from the Wulonggou Area in East Kunlun, Qinghai Province. Earth Science Frontiers, 22(5): 182-195(in Chinese with English abstract).
      [58] Luo, Z. H., Ke, S., Cao, Y. Q., et al., 2002. Late Indosinian Mantle-Derived Magmatism in the East Kunlun. Geological Bulletin of China, 21(6): 292-297(in Chinese with English abstract).
      [59] Ma, C. Q., Xiong, F. H., Yin, S., et al., 2015. Intensity and Cyclicity of Orogenic Magmatism: An Example from a Paleo-Tethyan Granitoid Batholith, Eastern Kunlun, Northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555-3568(in Chinese with English abstract).
      [60] Meng, F. C., Cui, M. H., Jia, L. H., et al., 2015. Paleozoic Continental Collision of the East Kunlun Orogen: Evidence from Protoliths of the Eclogites. Acta Petrologica Sinica, 31(12): 3581-3594(in Chinese with English abstract).
      [61] Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract).
      [62] Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      [63] Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      [64] Pei, X. Z., Li, R. B., Li, Z. C., et al., 2018. Composition Feature and Formation Process of Buqingshan Composite Accretionary Mélange Belt in Southern Margin of East Kunlun Orogen. Earth Science, 43(12): 4498-4520(in Chinese with English abstract).
      [65] Peng, B., Li, B. L., Zhao, T. F., et al., 2017. Identification of A-Type Granite in the Southeastern Kunlun Orogen, Qinghai Province, China: Implications for the Tectonic Framework of the Eastern Kunlun Orogen. Geological Journal, 52(3): 454-469. https://doi.org/10.1002/gj.2775
      [66] Qi, S. S., 2015. Petrotectonic Assemblages and Tectonic Evolution of the East Kunlun Orogenic Belt in Qinghai Province(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      [67] Qian, B., Gao, Y. B., Li, K., et al., 2015. Zircon U-Pb-Hf Isotopes and Whole Rock Geochemistry Constraints on the Petrogenesis of Iron-Rare Metal Mineralization Related Alkaline Granitic Intrusive Rock in Yugouzi Area, Eastern Kunlun, Xinjiang. Acta Petrologica Sinica, 31(9): 2508-2520(in Chinese with English abstract).
      [68] Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      [69] Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      [70] Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, London. https://doi.org/10.1180/minmag.1994.058.392.25
      [71] Shi, L. C., Chang, G. H., Qi, S. S., et al., 2016. The Discovery of Dazaohuogou-Wanbaogou Late Permian Epicontinental Arc Volcanic Rocks in Eastern Kunlun Mountains and Its Significance. Geological Bulletin of China, 35(7): 1115-1122(in Chinese with English abstract).
      [72] Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3/4): 311-324. https://doi.org/10.1016/S0012-821X(04)00012-3
      [73] Song, K., Ding, Q. F., Zhang, Q., et al., 2020. Zircon U-Pb Geochronology, Hf Isotopes, and Whole-Rock Geochemistry of Hongshuihe Early to Middle Triassic Quartz Diorites and Granites in the Eastern Kunlun Orogen, NW China: Implication for Petrogenesis and Geodynamics. Geological Journal, 55(2): 1507-1528. https://doi.org/10.1002/gj.3517
      [74] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [75] Vervoort, J. D., Jonathan Patchett, P., 1996. Behavior of Hafnium and Neodymium Isotopes in the Crust: Constraints from Precambrian Crustally Derived Granites. Geochimica et Cosmochimica Acta, 60(19): 3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3
      [76] Wang, B. Z., Chen, J., Luo, Z. H., et al., 2014. Spatial and Temporal Distribution of Late Permian-Early Jurassic Intrusion Assemblages in Eastern Qimantag, East Kunlun, and Their Tectonic Settings. Acta Petrologica Sinica, 30(11): 3213-3228(in Chinese with English abstract).
      [77] Wang, D. Z., Liu, C. S., Shen, W. Z., et al., 1993. The Contrast between Tonglu Ⅰ-Type and Xiangshan S-Type Clastoporphyritic Lava. Acta Petrologica Sinica, 9(1): 44-54(in Chinese with English abstract).
      [78] Wang, G. C., Jia, C. X., Zhu, Y. H., et al., 2004. New Results and Major Progress in Regional Geological Survey of the Alag Lake Sheet. Geological Bulletin of China, 23(5): 549-554(in Chinese with English abstract).
      [79] Wang, G. C., Zhang, K. X., Liang, B., et al., 1997. The Structure of the East Kunlun Orogenic Belt and the Assemblage of Tectonic Slices. Earth Science, 22(4): 16-20(in Chinese with English abstract).
      [80] Wang, K., Wang, L. X., Ma, C. Q., et al., 2020. Petrogenesis and Geological Implications of the Middle Triassic Garnet-Bearing Two-Mica Granite from Jialuhe Region, East Kunlun. Earth Science, 45(2): 400-418(in Chinese with English abstract).
      [81] Wang, M., Pei, X. Z., Li, R. B., et al., 2019. Early Indosinian High-Mg# and High-Sr/Y Ratio Granodiorites in the Xiahe Area, West Qinling, Central China: Petrogenesis and Geodynamic Implications. Lithos, 332/333: 162-174. https://doi.org/10.1016/j.lithos.2019.03.005
      [82] Wang, X., Pei, X. Z., Li, R. B., et al., 2019. Conglomerate Source and Source Area Property of Lower Hongshuichuan Formation in the East Kunlun Mountains: Evidence from Conglomerate Characteristics and U-Pb Dating. Geology in China, 46(1): 155-177(in Chinese with English abstract).
      [83] Wang, Y. B., Yang, H., 2003. Biogeographic Characteristics of the Early Permian from the East Kunlun-Animaqing-Bayankala Areas. Science in China (Series D), 33(8): 775-780(in Chinese).
      [84] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      [85] Wu, C., Yin, A., Ding, L., et al., 2019. Mesozoic-Cenozoic Evolution of the Eastern Kunlun Range, Central Tibet, and Implications for Basin Evolution during the Indo-Asian Collision. The Geological Society of America, 11(4): 524-550. https://doi.org/10.1130/L1065.1
      [86] Wu, C., Yin, A., Zuza, A. V., et al., 2016. Pre-Cenozoic Geologic History of the Central and Northern Tibetan Plateau and the Role of Wilson Cycles in Constructing the Tethyan Orogenic System. Lithosphere, 8(3): 254-292. https://doi.org/10.1130/l494.1
      [87] Wu, R. C., Gu, X. X., Zhang, Y. M., et al., 2017. The Sedimentary Geochemical Records about the Tectonic Evolution of the East Kunlun Orogenic Belt from Early Paleozoic to Early Mesozoic. Geoscience, 31(4): 716-733(in Chinese with English abstract).
      [88] Wu, Y. B., Zheng, Y. F., 2004. Genetic Mineralogy of Zircons and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
      [89] Xia, R., Wang, C. M., Deng, J., et al., 2014. Crustal Thickening Prior to 220 Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic Granitoids in the Xiao-Nuomuhong Pluton. Journal of Asian Earth Sciences, 93: 193-210. https://doi.org/10.1016/j.jseaes.2014.07.013
      [90] Xiong, F. H., Ma, C. Q., Zhang, H. A., et al., 2016. Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post-Collisional Extension. Journal of Earth Science, 27(3): 474-490. https://doi.org/10.1007/s12583-016-0674-6
      [91] Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic Ⅰ-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038
      [92] Xu, B., Wang, C. Y., Liu, J. D., et al., 2020. The Petrogenesis of the Late Triassic Granites in the Heergetou Area, East Kunlun: Constraints from Geochronology, Geochemistry and Sr-Nd-Pb Isotopes. Acta Geologica Sinica, 94(12): 3643-3656(in Chinese with English abstract).
      [93] Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793-1806(in Chinese with English abstract).
      [94] Xu, Z. Q., Yang, J. S., Li, W. C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6): 1847-1860(in Chinese with English abstract).
      [95] Yan, Z., Bian, Q. T., Korchagin, O. A., et al., 2008. Provenance of Early Triassic Hongshuichuan Formation in the Southern Margin of the East Kunlun Mountains: Constrains from Detrital Framework, Heavy Mineral Analysis and Geochemistry. Acta Petrologica Sinica, 24(5): 1068-1078(in Chinese with English abstract).
      [96] Yang, J. S., Wang, X. B., Shi, R. D., et al., 2004. The Dur'ngio Ophiolite in East Kunlun, Northern Qinghai-Tibet Plateau: A Fragment of Paleo-Tethyan Oceanic Crust. Geology in China, 31(3): 225-239(in Chinese with English abstract).
      [97] Yang, J. S., Robinson, P. T., Jiang, C. F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1-4): 215-231. https://doi.org/10.1016/0040-1951(95)00199-9
      [98] Yang, J. S., Xu, Z. Q., Li, H. B., et al., 2005. The Paleo-Tethyan Volcanism and Plate Tectonic Regime in the A' Nyemaqen Region of East Kunlun, Northern Tibet Plateau. Acta Petrologica et Mineralogica, 24(5): 369-380(in Chinese with English abstract).
      [99] Yin, H. F., Zhang, K. X., 1997. Characteristics of the Eastern Kunlun Orogenic Belt. Earth Science, 22(4): 3-6(in Chinese with English abstract).
      [100] Yin, H. F., Zhang, K. X., 2003. 1: 250 000 Regional Geological Survey Report of Donggeicuona Lake Sheet. China University of Geosciences Press, Wuhan(in Chinese with English abstract).
      [101] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [102] Yu, J. Z., Zheng, Y. Y., Xu, R. K., et al., 2020. Zircon U-Pb Chronology, Geochemistry of Jiangjunmu Ore-Bearing Pluton, Eastern Part of East Kunlun and Their Geological Significance. Earth Science, 45(4): 1151-1167(in Chinese with English abstract).
      [103] Yu, M., Dick, J. M., Feng, C. Y., et al., 2020. The Tectonic Evolution of the East Kunlun Orogen, Northern Tibetan Plateau: A Critical Review with an Integrated Geodynamic Model. Journal of Asian Earth Sciences, 191: 104168. https://doi.org/10.1016/j.jseaes.2019.104168
      [104] Yuan, W. M., Mo, X. X., Yu, X. H., et al., 2000. The Record of Indosinian Tectonic Setting from the Granotoid of Eastern Kunlun Mountains. Geological Review, 46(2): 203-211(in Chinese with English abstract).
      [105] Yue, Y. G., 2014. Paleocurrent Direction Analysis of Lower Triassic Hongshuichuan Formation in East Kunlun. Journal of Henan Science and Technology, (10): 204-205(in Chinese with English abstract).
      [106] Zhang, G. W., Guo, A. L., Yao, A. P., 2004. Western Qinling-Songpan Continental Tectonic Node in China's Continental Tectonics. Earth Science Frontiers, 11(3): 23-32(in Chinese with English abstract).
      [107] Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2012. Petrogenesis and Tectonic Significance of the Late Permian-Middle Triassic Calc-Alkaline Granites in the Balong Region, Eastern Kunlun Orogen, China. Geological Magazine, 149(5): 892-908. https://doi.org/10.1017/s0016756811001142
      [108] Zhang, K. X., Lin, Q. X., Zhu, Y. H., et al., 2004. New Paleontological Evidence for Determining the Age of the Mélange in the Eastern Part of the East Kunlun Mountains and Its Tectonic Significance. Science in China (Series D), 34(3): 210-218(in Chinese).
      [109] Zhang, M. D., Ma, C. Q., Wang, L. X., et al., 2018. Subduction-Type Magmatic Rocks in Post-Collision Stage: Evidence from Late Triassic Diorite-Porphyrite of Naomuhungou Area, East Kunlun Orogen. Earth Science, 43(4): 1183-1206(in Chinese with English abstract).
      [110] Zhang, M. Y., Feng, C. Y., Wang, H., et al., 2018. Petrogenesis and Tectonic Implications of the Late Triassic Syenogranite in Qimantag Area, East Kunlun Mountains. Acta Petrologica et Mineralogica, 37(2): 197-210(in Chinese with English abstract).
      [111] Zhang, X. T., Yang, S. D., Yang, Z. J., et al., 2007. Introduction to Regional Geology of Qinghai Province—Geological Map (Scale, 1∶1 000 000) of Qinghai Province. Geological Publishing House, Beijing (in Chinese).
      [112] Zhang, X. Y., Li, W. F., Ouyang, G. W., et al., 2020. The Discovery of Early Triassic Volcanic Rocks in Zhanhongshan Area of Qinghai Province in the Eastern Section of East Kunlun Mountain and Its Geological Significance. Geological Bulletin of China, 39(5): 631-641(in Chinese with English abstract).
      [113] Zhang, Z. Y., Yin, H. F., Wang, B. Z., et al., 2004. Presence and Evidence of Kuhai-Saishitang Branching Ocean in Copulae between Kunlun-Qinling Mountains. Earth Science, 29(6): 691-696(in Chinese with English abstract).
      [114] Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186: 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003
      [115] Zhao, X., Fu, L. B., Wei, J. H., et al., 2019. Late Permian Back-Arc Extension of the Eastern Paleo-Tethys Ocean: Evidence from the East Kunlun Orogen, Northern Tibetan Plateau. Lithos, 340/341: 34-48. https://doi.org/10.1016/j.lithos.2019.05.006
      [116] Zhou, H. Z., Wei, J. H., Shi, W. J., et al., 2020. Late Triassic Post-Collision Extension at Elashan Magmatic Belt, East Kunlun Orogenic Belt: Insights from Suolagou Highly Fractionated Ⅰ-Type Granite. Bulletin of Geological Science and Technology, 39(4): 150-164(in Chinese with English abstract).
      [117] Zhou, H. Z., Zhang, D. H., Wei, J. H., et al., 2020. Petrogenesis of Late Triassic Mafic Enclaves and Host Granodiorite in the Eastern Kunlun Orogenic Belt, China: Implications for the Reworking of Juvenile Crust by Delamination-Induced Asthenosphere Upwelling. Gondwana Research, 84: 52-70. https://doi.org/10.1016/j.gr.2020.02.012
      [118] Zhu, Y. H., Zhang, K. X., Pan, Y. M., et al., 1999. Determination of Different Ophiolitic Belts in Eastern Kunlun Orogenic Zone and Their Tectonic Significance. Earth Science, 24(2): 139(in Chinese with English abstract).
      [119] 边千韬, 罗小全, 尹磊明, 等, 2001. 东昆仑布青山蛇绿混杂岩中发现奥陶纪疑源类. 科学通报, 46(2): 167-171. doi: 10.3321/j.issn:0023-074X.2001.02.019
      [120] 蔡雄飞, 刘德民, 2008. 东昆仑三叠系下、上浊积扇体的识别及研究意义. 海洋地质动态, 24(6): 1-8, 32. doi: 10.3969/j.issn.1009-2722.2008.06.001
      [121] 陈国超, 裴先治, 李瑞保, 等, 2019. 东昆仑古特提斯后碰撞阶段伸展作用: 来自晚三叠世岩浆岩的证据. 地学前缘, 26(4): 191-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904026.htm
      [122] 陈国超, 裴先治, 李瑞保, 等, 2020. 东昆仑造山带东段晚古生代: 早中生代构造岩浆演化与成矿作用. 地学前缘, 27(4): 33-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202004004.htm
      [123] 陈守建, 李荣社, 计文化, 等, 2010. 昆仑造山带二叠纪岩相古地理特征及盆山转换探讨. 中国地质, 37(2): 374-393. doi: 10.3969/j.issn.1000-3657.2010.02.011
      [124] 陈有炘, 裴先治, 李瑞保, 等, 2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄. 现代地质, 25(3): 510-521. doi: 10.3969/j.issn.1000-8527.2011.03.013
      [125] 邓红宾, 何龙, 姚波, 等, 2018. 东昆仑造山带低山头二长花岗岩形成时代及岩石地球化学特征. 西北地质, 51(4): 60-69. doi: 10.3969/j.issn.1009-6248.2018.04.008
      [126] 邓晋福, 罗照华, 苏尚国, 2004. 岩石成因、构造环境与成矿作用. 北京: 地质出版社.
      [127] 丁烁, 黄慧, 牛耀龄, 等, 2011. 东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因. 岩石学报, 27(12): 3603-3614. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201112009.htm
      [128] 丰成友, 王松, 李国臣, 等, 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义. 岩石学报, 28(2): 665-678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202025.htm
      [129] 封铿, 李瑞保, 裴先治, 等, 2020. 东昆仑造山带东段大格勒花岗岩锆石U-Pb年代学、地球化学特征及其构造意义. 地球科学与环境学报, 42(4): 442-463. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202004003.htm
      [130] 高永宝, 李文渊, 钱兵, 等, 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征. 岩石学报, 30(6): 1647-1665. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406009.htm
      [131] 国显正, 贾群子, 李金超, 等, 2019. 东昆仑扎玛休玛正长花岗岩年代学、地球化学特征及其构造意义. 地质学报, 93(4): 830-842. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201904006.htm
      [132] 郭正府, 邓晋福, 许志琴, 等, 1998. 青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程. 现代地质, 12(3): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ803.006.htm
      [133] 侯光久, 王国灿, 张克信, 等, 1999. 东昆仑造山带前陆盆地的叠加褶皱及其变形机制. 地球科学, 24(2): 125-128. http://www.earth-science.net/article/id/757
      [134] 黄啸坤, 魏俊浩, 李欢, 等, 2021. 东昆仑巴隆地区晚三叠世石英闪长岩成因: U-Pb年代学、地球化学及Sr-Nd-Hf同位素制约. 地球科学, 46(6): 2037-2056. doi: 10.3799/dqkx.2020.286
      [135] 姜春发, 王宗起, 李锦铁, 2000. 中央造山带开合构造. 北京: 地质出版社.
      [136] 姜高磊, 张思敏, 柳坤峰, 等, 2014. 祁连-柴达木-东昆仑新元古-中生代沉积盆地演化. 地球科学, 39(8): 1000-1016. doi: 10.3799/dqkx.2014.091
      [137] 李碧乐, 孙丰月, 于晓飞, 等, 2012. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究. 岩石学报, 28(4): 1163-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201204014.htm
      [138] 李昌年, 1992. 火成岩微量元素岩石学. 武汉: 中国地质大学出版社.
      [139] 李金超, 国显正, 孔会磊, 等, 2021. 东昆仑浪麦滩地区A型花岗岩年代学、地球化学特征及其地质意义. 地质学报, 95(5): 1508-1522. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202105014.htm
      [140] 李瑞保, 裴先治, 李佐臣, 等, 2012. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应. 地学前缘, 19(5): 244-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205025.htm
      [141] 李瑞保, 裴先治, 李佐臣, 等, 2015. 东昆仑东段下三叠统洪水川组沉积序列与盆地构造原型恢复. 地质通报, 34(12): 2302-2314. doi: 10.3969/j.issn.1671-2552.2015.12.016
      [142] 李荣社, 计文化, 杨永成, 2008. 昆仑山及邻区地质. 北京: 地质出版社.
      [143] 李三忠, 赵淑娟, 余珊, 等, 2016. 东亚原特提斯洋(Ⅱ): 早古生代微陆块亲缘性与聚合. 岩石学报, 32(9): 2628-2644. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201609003.htm
      [144] 李世金, 孙丰月, 丰成友, 等, 2008. 青海东昆仑鸭子沟多金属矿的成矿年代学研究. 地质学报, 82(7): 949-955. doi: 10.3321/j.issn:0001-5717.2008.07.013
      [145] 李王晔, 李曙光, 郭安林, 等, 2007. 青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学: 对"祁-柴-昆"晚新元古代—早奥陶世多岛洋南界的制约. 中国科学(D辑), 37(增刊1): 288-294. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1030.htm
      [146] 李佐臣, 裴先治, 刘战庆, 等, 2013. 东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学、地球化学特征及其地质意义. 地质学报, 87(8): 1089-1103. doi: 10.3969/j.issn.0001-5717.2013.08.005
      [147] 刘成东, 周肃, 莫宣学, 等, 2003. 东昆仑造山带后碰撞花岗岩岩石地球化学和40Ar/39Ar同位素年代学约束. 华东地质学院学报, 26(4): 301-305. doi: 10.3969/j.issn.1674-3504.2003.04.001
      [148] 刘金龙, 孙丰月, 李良, 等, 2015. 青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素. 地球科学, 40(6): 965-981. doi: 10.3799/dqkx.2015.081
      [149] 刘图杰, 2015. 东昆仑造山带东段南坡洪水川组地质特征、物源属性及构造意义(硕士学位论文). 西安: 长安大学.
      [150] 刘云华, 莫宣学, 喻学惠, 等, 2006. 东昆仑野马泉地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 22(10): 2457-2463. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501005.htm
      [151] 刘战庆, 裴先治, 李瑞保, 等, 2011. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义. 地质学报, 85(2): 185-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102005.htm
      [152] 罗明非, 莫宣学, 喻学惠, 等, 2015. 东昆仑五龙沟晚二叠世花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因及意义. 地学前缘, 22(5): 182-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505018.htm
      [153] 罗照华, 柯珊, 曹永清, 等, 2002. 东昆仑印支晚期幔源岩浆活动. 地质通报, 21(6): 292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003
      [154] 马昌前, 熊富浩, 尹烁, 等, 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555-3568. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512004.htm
      [155] 孟繁聪, 崔美慧, 贾丽辉, 等, 2015. 东昆仑造山带早古生代的大陆碰撞: 来自榴辉岩原岩性质的证据. 岩石学报, 31(12): 3581-3594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512006.htm
      [156] 莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
      [157] 裴先治, 李瑞保, 李佐臣, 等, 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程. 地球科学, 43(12): 4498-4520. doi: 10.3799/dqkx.2018.124
      [158] 祁生胜, 2015. 青海省东昆仑造山带火成岩岩石构造组合与构造演化(博士学位论文). 北京: 中国地质大学.
      [159] 钱兵, 高永宝, 李侃, 等, 2015. 新疆东昆仑于沟子地区与铁-稀有多金属成矿有关的碱性花岗岩地球化学、年代学及Hf同位素研究. 岩石学报, 31(9): 2508-2520. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201509004.htm
      [160] 史连昌, 常革红, 祁生胜, 等, 2016. 东昆仑大灶火沟-万宝沟晚二叠世陆缘弧火山岩的发现及意义. 地质通报, 35(7): 1115-1122. doi: 10.3969/j.issn.1671-2552.2016.07.007
      [161] 王秉璋, 陈静, 罗照华, 等, 2014. 东昆仑祁漫塔格东段晚二叠世-早侏罗世侵入岩岩石组合时空分布、构造环境的讨论. 岩石学报, 30(11): 3213-3228. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411009.htm
      [162] 王德滋, 刘昌实, 沈渭洲, 等, 1993. 桐庐Ⅰ型和相山S型两类碎斑熔岩对比. 岩石学报, 9(1): 44-54. doi: 10.3321/j.issn:1000-0569.1993.01.005
      [163] 王国灿, 贾春兴, 朱云海, 等, 2004. 阿拉克湖幅地质调查新成果及主要进展. 地质通报, 23(5): 549-554. doi: 10.3969/j.issn.1671-2552.2004.05.025
      [164] 王国灿, 张克信, 梁斌, 等, 1997. 东昆仑造山带结构及构造岩片组合. 地球科学, 22(4): 16-20. http://www.earth-science.net/article/id/525
      [165] 王珂, 王连训, 马昌前, 等, 2020. 东昆仑加鲁河中三叠世含石榴石二云母花岗岩的成因及地质意义. 地球科学, 45(2): 400-418. doi: 10.3799/dqkx.2018.393
      [166] 王兴, 裴先治, 李瑞保, 等, 2019. 东昆仑东段下三叠统洪水川组砾岩源区研究: 来自砾岩特征及锆石U-Pb年龄的证据. 中国地质, 46(1): 155-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201901011.htm
      [167] 王永标, 杨浩, 2003. 东昆仑-阿尼玛卿-巴颜喀拉地区早二叠世的生物古地理特征. 中国科学D辑, 33(8): 775-780. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200308008.htm
      [168] 武若晨, 顾雪祥, 章永梅, 等, 2017. 东昆仑造山带早古生代-早中生代构造演化的沉积地球化学记录. 现代地质, 31(4): 716-733. doi: 10.3969/j.issn.1000-8527.2017.04.007
      [169] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [170] 徐博, 王成勇, 刘建栋, 等, 2020. 东昆仑河尔格头地区晚三叠世花岗岩成因: 年代学、地球化学及Sr-Nd-Pb同位素约束. 地质学报, 94(12): 3643-3656. doi: 10.3969/j.issn.0001-5717.2020.12.009
      [171] 许志琴, 杨经绥, 李海兵, 等, 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002
      [172] 许志琴, 杨经绥, 李文昌, 等, 2013. 青藏高原中的古特提斯体制与增生造山作用. 岩石学报, 29(6): 1847-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm
      [173] 闫臻, 边千韬, Oleg A. Korchagin, 等, 2008. 东昆仑南缘早三叠世洪水川组的源区特征: 来自碎屑组成、重矿物和岩石地球化学的证据. 岩石学报, 24(5): 1068-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200805014.htm
      [174] 杨经绥, 王希斌, 史仁灯, 等, 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳. 中国地质, 31(3): 225-239. doi: 10.3969/j.issn.1000-3657.2004.03.001
      [175] 杨经绥, 许志琴, 李海兵, 等, 2005. 东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系. 岩石矿物学杂志, 24(5): 369-380. doi: 10.3969/j.issn.1000-6524.2005.05.004
      [176] 殷鸿福, 张克信, 1997. 东昆仑造山带的一些特点. 地球科学, 22(4): 3-6. http://www.earth-science.net/article/id/532
      [177] 殷鸿福, 张克信, 2003. 冬给措纳湖幅1∶250 000区域地质调查报告. 武汉: 中国地质大学出版社.
      [178] 俞军真, 郑有业, 许荣科, 等, 2020. 东昆仑东段将军墓含矿岩体锆石U-Pb年代学、地球化学特征及其地质意义. 地球科学, 45(4): 1151-1167. doi: 10.3799/dqkx.2019.134
      [179] 袁万明, 莫宣学, 喻学惠, 等, 2000. 东昆仑印支期区域构造背景的花岗岩记录. 地质论评, 46(2): 203-211. doi: 10.3321/j.issn:0371-5736.2000.02.012
      [180] 岳远刚, 2014. 东昆仑下三叠统洪水川组古流向分析. 河南科技, (10): 204-205. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKJ201410162.htm
      [181] 张国伟, 郭安林, 姚安平, 2004. 中国大陆构造中的西秦岭-松潘大陆构造结. 地学前缘, 11(3): 23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004
      [182] 张克信, 林启祥, 朱云海, 等, 2004. 东昆仑东段混杂岩建造时代厘定的古生物新证据及其大地构造意义. 中国科学D辑, 34(3): 210-218. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200403001.htm
      [183] 张明东, 马昌前, 王连训, 等, 2018. 后碰撞阶段的"俯冲型"岩浆岩: 来自东昆仑瑙木浑沟晚三叠世闪长玢岩的证据. 地球科学, 43(4): 1183-1206. doi: 10.3799/dqkx.2018.715
      [184] 张明玉, 丰成友, 王辉, 等, 2018. 东昆仑祁漫塔格地区晚三叠世正长花岗岩岩石成因及构造意义. 岩石矿物学杂志, 37(2): 197-210. doi: 10.3969/j.issn.1000-6524.2018.02.002
      [185] 张新远, 李五福, 欧阳光文, 等, 2020. 东昆仑东段青海战红山地区早三叠世火山岩的发现及其地质意义. 地质通报, 39(5): 631-641. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202005005.htm
      [186] 张雪亭, 杨生德, 杨站君, 等, 2007. 青海省区域地质概论: 1∶100万青海省地质图说明书. 北京: 地质出版社.
      [187] 张智勇, 殷鸿福, 王秉璋, 等, 2004. 昆秦接合部海西期苦海-赛什塘分支洋的存在及其证据. 地球科学, 29(6): 691-696. doi: 10.3321/j.issn:1000-2383.2004.06.008
      [188] 周红智, 魏俊浩, 石文杰, 等, 2020. 东昆仑鄂拉山岩浆带晚三叠世后碰撞伸展: 来自索拉沟高分异Ⅰ型花岗岩的证据. 地质科技通报, 39(4): 150-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004020.htm
      [189] 朱云海, 张克信, Pan Yuanming, 等, 1999. 东昆仑造山带不同蛇绿岩带的厘定及其构造意义. 地球科学, 24(2): 139. http://www.earth-science.net/article/id/776
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  493
    • HTML全文浏览量:  116
    • PDF下载量:  97
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-05-27
    • 网络出版日期:  2022-04-29
    • 刊出日期:  2022-04-25

    目录

      /

      返回文章
      返回