Retrospects and Prospects on Li Isotope Geochemistry during Petrogenesis and Mineralization of Mafic-Ultramafic Rocks
-
摘要: 锂(Li)同位素体系是示踪镁铁-超镁铁质岩成岩成矿过程(如结晶分异、地壳混染和熔/流体-矿物相互作用等)的全新工具.通过实例研究综述了原位Li同位素在镁铁-超镁铁质岩中应用的主要进展,主要包括:(1)美国Yellow Hill阿拉斯加型杂岩体Li同位素研究揭示弧岩浆早期堆晶过程可发生明显的Li同位素分馏;(2)土耳其和西藏蛇绿岩的Li同位素研究证明其在示踪蛇绿岩地幔序列岩石成因及豆荚状铬铁矿演化过程中的潜力;(3)Stillwater层状岩体超镁铁岩带Li同位素研究揭示流体对于大型层状岩体各矿物形成及铬铁岩中矿物元素交换的作用;(4)橄榄石Li含量与同位素分析在揭示岩浆铜镍矿床成矿过程的应用.Abstract: In-situ Li isotope geochemistry has been better utilized to trace many complex processes including fractional crystallization, crust contamination and melt/fluid-mineral reaction during the petrogenesis and mineralization of mafic-ultramafic rocks. This study summarizes the major progresses in Li isotope geochemistry during petrogenesis and mineralization of mafic-ultramafic intrusions based on case studies. Firstly, the Li isotope study of Yellow Hill Alaskan-type intrusion reveal Li isotope fractionation during magma differentiation. Secondly, the studies on ophiolites from Turkey and Tibet indicate that Li isotope systematics have potential to constrain genesis of ophiolitic mantle section and evolution of chromitites. Thirdly, the Li isotope study of the ultramafic zone of the Stillwater complex demonstrates that hydrous fluids constrained mineral composition and acted as a critical medium of chemical exchange between minerals in the chromitites. Finally, Li isotope fractionation behavior in the formation of magmatic Ni-Cu sulfide deposits has been investigated.
-
图 1 浙江建德二辉橄榄岩中橄榄石的Li含量(a)和Li同位素(b)与Fo值之间的相关图解
灰色圆点代表交代作用较弱的地幔橄榄岩捕虏体(Seitz et al., 2003);批式熔融线引自Seitz et al.(2003)
Fig. 1. Variations in Li concentrations (a) and δ7Li values (b) of olivine with Fo contents in the Jiande lherzolites compared with slightly-metasomatized lherzolites
图 2 地球典型储库的Li同位素组成以及不同构造背景下地幔组成矿物(地幔橄榄岩捕虏体,蛇绿岩地幔序列中橄榄岩和铬铁岩,深海橄榄岩)的Li同位素组成
图据李献华等(2015);Tomascak et al.(2016);苏本勋(2017)修改
Fig. 2. Lithium isotopic composition of various terrestrial reservoirs and mantle minerals in the mantle xenoliths, ophiolitic mantle and abyssal peridotites
图 4 Yellow Hill岩体中纯橄岩和异剥橄榄岩的橄榄石Li含量和Li同位素组成
灰色圆形代表新疆中天山地块峡东岩体中的纯橄岩(Su et al., 2017).弧岩浆数据引自Chan et al.(2002)、Tomascak et al.(2002)、Magna et al.(2006)和Košler et al.(2009);MORB数据引自Chan et al.(1992, 2002);Elliott et al.(2006);Tomascak et al.(2016)
Fig. 4. Li vs. δ7Li in olivine from the dunites and wehrlites of the Yellow Hill complex
图 5 土耳其Pozantı-Karsantı、Kızıldaǧ和Bursa蛇绿岩中方辉橄榄岩、纯橄岩和铬铁岩及其壳-幔过渡带堆晶中橄榄石的Li同位素组成图解
图据Su et al.(2018).数据来源:Pozantı-Karsantı蛇绿岩(Su et al., 2018),Kızıldaǧ蛇绿岩(Chen et al., 2019),Bursa蛇绿岩(Chen et al., 2020),罗布莎蛇绿岩(Su et al., 2016;Zhang et al., 2019),Trinity蛇绿岩(Lundstrom et al., 2005),Gakkel Ridge橄榄岩(Gao et al., 2011).MORB、OIB、岛弧熔岩、榴辉岩和麻粒岩、蚀变大洋中脊玄武岩以及大洋沉积物等的Li同位素范围引自Tomascak et al.(2016).Li扩散或熔体渗滤的趋势线引自Lundstrom et al.(2005)
Fig. 5. Diagram of Li vs. δ7Li for olivine in the Pozantı-Karsantı, Kızıldaǧ and Bursa ophiolitic harzburgites, dunites, chromitites and cumulates
图 6 Stillwater层状岩体超基性岩层中橄榄石(a)、斜方辉石(b)、单斜辉石(c)和全岩(d)的Li同位素组成(据Su et al., 2020);Bushveld层状岩体引自Ireland and Penniston-Dorland(2015)
Fig. 6. Correlation diagrams of Li and δ7Li for olivine (a), orthopyroxene (b), clinopyroxene (c) and whole rock (d) from the ultramafic zone of the Stillwater complex (after Su et al., 2020), with comparison of data from the Bushveld complex (Ireland and Penniston-Dorland, 2015)
图 7 白石泉和天宇橄榄石Li含量和δ7Li相关性图
图据Tang et al.(2021).阿拉斯加型岩体据Su et al.(2017b);蛇绿岩和深海橄榄岩引自Lundstrom et al.(2005)、Gao et al.(2011)、Su et al.(2018)和Chen et al.(2019);地幔值引自Pogge von Strandmann et al.(2011)
Fig. 7. Correlation diagram of Li vs. δ7Li of olivine in the Baishiquan and Tianyu
图 8 橄榄石Li含量和Fo相关性图(a)和橄榄石Li含量与P含量相关性图(b)
据Mao et al.(2021,under review).阿拉斯加型岩体据Su et al.(2017);蛇绿岩引自Lundstrom et al.(2005)、Su et al.(2018)和Chen et al.(2019);地幔橄榄岩引自Chan et al.(2002)、Magna et al.(2006)、Tang et al.(2007)、Pogge von Strandmann et al.(2011)和Su et al.(2014)
Fig. 8. Correlation diagrams of Li vs. Fo (a) and P (b) in olivine for the magmatic Ni-Cu deposits
-
[1] Chan, L.H., Alt, J.C., Teagle, D.A.H., 2002. Lithium and Lithium Isotope Profiles through the Upper Oceanic Crust: A Study of Seawater-Basalt Exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters, 201(1): 187-201. https://doi.org/10.1016/s0012-821x(02)00707-0 doi: 10.1016/S0012-821X(02)00707-0 [2] Chan, L.H., Edmond, J.M., Thompson, G., et al., 1992. Lithium Isotopic Composition of Submarine Basalts: Implications for the Lithium Cycle in the Oceans. Earth and Planetary Science Letters, 108(1-3): 151-160. https://doi.org/10.1016/0012-821x(92)90067-6 doi: 10.1016/0012-821X(92)90067-6 [3] Chen, C., de Hoog, J.C.M., Su, B.X., et al., 2020. Formation Process of Dunites and Chromitites in Orhaneli and Harmancık Ophiolites (NW Turkey): Evidence from In-Situ Li Isotopes and Trace Elements in Olivine. Lithos, 376-377: 105773. https://doi.org/10.1016/j.lithos.2020.105773 [4] Chen, C., Su, B.X., Xiao, Y., et al., 2019. Intermediate Chromitite in Kızıldağ Ophiolite (SE Turkey) Formed during Subduction Initiation in Neo-Tethys. Ore Geology Reviews, 104: 88-100. https://doi.org/10.1016/j.oregeorev.2018.10.004 [5] Cui, M.M., Bai, Y., Luo, Y., et al., 2020. Characteristics, Petrogenesis and Metallogenesis of Alaskan-Type Complexes. Mineral Deposits, 39(3): 397-418(in Chinese with English abstract). [6] Deng, L.X., Liu, Y.S., Zong, K.Q., et al., 2019. Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite. Earth Science, 44(4): 1113-1127(in Chinese with English abstract). [7] Elliott, T., Jeffcoate, A., Bouman, C., 2004. The Terrestrial Li Isotope Cycle: Light-Weight Constraints on Mantle Convection. Earth and Planetary Science Letters, 220(3-4): 231-245. https://doi.org/10.1016/s0012-821x(04)00096-2 doi: 10.1016/S0012-821X(04)00096-2 [8] Elliott, T., Thomas, A., Jeffcoate, A., et al., 2006. Lithium Isotope Evidence for Subduction-Enriched Mantle in the Source of Mid-Ocean-Ridge Basalts. Nature, 443(7111): 565-568. https://doi.org/10.1038/nature05144 [9] Gao, Y.J., Snow, J.E., Casey, J.F., et al., 2011. Cooling-Induced Fractionation of Mantle Li Isotopes from the Ultraslow-Spreading Gakkel Ridge. Earth and Planetary Science Letters, 301(1-2): 231-240. https://doi.org/10.1016/j.epsl.2010.11.003 [10] Ireland, R.H.P., Penniston-Dorland, S.C., 2015. Chemical Interactions between a Sedimentary Diapir and Surrounding Magma: Evidence from the Phepane Dome and Bushveld Complex, South Africa. American Mineralogist, 100(8): 1985-2000. https://doi.org/10.2138/am-2015-5196 [11] Jing, J.J., Su, B.X., Xiao, Y., et al., 2019. Reactive Origin of Mantle Harzburgite: Evidence from Orthopyroxene-Spinel Association. Lithos, 342/343: 175-186. https://doi.org/10.1016/j.lithos.2019.05.011 [12] Košler, J., Magna, T., Mlčoch, B., et al., 2009. Combined Sr, Nd, Pb and Li Isotope Geochemistry of Alkaline Lavas from Northern James Ross Island (Antarctic Peninsula) and Implications for Back-Arc Magma Formation. Chemical Geology, 258(3-4): 207-218. https://doi.org/10.1016/j.chemgeo.2008.10.006 [13] Liang, Z., 2018. Petrological and Geochemical Studies of Mafic-Ultramafic Complexes from Southeastern Alaska, United States (Dissertation). Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 41-53(in Chinese with English abstract). [14] Li, D.Y., Xiao Y.L., Wang, Y.Y., et al., 2019. Mg-Li-Fe-Cr Isotopic Fractionation during Subduction. Earth Science, 44(12): 4081-4085(in Chinese with English abstract). [15] Li, X.H., Liu, Y., Tang, Y.J., et al., 2015. In-Situ Li Isotopic Microanalysis Using SIMS and Its Applications. Earth Science Frontiers, 22(5): 160-170(in Chinese with English abstract). [16] Lundstrom, C.C., Chaussidon, M., Hsui, A.T., et al., 2005. Observations of Li Isotopic Variations in the Trinity Ophiolite: Evidence for Isotopic Fractionation by Diffusion during Mantle Melting. Geochimica et Cosmochimica Acta, 69(3): 735-751. https://doi.org/10.1016/j.gca.2004.08.004 [17] Magna, T., Wiechert, U., Grove, T.L., et al., 2006. Lithium Isotope Fractionation in the Southern Cascadia Subduction Zone. Earth and Planetary Science Letters, 250(3-4): 428-443. https://doi.org/10.1016/j.epsl.2006.08.019 [18] Mao, Y.J., Schoneveld, L., Barnes, S.J., et al., 2021. Coupled Li-P Zoning and Trace Element Composition of Olivine from Magmatic Ni-Cu Deposits: Implications for Postcumulus Re-Equilibration of Olivine. Journal of Petrology(in review). [19] Marschall, H.R., Wanless, V.D., Shimizu, N., et al., 2017. The Boron and Lithium Isotopic Composition of Mid-Ocean Ridge Basalts and the Mantle. Geochimica et Cosmochimica Acta, 207: 102-138. https://doi.org/10.1016/j.gca.2017.03.028 [20] Pogge von Strandmann, P.A.E., Elliott, T., Marschall, H.R., et al., 2011. Variations of Li and Mg Isotope Ratios in Bulk Chondrites and Mantle Xenoliths. Geochimica et Cosmochimica Acta, 75(18): 5247-5268. https://doi.org/10.1016/j.gca.2011.06.026 [21] Rudnick, R.L., Ionov, D.A., 2007. Lithium Elemental and Isotopic Disequilibrium in Minerals from Peridotite Xenoliths from Far-East Russia: Product of Recent Melt/Fluid-Rock Reaction. Earth and Planetary Science Letters, 256(1-2): 278-293. https://doi.org/10.1016/j.epsl.2007.01.035 [22] Seitz, H.M., Brey, G.P., Stachel, T., et al., 2003. Li Abundances in Inclusions in Diamonds from the Upper and Lower Mantle. Chemical Geology, 201(3-4): 307-318. https://doi.org/10.1016/j.chemgeo.2003.08.001 [23] Su, B.X., 2017. Applications of Li Isotopes in Mantle Geochemistry. Bulletin of Mnieralogy, Petrology and Geochemistry. 36(1): 6-13(in Chinese with English abstract). [24] Su, B.X., Bai, Y., Cui, M.M., et al., 2020. Petrogenesis of the Ultramafic Zone of the Stillwater Complex in North America: Constraints from Mineral Chemistry and Stable Isotopes of Li and O. Contributions to Mineralogy and Petrology, 175(7): 1-20. https://doi.org/10.1007/s00410-020-01707-y [25] Su, B.X., Chen, C., Bai, Y., et al., 2017. Lithium Isotopic Composition of Alaskan-Type Intrusion and Its Implication. Lithos, 286-287: 363-368. https://doi.org/10.1016/j.lithos.2017.06.024 [26] Su, B.X., Chen, C., Pang, K.N., et al., 2018a. Melt Penetration in Oceanic Lithosphere: Li Isotope Records from the Pozantı-Karsantı Ophiolite in Southern Turkey. Journal of Petrology, 59(1): 191-205. https://doi.org/10.1093/petrology/egy023 [27] Su, B.X., Zhou, X.H., Sun, Y., et al., 2018b. Carbonatite-Metasomatism Signatures Hidden in Silicate-Metasomatized Mantle Xenoliths from NE China. Geological Journal, 53(2): 682-691. https://doi.org/10.1002/gj.2920 [28] Su, B.X., Gu, X.Y., Deloule, E., et al., 2015. Potential Orthopyroxene, Clinopyroxene and Olivine Reference Materials for In-Situ Lithium Isotope Determination. Geostandards and Geoanalytical Research, 39(3): 357-369. https://doi.org/10.1111/j.1751-908x.2014.00313.x doi: 10.1111/j.1751-908X.2014.00313.x [29] Su, B.X., Zhang, H.F., Deloule, E., et al., 2014. Distinguishing Silicate and Carbonatite Mantle Metasomatism by Using Lithium and Its Isotopes. Chemical Geology, 381: 67-77. https://doi.org/10.1016/j.chemgeo.2014.05.016 [30] Su, B.X., Zhou, M.F., Robinson, P.T., 2016. Extremely Large Fractionation of Li Isotopes in a Chromitite-Bearing Mantle Sequence. Scientific Reports, 6: 22370. https://doi.org/10.1038/srep22370 [31] Tang, D.M., Qin, K.Z., Su, B.X., et al., 2021. Addition of H2O at the Baishiquan and Tianyu Magmatic Ni-Cu Sulfide Deposits, Southern Central Asian Orogenic Belt, China: Evidence from Isotopic Geochemistry of Olivine and Zircon. Mineralium Deposita. https://doi.org/10.1007/s00126-021-01063-2 [32] Tang, Y.J., Zhang, H.F., Nakamura, E., et al., 2007. Lithium Isotopic Systematics of Peridotite Xenoliths from Hannuoba, North China Craton: Implications for Melt-Rock Interaction in the Considerably Thinned Lithospheric Mantle. Geochimica et Cosmochimica Acta, 71(17): 4327-4341. https://doi.org/10.1016/j.gca.2007.07.006 [33] Teng, F.Z., Rudnick, R.L., McDonough, W.F., et al., 2008. Lithium Isotopic Composition and Concentration of the Deep Continental Crust. Chemical Geology, 255(1-2): 47-59. https://doi.org/10.1016/j.chemgeo.2008.06.009 [34] Tomascak, P.B., Magna, T.S., Dohmen, R., 2016. Advances in Lithium Isotope Geochemistry. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-01430-2 [35] Tomascak, P.B., Tera, F., Helz, R.T., et al., 1999. The Absence of Lithium Isotope Fractionation during Basalt Differentiation: New Measurements by Multicollector Sector ICP-MS. Geochimica et Cosmochimica Acta, 63(6): 907-910. https://doi.org/10.1016/s0016-7037(98)00318-4 doi: 10.1016/S0016-7037(98)00318-4 [36] Tomascak, P.B., Widom, E., Benton, L.D., et al., 2002. The Control of Lithium Budgets in Island Arcs. Earth and Planetary Science Letters, 196(3-4): 227-238. https://doi.org/10.1016/s0012-821x(01)00614-8 doi: 10.1016/S0012-821X(01)00614-8 [37] Tian, S.H., Lu, N., Hou, Z.Q., et al., 2021. Lithium Isotopic Solution Analysis Using MC-ICP-MS and Its Applications. Geological Review, 67(5): 1441-1464 (in Chinese with English abstract). [38] Xiao, Y., Zhang, H.F., Su, B.X., et al., 2017. Partial Melting Control of Lithium Concentrations and Isotopes in the Cenozoic Lithospheric Mantle beneath Jiande Area, the Cathaysia Block of SE China. Chemical Geology, 466: 750-761. https://doi.org/10.1016/j.chemgeo.2017.07.024 [39] Xiao, Y., Zhang, H.F., Su, B.X., et al., 2019. Subduction-Driven Heterogeneity of the Lithospheric Mantle beneath the Cathaysia Block, South China. Journal of Asian Earth Sciences, 186: 104062. https://doi.org/10.1016/j.jseaes.2019.104062 [40] Xu, R., Liu, Y.S., Tong, X.R., et al., 2013. In-Situ Trace Elements and Li and Sr Isotopes in Peridotite Xenoliths from Kuandian, North China Craton: Insights into Pacific Slab Subduction-Related Mantle Modification. Chemical Geology, 354: 107-123. https://doi.org/10.1016/j.chemgeo.2013.06.022 [41] Zhang, P.F., Zhou, M.F., Robinson, P.T., et al., 2019. Evolution of Nascent Mantle Wedges during Subduction Initiation: Li-O Isotopic Evidence from the Luobusa Ophiolite, Tibet. Geochimica et Cosmochimica Acta, 245: 35-58. https://doi.org/10.1016/j.gca.2018.09.037 [42] 崔梦萌, 白洋, 罗扬, 等, 2020. 阿拉斯加型岩体的基本特征、成岩过程及成矿作用. 矿床地质, 39: 397-418. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202003001.htm [43] 邓黎旭, 刘勇胜, 宗克清, 等, 2019. 地幔橄榄岩中碳酸盐熔体交代作用及其鉴定特征. 地球科学, 44(4): 1113-1127. doi: 10.3799/dqkx.2018.357 [44] 李东永, 肖益林, 王洋洋, 等, 2019. 板块俯冲过程中的Mg-Li-Fe-Cr同位素分馏. 地球科学, 44: 4081-4085. doi: 10.3799/dqkx.2019.255 [45] 李献华, 刘宇, 汤艳杰, 等, 2015. 离子探针Li同位素微区原位分析技术与应用. 地学前缘, 22(5): 160-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505016.htm [46] 梁子, 2018. 阿拉斯加东南部镁铁-超镁铁杂岩体岩石学和地球化学(硕士学位论文). 北京: 中国科学院大学. [47] 苏本勋, 2017. 锂同位素在地幔地球化学中的应用. 矿物岩石地球化学通报, 36(1): 6-13. doi: 10.3969/j.issn.1007-2802.2017.01.002 [48] 田世洪, 路娜, 侯增谦, 等, 2021. MC-ICP-MS锂同位素溶液分析技术与应用. 地质论评, 67(5): 1441-1464. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202105020.htm