• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海相钾盐矿床溶滤卤水找钾指标体系: ——以川东北天星桥构造寒武系深部地下卤水为例

    王淑丽 郑绵平 李博昀 王占文 王英林 王凡 苏奎 李津 王莹

    王淑丽, 郑绵平, 李博昀, 王占文, 王英林, 王凡, 苏奎, 李津, 王莹, 2022. 海相钾盐矿床溶滤卤水找钾指标体系: ——以川东北天星桥构造寒武系深部地下卤水为例. 地球科学, 47(1): 2-14. doi: 10.3799/dqkx.2021.107
    引用本文: 王淑丽, 郑绵平, 李博昀, 王占文, 王英林, 王凡, 苏奎, 李津, 王莹, 2022. 海相钾盐矿床溶滤卤水找钾指标体系: ——以川东北天星桥构造寒武系深部地下卤水为例. 地球科学, 47(1): 2-14. doi: 10.3799/dqkx.2021.107
    Wang Shuli, Zheng Mianping, Li Boyun, Wang Zhanwen, Wang Yinglin, Wang Fan, Su Kui, Li Jin, Wang Ying, 2022. Index System for Potassium Prospecting in Marine Potash Deposits: A Case Study of Cambrian Deep Brine from Tianxingqiao Structure of Northeast Sichuan in China. Earth Science, 47(1): 2-14. doi: 10.3799/dqkx.2021.107
    Citation: Wang Shuli, Zheng Mianping, Li Boyun, Wang Zhanwen, Wang Yinglin, Wang Fan, Su Kui, Li Jin, Wang Ying, 2022. Index System for Potassium Prospecting in Marine Potash Deposits: A Case Study of Cambrian Deep Brine from Tianxingqiao Structure of Northeast Sichuan in China. Earth Science, 47(1): 2-14. doi: 10.3799/dqkx.2021.107

    海相钾盐矿床溶滤卤水找钾指标体系: ——以川东北天星桥构造寒武系深部地下卤水为例

    doi: 10.3799/dqkx.2021.107
    基金项目: 

    国家自然科学基金青年科学基金项目 41403019

    中国地质调查局项目 DD20160346

    中国地质调查局项目 DD20190379

    详细信息
      作者简介:

      王淑丽(1983-),女,正高级工程师,博士,主要从事盐类矿床学研究. ORCID:0000-0002-8659-6137. E-mail:wangshuli77@126.com

      通讯作者:

      郑绵平,ORCID: 0000-0002-8267-4249. E-mail:zhengmp2010@126.com

    • 中图分类号: P611.4

    Index System for Potassium Prospecting in Marine Potash Deposits: A Case Study of Cambrian Deep Brine from Tianxingqiao Structure of Northeast Sichuan in China

    • 摘要:

      长期工作成果显示我国现阶段常用的找钾指标Br×103/Cl值偏低. 创新性地应用“以古验古”的溶滤实验与地质统计法厘清了海相蒸发盐盆地找钾指标体系,充分考虑了不同地质年代海水成分的变化,也可克服“将今论古”应用于现代海水在等温等压条件下实验数据的不足. 通过对世界上典型钾盐矿床的石盐、含钾石盐及钾盐(含光卤石)进行溶滤实验,并结合前人海水及海相卤水的蒸发实验成果,总结了海相钾盐矿床溶滤卤水找钾指标体系:Br×103/Cl、K×103/Cl、K/Br重量比及nNa/nCl、nMg/nCl摩尔浓度比等. 以天星桥构造寒武系深部地下卤水为例,分析其Br×103/Cl、K×103/Cl、K/Br重量比及nNa/nCl、nMg/nCl等找钾指标与δD、δ18O特征,认为天星桥构造寒武系深部地下卤水的水化学特征与溶滤卤水一致,与沉积卤水有较大差异,其δD、δ18O投点均靠近大气降水线. 因此,综合分析认为该区卤水属于溶滤卤水,且有溶解含钾石盐甚至是溶解钾盐的可能性. 该成果对评价研究区地下卤水钾资源具有重要意义,也为在该区寻找寒武纪固体钾盐矿提供了新依据.

       

    • 图  1  四川盆地寒武系膏盐岩及卤水钻孔分布

      Fig.  1.  Distribution of wells encountering Cambrian gypsum and salt rock and brine in Sichuan Basin

      图  2  四川盆地寒武系主要含盐层位剖面示意图

      Fig.  2.  Diagrammatic cross-section of main Cambrian salt-bearing strata in Sichuan Basin

      图  3  海水浓缩时固相石盐溴氯系数与液相卤水溴氯系数(据Valyashko,1956

      Fig.  3.  Br×103/Cl of the halite and brine for the seawater in different concentration stages (from Valyashko, 1956)

      图  4  天星桥构造寒武系深部地下卤水K/Br(a)和nNa/nCl(b)分布

      Fig.  4.  The change of K/Br with Cl- (a) and nNa/nCl with Cl- (b) of the seawater in different concentration stages

      图  5  川东北地下卤水与盐泉的氢氧同位素关系

      Fig.  5.  Relation between δD and δ18O of of formation brine and salt spring in Northeast Sichuan Basin

      表  1  世界主要海相钾盐矿床石盐、含钾石盐与钾石盐(含光卤石)溶滤分析结果

      Table  1.   Chemical compositions of halite, sylvinite and sylvite in marine potassium deposit of the world

      地点 样品号 岩性 矿化度(g/L) K+(g/L) Na+(g/L) Ca2+(g/L) Mg2+(g/L) Cl(g/L) SO42‒(g/L) Br(mg/L) Li+(mg/L) B2O3(mg/L) Br×103/Cl K×103/Cl K×103/盐 K/Br nNa/nCl nMg/nCl
      中国 my6#‒12 石盐 48.5 0.14 18.6 0.07 < 0.01 29.7 0.16 22.9 < 0.1 6.92 0.77 4.71 2.89 6.11 0.97
      my6#‒13 含钾石盐 59.8 0.61 22.9 0.01 < 0.01 36.2 < 0.03 37.3 < 0.1 5.47 0.59 16.85 10.21 28.50 0.98
      my6#‒5 钾石盐
      (含光卤石)
      44.3 6.50 10.2 0.05 1.41 27.4 0.04 21.4 < 0.1 4.32 3.60 237.20 146.70 65.92 0.57 0.076
      加拿大 jnd‒2 含钾石盐 48.4 0.87 16.4 0.55 0.02 27.4 0.84 9.9 < 0.1 9.88 0.36 31.75 17.99 88.24 0.92 0.001
      jnd‒1 含钾石盐 58.6 1.68 22.0 0.13 0.01 34.8 0.30 16.2 < 0.1 7.67 0.47 48.28 28.67 103.70 0.98 0.000
      jnd‒3 钾石盐 57.7 9.20 13.5 0.18 0.02 31.0 0.40 31.2 < 0.1 9.59 1.01 296.77 159.50 294.87 0.67 0.001
      老挝 lw‒67 石盐 62.4 0.05 23.2 0.08 0.02 35.9 0.18 25.1 < 0.1 11.0 0.70 1.39 0.80 1.99 1.00 0.001
      lw‒71 钾盐
      (含光卤石)
      46.8 3.68 11.8 0.05 1.86 28.0 0.05 128.0 < 0.1 8.87 4.57 131.43 78.64 28.75 0.65 0.098
      lw‒79 钾盐
      (含光卤石)
      49.7 7.91 9.7 0.03 2.03 28.8 < 0.03 162.0 < 0.1 14.7 5.63 274.65 159.12 48.83 0.52 0.104
      德国 K7 石盐 65.5 0.08 23.0 0.02 0.01 36.1 0.03 21.8 < 0.1 5.22 0.60 2.08 1.15 3.44 0.98 0.000
      K4 含钾石盐 63.2 1.05 21.4 0.23 0.29 34.2 1.63 28.6 < 0.1 4.93 0.84 30.70 16.62 36.71 0.97 0.013
      K9 钾石盐 46.3 15.30 5.3 1.02 0.01 24.5 2.34 178.0 0.11 3.98 7.27 624.4 330.40 85.96 0.33 0.001
      下载: 导出CSV

      表  2  天星桥构造寒武系深部地下卤水化学组成

      Table  2.   Chemical compositions of Cambrian brine of Well Tian1 and Well Tian2

      井名 序号 采样时间 矿化度(g/L) 采样层位或深度(m) pH 离子含量(mg/L) 重量比 摩尔浓度比 数据来源
      K+ Na+ Ca2+ Mg2+ Cl- SO42- Br- B2O3 Br×103/Cl K×103/Cl K×103/盐 K/Br nNa/nCl nMg/nCl
      天1井 1 1990‒11 281.22 2 6.91 3 100 94 120 9 813 1 692 171 765 583 573.12 215.83 3.34 18.05 11.02 5.41 0.85 0.015 1972‒1993年生产分析数据
      2 1993‒05 285.67 2 / 3 550 97 700 8 310 1 360 171 200 2 320 465.00 486.56 2.72 20.74 12.43 7.63 0.88 0.012
      3 1987‒05 134.22 3 7.83 684 48 612 2 076 521 76 630 5 455 75.62 100.99 0.99 8.93 5.10 9.05 0.98 0.010
      4 1972‒10 220.36 / / 2 599 72 112 5 865 1 082 136 659 1 310 334.67 / 2.45 19.01 11.79 7.76 0.81 0.012
      5 1987‒08 134.50 / 7.39 669 48 659 2 086 531 76 726 5 415 75.58 92.38 0.99 8.72 4.97 8.85 0.98 0.010
      6 1988‒05 142.31 / 7.32 707 51 626 2 183 493 81 481 5 462 81.91 92.82 1.01 8.67 4.96 8.62 0.98 0.009
      7 1988‒12 119.26 3 8.30 636 43 371 2 044 481 72 109 419 65.66 95.73 0.91 8.83 5.34 9.69 0.93 0.010
      天2井 8 1972‒10 293.02 / / 4 151 96 002 9 434 1541 179 830 877 532.81 / 2.96 23.08 14.17 7.79 0.82 0.013
      9 1993‒05 218.80 / / 2 000 78 830 3 860 640 129 700 3 150 211.00 327.05 1.63 15.42 9.14 9.48 0.94 0.007
      10 1990‒10 234.29 3 7.42 1 850 83 748 4 658 863 140 261 2 374 250.63 139.65 1.79 13.19 7.90 7.38 0.92 0.009
      11 1989‒07 261.92 / 5.80 2 375 92 826 5 678 1 175 157 970 1 290 315.00 327.05 1.99 15.03 9.07 7.54 0.91 0.011
      12 1988‒12 317.20 / 5.70 4 578 105 210 10 655 1 847 189 215 3 948 885.94 226.26 4.68 24.19 14.43 5.17 0.86 0.014
      13 2012‒08 119.66 160 / 1 134 41 848 2 246 345 71 699 2 173 120.00 93.14 1.67 15.82 9.48 9.45 0.90 0.007 本文
      14 2012‒08 177.05 200 / 1 678 61 487 3 141 570 106 629 3 268 120.00 159.12 1.13 15.73 9.47 13.98 0.89 0.008
      15 2012‒08 184.88 260 / 1 734 66 931 3 574 608 108 468 3 309 88.00 170.76 0.81 15.99 9.38 19.71 0.95 0.008
      16 2012‒08 167.11 360 / 1 549 58 846 3 615 557 99 276 3 029 80.00 159.12 0.81 15.61 9.27 19.37 0.91 0.008
      注:“/”表示未分析该项;卤水矿化度随埋藏深度的加深逐渐增大. 本文采集样品为井中的混合水,只能代表采样时水在井中的位置.
      下载: 导出CSV

      表  3  川东北寒武系深部地下卤水盐泉氢氧同位素组成

      Table  3.   Isotopic analysis of subsurface brine and salt spring in Northeast Sichuan Basin

      序号 采样时间 样品名称 出露方式 含卤层位 δD (H2O)
      [‰ vs. SMOW]
      δ18O (H2O)
      [‰ vs. SMOW]
      1 2012‒08 天2井 地下卤水 寒武系 ‒81.8 ‒11.7
      2 2012‒08 天2井 地下卤水 寒武系 ‒92.9 ‒14.3
      3 2012‒08 天2井 地下卤水 寒武系 ‒93.5 ‒12.0
      4 2012‒08 天2井 地下卤水 寒武系 ‒97.3 ‒14.8
      5 2012‒03 ZK4‒1 盐泉 寒武系 ‒84.9 ‒13.2
      6 2012‒08 ZK4‒2 盐泉 寒武系 ‒87.4 ‒13.9
      下载: 导出CSV
    • [1] Alcalá, F. J., Custodio, E., 2008. Using the Cl/Br Ratio as a Tracer to Identify the Origin of Salinity in Aquifers in Spain and Portugal. Journal of Hydrology, 359(1-2): 189-207. https://doi.org/10.1016/j.jhydrol.2008.06.028
      [2] Boschetti, T., Toscani, L., Shouakar-Stash, O., et al., 2011. Salt Waters of the Northern Apennine Foredeep Basin (Italy): Origin and Evolution. Aquatic Geochemistry, 17(1): 71-108. https://doi.org/10.1007/s10498-010-9107-y
      [3] Bottomley, D. J., Katz, A., Chan, L. H., et al., 1999. The Origin and Evolution of Canadian Shield Brines: Evaporation or Freezing of Seawater? New Lithium Isotope and Geochemical Evidence from the Slave Craton. Chemical Geology, 155(3-4): 295-320. https://doi.org/10.1016/S0009-2541(98)00166-1
      [4] Braitsch, O., 1971. Salt Deposits, Their Origin and Composition. Springer Verlag, Heidelberg, 215-245. https://doi.org/10.1007/978-3-642-65083-3_5
      [5] Bureau of Chemical Mines, Ministry of Petrochemical Industry, 1977. Methods for Potash Deposits in Petroleum Exploration. Petrochemical Industry Press, Beijing, 93-121 (in Chinese).
      [6] Cai, C. F., Wang, J. Y., Zeng, F. G., et al., 2001. Origin, Migration and Mixing of Oilfield Brines: Stable Isotopic Evidence from Kuqa Foreland Basin. Science in China Series E: Technological Sciences, 44(1): 175-180. https://doi.org/10.1007/bf02916812
      [7] Chan, L. H., Starinsky, A., Katz, A., 2002. The Behavior of Lithium and Its Isotopes in Oilfield Brines: Evidence from the Heletz-Kokhav Field, Israel. Geochimica et Cosmochimica Acta, 66(4): 615-623. https://doi.org/10.1016/s0016-7037(01)00800-6
      [8] Chen, Y.H., 1983. Sequence of Salt Separation and Regularity of Some Trace Elements Distribution during Isothermal Evaporation (25℃) of the Huanghai Sea Water. Acta Geologica Sinica, 57(4): 379-390 (in Chinese with English abstract).
      [9] Cheng, H.D., Ma, H.Z., Tan, H.B., et al., 2008. Geochemical Characteristics of Bromide in Potassium Deposits: Review and Research Perspectives. Bulletin of Mineralogy, Petrology and Geochemistry, 27(4): 399-408 (in Chinese with English abstract).
      [10] Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
      [11] Davis, S. N., Fabryka-Martin, J., Wolfsberg, L. E., 2004. Variations of Bromide in Potable Ground Water in the United States. Groundwater, 42(6): 902-909. https://doi.org/10.1111/j.1745-6584.2004.t01-8-.x
      [12] Davis, S. N., Whittemore, D. O., Fabryka-Martin, J., 1998. Uses of Chloride/Bromide Ratios in Studies of Potable Water. Groundwater, 36(2): 338-350. https://doi.org/10.1111/j.1745-6584.1998.tb01099.x
      [13] Eastoe, C. J., Long, A., Land, L. S., et al., 2001. Stable Chlorine Isotopes in Halite and Brine from the Gulf Coast Basin: Brine Genesis and Evolution. Chemical Geology, 176(1-4): 343-360. https://doi.org/10.1016/s0009-2541(00)00374-0
      [14] Edmunds, W. M., 1996. Bromine Geochemistry of British Groundwaters. Mineralogical Magazine, 60(399): 275-284. https://doi.org/10.1180/minmag.1996.060.399.03
      [15] Fontes, J. C., Matray, J. M., 1993. Geochemistry and Origin of Formation Brines from the Paris Basin, France: 2. Saline Solutions Associated with Oil Fields. Chemical Geology, 109(1-4): 177-200. https://doi.org/10.1016/0009-2541(93)90069-u
      [16] Freeman, J. T., 2007. The Use of Bromide and Chloride Mass Ratios to Differentiate Salt-Dissolution and Formation Brines in Shallow Groundwaters of the Western Canadian Sedimentary Basin. Hydrogeology Journal, 15(7): 1377-1385. https://doi.org/10.1007/s10040-007-0201-1
      [17] García-Veigas, J., Cendón, D. I., Rosell, L., et al., 2013. Salt Deposition and Brine Evolution in the Granada Basin (Late Tortonian, SE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 369: 452-465. https://doi.org/10.1016/j.palaeo.2012.11.010
      [18] Gleeson, S. A., Wilkinson, J. J., Stuart, F. M., et al., 2001. The Origin and Evolution of Base Metal Mineralising Brines and Hydrothermal Fluids, South Cornwall, UK. Geochimica et Cosmochimica Acta, 65(13): 2067-2079. https://doi.org/10.1016/s0016-7037(01)00579-8
      [19] Gupta, I., Wilson, A. M., Rostron, B. J., 2012. Cl/Br Compositions as Indicators of the Origin of Brines: Hydrogeologic Simulations of the Alberta Basin, Canada. Geological Society of America Bulletin, 124(1-2): 200-212. https://doi.org/10.1130/b30252.1
      [20] Han, J.J., Zhou, X., Jiang, C.L., et al., 2013. Hydrochemical Characteristics, Origin and Evolution of the Subsurface Brines in Western Qaidam Basin. Geoscience, 27(6): 1454-1464 (in Chinese with English abstract).
      [21] Herrmann, A. G., 1972. Bromine Distribution Coefficients for Halite Precipitated from Modern Sea Water under Natural Conditions. Contributions to Mineralogy and Petrology, 37(3): 249-252. https://doi.org/10.1007/bf00373073
      [22] Herrmann, A. G., 1980. Bromide Distribution between Halite and NaCl-Saturated Seawater. Chemical Geology, 28: 171-177. https://doi.org/10.1016/0009-2541(80)90043-1
      [23] Herrmann, A. G., Knake, D., Schneider, J., et al., 1973. Geochemistry of Modern Seawater and Brines from Salt Pans: Main Components and Bromine Distribution. Contributions to Mineralogy and Petrology, 40(1): 1-24. https://doi.org/10.1007/bf00371760
      [24] Huang, S.J., Zeng, Y.F., 1997. Geochemical Characteristics of Deep Formation Brine, Leikoupo Formation of Middle Triassic Sichuan Province. Acta Sedimentologica Sinica, 15(3): 67-71 (in Chinese with English abstract).
      [25] Hudak, P. F., 2003. Chloride/Bromide Ratios in Leachate Derived from Farm-Animal Waste. Environmental Pollution, 121(1): 23-25. https://doi.org/10.1016/s0269-7491(02)00211-7
      [26] Jensen, G. K. S., Rostron, B. J., Duke, M. J. M., et al., 2006. Bromine and Stable Isotopic Profiles of Formation Waters from Potash Mine-Shafts, Saskatchewan, Canada. Journal of Geochemical Exploration, 89(1-3): 170-173. https://doi.org/10.1016/j.gexplo.2005.11.071
      [27] Katz, B. G., Eberts, S. M., Kauffman, L. J., 2011. Using Cl/Br Ratios and Other Indicators to Assess Potential Impacts on Groundwater Quality from Septic Systems: A Review and Examples from Principal Aquifers in the United States. Journal of Hydrology, 397(3-4): 151-166. https://doi.org/10.1016/j.jhydrol.2010.11.017
      [28] Kesler, S. E., Martini, A. M., Appold, M. S., et al., 1996. Na-Cl-Br Systematics of Fluid Inclusions from Mississippi Valley-Type Deposits, Appalachian Basin: Constraints on Solute Origin and Migration Paths. Geochimica et Cosmochimica Acta, 60(2): 225-233. https://doi.org/10.1016/0016-7037(95)00390-8
      [29] Khaska, M., le Gal la Salle, C., Lancelot, J., et al., 2013. Origin of Groundwater Salinity (Current Seawater vs. Saline Deep Water) in a Coastal Karst Aquifer Based on Sr and Cl Isotopes: Case Study of the La Clape Massif (Southern France). Applied Geochemistry, 37: 212-227. https://doi.org/10.1016/j.apgeochem.2013.07.006
      [30] Kloppmann, W., Négrel, P., Casanova, J., et al., 2001. Halite Dissolution Derived Brines in the Vicinity of a Permian Salt Dome (N German Basin). Evidence from Boron, Strontium, Oxygen, and Hydrogen Isotopes. Geochimica et Cosmochimica Acta, 65(22): 4087-4101. https://doi.org/10.1016/s0016-7037(01)00640-8
      [31] Kovalevych, V. M., Marshall, T., Peryt, T. M., et al., 2006. Chemical Composition of Seawater in Neoproterozoic: Results of Fluid Inclusion Study of Halite from Salt Range (Pakistan) and Amadeus Basin (Australia). Precambrian Research, 144(1-2): 39-51. https://doi.org/10.1016/j.precamres.2005.10.004
      [32] Li, H.P., Zheng, M.P., Hou, X.H., et al., 2014. Hydrochemistry Characteristics and Origin of New Brine Sandy Gravel in Early Pleistocene of Heibei Concave in Qaidam Basin. Earth Science, 39(10): 1433-1442 (in Chinese with English abstract).
      [33] Li, T.W., Tan, H.B., Fan, Q.S., 2006. Hydrochemical Characteristics and Origin Analysis of the Underground Brines in West Qaidam Basin. Journal of Salt Lake Research, 14(4): 26-32 (in Chinese with English abstract).
      [34] Li, Y.W., Cai, K.Q., Han, W.T., 1998. Origin of Potassium Riched Brine and the Metamorphism of Triassic Evaporites in Sichuan Basin. Geoscience, 12(2): 73-79 (in Chinese with English abstract).
      [35] Lin, C.L., 1994. Metamorphic Evolution of K-Bearing Rock Series of the Triassic and Implication in Search for Potash Salt in Sichuan Basin. Acta Geologica Sichuan, 14(2): 122-129 (in Chinese with English abstract).
      [36] Lin, Y.T., 1994. On K-Bearing Property of the Marine Triassic and Search for Potash Salt in Sichuan Basin. Acta Geologica Sichuan, 14(2): 111-121 (in Chinese with English abstract).
      [37] Lin, Y.T., 1995. Geochemical Behaviour of Bromine and Its Application to Prospection for Potash Resource in Sichuan. Geology of Chemical Minerals, 17(3): 175-181 (in Chinese with English abstract).
      [38] Lin, Y.T., 2009. Cambrian Bittern Sediment Characteristic and Finding Potassium Prospect in Sichuan Basin. Journal of Salt Lake Research, 17(2): 13-20 (in Chinese with English abstract).
      [39] Lin, Y.T., Xiong, S.J., 1996. Research on Origination of Saline Water in Sichuan Basin with Reference to Hydrogen and Oxygen Isotopic Behaviours. Geology of Chemical Minerals, 18(4): 300-306 (in Chinese with English abstract).
      [40] Lin, Y.T., Yan, Y.J., Wu, Y.L., 1997. Discovery of Potassium-Rich and High-Grade Brines in Western Sichuan Basin: Geochemistry and Significance. Geology-Geochemistry, 25(3): 31-39 (in Chinese with English abstract).
      [41] Matray, J. M., Fontes, J. C., 1990. Origin of the Oil-Field Brines in the Paris Basin. Geology, 18(6): 501-504. https://doi.org/10.1130/0091-7613(1990)0180501:ootofb>2.3.co;2 doi: 10.1130/0091-7613(1990)0180501:ootofb>2.3.co;2
      [42] McCaffrey, M. A., Lazar, B., Holland, H. D., 1987. The Evaporation Path of Seawater and the Coprecipitation of Br- and K+ with Halite. Journal of Sedimentary Research, 57(5): 928-937. https://doi.org/10.1306/212f8cab-2b24-11d7-8648000102c1865d
      [43] Niu, X.S., Liu, X.F., Chen, W.X., 2014. Hydrochemical Characteristic and Origin for Salt Springs Water in Dogai Coring Area of North Qiangtang Basin, Tibet. Acta Geologica Sinica, 88(6): 1003-1010 (in Chinese with English abstract).
      [44] Qu, J.Y., Wu, B.H., Li, J.M., 1984. Origin of Underground Brine Statistical Analysis: A Case Study in Qianjiang Depression. Geotechnical Investigation and Surveying, 12(1): 65-70 (in Chinese).
      [45] Rahimpour-Bonab, H., Alijani, N., 2003. Petrography, Diagenesis and Depositional Model for Potash Deposits of North Central Iran, and Use of Bromine Geochemistry as a Prospecting Tool. Carbonates and Evaporites, 18(1): 19-28. https://doi.org/10.1007/bf03178384
      [46] Richard, A., Banks, D. A., Mercadier, J., et al., 2011. An Evaporated Seawater Origin for the Ore-Forming Brines in Unconformity-Related Uranium Deposits (Athabasca Basin, Canada): Cl/Br and δ37Cl Analysis of Fluid Inclusions. Geochimica et Cosmochimica Acta, 75(10): 2792-2810. https://doi.org/10.1016/j.gca.2011.02.026
      [47] Shan, H.M., Ma, T., Tan, T., et al., 2013. Sources and Genesis of Subsurface Brine in Sua Pan, Botswana. Earth Science, 38(3): 607-615 (in Chinese with English abstract).
      [48] Shouakar-Stash, O., Alexeev, S. V., Frape, S. K., et al., 2007. Geochemistry and Stable Isotopic Signatures, Including Chlorine and Bromine Isotopes, of the Deep Groundwaters of the Siberian Platform, Russia. Applied Geochemistry, 22(3): 589-605. https://doi.org/10.1016/j.apgeochem.2006.12.005
      [49] Skrzypek, G., Dogramaci, S., Grierson, P. F., 2013. Geochemical and Hydrological Processes Controlling Groundwater Salinity of a Large Inland Wetland of Northwest Australia. Chemical Geology, 357: 164-177. https://doi.org/10.1016/j.chemgeo.2013.08.035
      [50] Smith, D. B., Raup, O. B., Holmes, R., 1995. Bromine Content of English Zechstein Cycle 3 Chloride Salts on Teesside and in the Staithes Area of Co. Cleveland, N.E. England. Proceedings of the Yorkshire Geological Society, 50(3): 239-244. https://doi.org/10.1144/pygs.50.3.239
      [51] Stueber, A. M., Walter, L. M., 1991. Origin and Chemical Evolution of Formation Waters from Silurian-Devonian Strata in the Illinois Basin, USA. Geochimica et Cosmochimica Acta, 55(1): 309-325. https://doi.org/10.1016/0016-7037(91)90420-a
      [52] Sun, S. R., Li, M. H., Yan, M. D., et al., 2019. Bromine Content and Br/Cl Molar Ratio of Halite in a Core from Laos: Implications for Origin and Environmental Changes. Carbonates and Evaporites, 34(3): 1107-1115. https://doi.org/10.1007/s13146-019-00508-0
      [53] The 16th Geological Team of Yunnan Geological Bureau, 1978. How to Find Potash Deposit. Geological Publishing House, Beijing, 112-123 (in Chinese).
      [54] Valyashko, M. F., 1956. Geochemistry of Bromide in the Processes of Salt Deposition and the Use of the Bromide Content as a Genetic and Prospecting Tool. Geochemistry USSR, 1(6): 487-570.
      [55] Walter, L. M., Stueber, A. M., Huston, T. J., 1990. Br-Cl-Na Systematics in Illinois Basin Fluids: Constraints on Fluid Origin and Evolution. Geology, 18(4): 315-318. https://doi.org/10.1130/0091-7613(1990)0180315:bcnsii>2.3.co;2 doi: 10.1130/0091-7613(1990)0180315:bcnsii>2.3.co;2
      [56] Wang, D.S., 1988. The Hydrologic Geothemistry Characteristics of Underground Salt Brine Water in Shichuan Basin. Journal of East China College of Geology, 11(4): 401-410 (in Chinese with English abstract).
      [57] Wang, D.S., 1989. Stable Isotope Research on the Origin of Yellow Brine and Black Brine in the Sichuan Basin. Hydrogeology and Engineering Geology, 16(2): 21-24 (in Chinese).
      [58] Wang, S. L., Zheng, M. P., 2014. The Discovery of Polyhalite of Triassic and Its Origin Study in Changshou Area of Eastern Sichuan Basin. Mineral Deposits, 33(5): 1045-1056 (in Chinese with English abstract).
      [59] Wang, S.L., Zheng, M.P., Jiao, J., 2012. Sedimentary Facies of the Cambrian Evaporites in the Upper Yangtze Region and Their Potash-Forming Potential. Geology and Exploration, 48(5): 947-958 (in Chinese with English abstract).
      [60] Wang, S. L., Zheng, M. P., Liu, X. F., et al., 2013. Distribution of Cambrian Salt-Bearing Basins in China and Its Significance for Halite and Potash Finding. Journal of Earth Science, 24(2): 212-233. https://doi.org/10.1007/s12583-013-0319-0
      [61] Wang, Y. P., 1984. Hydrochemical Field and Its Formation in the South of Sichuan Basin. Earth Science, (2): 105-128 (in Chinese with English abstract).
      [62] Wittrup, M. B., Kyser, T. K., 1990. The Petrogenesis of Brines in Devonian Potash Deposits of Western Canada. Chemical Geology, 82: 103-128. https://doi.org/10.1016/0009-2541(90)90077-k
      [63] Xiao, Z.Q., 1982. Study on the Method of Hydrochemical for Potassium Prospecting in Zigong Area of Sichuan Basin. Geological Publishing House, Beijing, 176-181 (in Chinese).
      [64] Xie, X. J., Wang, Y. X., Su, C. L., et al., 2012. Influence of Irrigation Practices on Arsenic Mobilization: Evidence from Isotope Composition and Cl/Br Ratios in Groundwater from Datong Basin, Northern China. Journal of Hydrology, 424-425: 37-47. https://doi.org/10.1016/j.jhydrol.2011.12.017
      [65] Xu, X.S., Wu, J.L., 1983. Potash Deposits in Mengyejing, Yunnan—A Study of Certain Characteristics, Geochemistry of Trace Elements and Genesis of the Deposits. Acta Geoscientica Sinia, 4(1): 17-36, 117-118 (in Chinese with English abstract).
      [66] Yager, R. M., Kappel, W. M., Plummer, L. N., 2007. Origin of Halite Brine in the Onondaga Trough near Syracuse, New York State, USA: Modeling Geochemistry and Variable-Density Flow. Hydrogeology Journal, 15(7): 1321-1339. https://doi.org/10.1007/s10040-007-0186-9
      [67] Yan, Q. S., Gao, Z. Y., Ni, S. J., et al., 2013. Evolution of Isotopic Composition and Deuterium Excess of Brines in the Sichuan Basin, China. Chinese Journal of Geochemistry, 32(1): 69-77. https://doi.org/10.1007/s11631-013-0608-4
      [68] Yu, X. C., Liu, C. L., Wang, C. L., et al., 2021. Origin of Geothermal Waters from the Upper Cretaceous to Lower Eocene Strata of the Jiangling Basin, South China: Constraints by Multi-Isotopic Tracers and Water-Rock Interactions. Applied Geochemistry, 124: 104810. https://doi.org/10.1016/j.apgeochem.2020.104810
      [69] Zarei, M., Raeisi, E., Merkel, B. J., et al., 2013. Identifying Sources of Salinization Using Hydrochemical and Isotopic Techniques, Konarsiah, Iran. Environmental Earth Sciences, 70(2): 587-604. https://doi.org/10.1007/s12665-012-2143-8
      [70] Zhang, X.Y., Ma, H.Z., Tan, H.B., et al., 2010. Preliminary Studies on Geochemistry and Post-Depositional Change of Dong Tai Potash Deposit in Laos. Mineral Deposits, 29(4): 713-721 (in Chinese with English abstract).
      [71] Zhang, Z.G., 2009. Unconfined Brine Hydrochemistry Characteristic and Brine Cause Analysis of East Section of Qarhan Salt Lake. Journal of Salt Lake Research, 17(1): 19-26 (in Chinese with English abstract).
      [72] Zheng, S.H., Hou, F.G., Ni, B.L., 1983. The Studies of Hydrogen and Oxygen Stable Isotopes in Atmospheric Precipitation in China. Chinese Science Bulletin, 28(13): 801-806 (in Chinese). doi: 10.1360/csb1983-28-13-801
      [73] Zhou, X., 1993. Hydrogeochemical Characteristics and Formation of Subsurface Brines of Deep Aquifers in Longnu Temple Brine-Bearing Structure, Sichuan Basin. Geoscience, 7(1): 83-92 (in Chinese with English abstract).
      [74] Zhou, X., Cao, Q., Li, S.P., et al., 2014. Formation of the Ningchang Salt Spring in Wuxi County of Chongqing. Quaternary Sciences, 34(5): 1036-1043 (in Chinese with English abstract).
      [75] Zhou, X., Li, C. J., 1992. Hydrogeochemistry of Deep Formation Brines in the Central Sichuan Basin, China. Journal of Hydrology, 138(1-2): 1-15. https://doi.org/10.1016/0022-1694(92)90152-L
      [76] Zhou, X., Li, C. J., Ju, X. M., et al., 1997. Origin of Subsurface Brines in the Sichuan Basin. Groundwater, 35(1): 53-58. https://doi.org/10.1111/j.1745-6584.1997.tb00060.x
      [77] 陈郁华, 1983. 黄海水25℃恒温蒸发时的析盐序列及某些微量元素的分布规律. 地质学报, 57(4): 379-390. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198304005.htm
      [78] 程怀德, 马海州, 谭红兵, 等, 2008. 钾盐矿床中Br的地球化学特征及研究进展. 矿物岩石地球化学通报, 27(4): 399-408. doi: 10.3969/j.issn.1007-2802.2008.04.011
      [79] 韩佳君, 周训, 姜长龙, 等, 2013. 柴达木盆地西部地下卤水水化学特征及其起源演化. 现代地质, 27(6): 1454-1464. doi: 10.3969/j.issn.1000-8527.2013.06.025
      [80] 黄思静, 曾允孚, 1997. 四川成都盆地某深层富钾卤水的地球化学特征及成因. 沉积学报, 15(3): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB703.012.htm
      [81] 李洪普, 郑绵平, 侯献华, 等, 2014. 柴达木黑北凹地早更新世新型砂砾层卤水水化学特征与成因. 地球科学, 39(10): 1433-1442. doi: 10.3799/dqkx.2014.125
      [82] 李廷伟, 谭红兵, 樊启顺, 2006. 柴达木盆地西部地下卤水水化学特征及成因分析. 盐湖研究, 14(4): 26-32. doi: 10.3969/j.issn.1008-858X.2006.04.005
      [83] 李亚文, 蔡克勤, 韩蔚田, 1998. 四川盆地三叠系蒸发岩的变质作用与富钾卤水的成因. 现代地质, 12(2): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ802.011.htm
      [84] 林传律, 1994. 四川盆地三叠系含钾岩系变质演化特点及找矿意义. 四川地质学报, 14(2): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB199402005.htm
      [85] 林耀庭, 1994. 论四川盆地海相三叠系含钾性及找钾方向. 四川地质学报, 14(2): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB199402003.htm
      [86] 林耀庭, 1995. 溴的地球化学习性及其在四川找钾工作中的应用. 化工矿产地质, 17(3): 175-181. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC199503003.htm
      [87] 林耀庭, 2009. 四川盆地寒武系盐卤沉积特征及找钾前景. 盐湖研究, 17(2): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200902005.htm
      [88] 林耀庭, 熊淑君, 1996. 氢氧稳定同位素习性及其在四川盆地卤水成因研究中的应用. 化工矿产地质, 18(4): 300-306. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC604.008.htm
      [89] 林耀庭, 颜仰基, 吴应林, 1997. 四川盆地西部富钾富矿卤水的发现及其地球化学特征和意义. 地质地球化学, 25(3): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199703005.htm
      [90] 牛新生, 刘喜方, 陈文西, 2014. 西藏北羌塘盆地多格错仁地区盐泉水化学特征及其物质来源. 地质学报, 88(6): 1003-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406004.htm
      [91] 渠洁瑜, 吴必豪, 李际明, 1984. 地下卤水成因类型的统计分析: 以潜江凹陷为例. 工程勘察, 12(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198401022.htm
      [92] 单慧媚, 马腾, 谭婷, 等, 2013. 博茨瓦纳Sua盐湖地下卤水来源及成因. 地球科学, 38(3): 607-615. doi: 10.3799/dqkx.2013.061
      [93] 石油化学工业部化学矿山局, 1977. 石油勘探中找钾盐矿的方法. 北京: 石油化学工业出版社, 93-121.
      [94] 王东升, 1988. 四川盆地地下盐卤水的水文地球化学特征. 华东地质学院学报, 11(4): 401-410. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ198804016.htm
      [95] 王东升, 1989. 四川盆地黄卤与黑卤起源的稳定同位素研究. 水文地质工程地质, 16(2): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198902005.htm
      [96] 王淑丽, 郑绵平, 2014. 川东盆地长寿地区三叠系杂卤石的发现及其成因研究. 矿床地质, 33 (5): 1045-1056. doi: 10.3969/j.issn.0258-7106.2014.05.013
      [97] 王淑丽, 郑绵平, 焦建, 2012. 上扬子区寒武系蒸发岩沉积相及成钾潜力分析. 地质与勘探, 48(5): 947-958. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201205012.htm
      [98] 汪蕴璞, 1984. 四川盆地南部水化学场及其形成原因. 地球科学, (2): 105-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198402013.htm
      [99] 肖章棋, 1982. 四川盆地自贡地区水化学找钾方法研究. 北京: 地质出版社, 176-181.
      [100] 许效松, 吴嘉陵, 1983. 云南勐野井钾盐矿床特征, 微量元素地球化学及成因探讨. 中国地质科学院院报, 4(1): 17-36, 117-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198301001.htm
      [101] 云南省地质局第十六地质队, 1978. 怎样找钾盐. 北京: 地质出版社, 112-123.
      [102] 张西营, 马海州, 谭红兵, 等, 2010. 老挝东泰钾盐矿床地球化学及其沉积后变化初步研究. 矿床地质, 29(4): 713-721. doi: 10.3969/j.issn.0258-7106.2010.04.015
      [103] 张兆广, 2009. 察尔汗盐湖东段潜卤水水文地球化学特征及卤水成因分析. 盐湖研究, 17(1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200901006.htm
      [104] 郑淑蕙, 侯发高, 倪葆龄, 1983. 我国大气降水的氢氧稳定同位素研究. 科学通报, 28(13): 801-806. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198313010.htm
      [105] 周训, 1993. 四川盆地龙女寺储卤构造深层地下卤水的水文地球化学特征及成因. 现代地质, 7(1): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199301009.htm
      [106] 周训, 曹琴, 李双鹏, 等, 2014. 重庆巫溪县宁厂盐泉的形成. 第四纪研究, 34(5): 1036-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201405012.htm
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  510
    • HTML全文浏览量:  157
    • PDF下载量:  72
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-16
    • 刊出日期:  2022-01-20

    目录

      /

      返回文章
      返回