Index System for Potassium Prospecting in Marine Potash Deposits: A Case Study of Cambrian Deep Brine from Tianxingqiao Structure of Northeast Sichuan in China
-
摘要:
长期工作成果显示我国现阶段常用的找钾指标Br×103/Cl值偏低. 创新性地应用“以古验古”的溶滤实验与地质统计法厘清了海相蒸发盐盆地找钾指标体系,充分考虑了不同地质年代海水成分的变化,也可克服“将今论古”应用于现代海水在等温等压条件下实验数据的不足. 通过对世界上典型钾盐矿床的石盐、含钾石盐及钾盐(含光卤石)进行溶滤实验,并结合前人海水及海相卤水的蒸发实验成果,总结了海相钾盐矿床溶滤卤水找钾指标体系:Br×103/Cl、K×103/Cl、K/Br重量比及nNa/nCl、nMg/nCl摩尔浓度比等. 以天星桥构造寒武系深部地下卤水为例,分析其Br×103/Cl、K×103/Cl、K/Br重量比及nNa/nCl、nMg/nCl等找钾指标与δD、δ18O特征,认为天星桥构造寒武系深部地下卤水的水化学特征与溶滤卤水一致,与沉积卤水有较大差异,其δD、δ18O投点均靠近大气降水线. 因此,综合分析认为该区卤水属于溶滤卤水,且有溶解含钾石盐甚至是溶解钾盐的可能性. 该成果对评价研究区地下卤水钾资源具有重要意义,也为在该区寻找寒武纪固体钾盐矿提供了新依据.
Abstract:Through summary of long-term work, it is found that the value of Br×103/Cl, which is commonly used, is low. In this paper, it innovatively clarifies the index system for potassium prospecting of marine evaporative basin by using the "ancient test" leaching experiment and geological statistics method. This method fully considers the changes of seawater composition in different geological years and can also overcome the insufficiency of data for applying modern seawater under isothermal and pressure conditions. Through the leaching experiment of rock salt, potassium-bearing salt and potassium salt (including carnallite) of the typical potash deposits in the world, and combining the previous evaporation experiment results of sea water and marine brine, the index system for potassium prospecting in mineral deposit: Br×103/Cl, K×103/Cl, K/Br, nNa/nCl, nMg/nCl, is summarized. This study aims to trace the origin of the brine which is Cambrian deep brine from Tianxingqiao structure of Northeast Sichuan Basin by analyzing its hydrochemical characteristics (weight ratios of Br×103/Cl, K×103/Cl and K/Br, and molar ratios of nNa/nCl and nMg/nCl). The results show that the hydrochemical characteristics and δD and δ18O values of the brine from Tianxingqiao are similar to those of the brine from dissolution and that of the salt precipitates, but have distinct difference from that of the primary brine. Therefore, it is believed the formation brine from Tianxingqiao is sourced from meteoric water and the brine salinity come from saliferous strata, which might come from the dissolution of halite beds or even the sylvinite beds. This finding is in contrast to the previous studies which held that the brine is primary brine. This study provides new and important information for searching potash deposits in this area.
-
图 3 海水浓缩时固相石盐溴氯系数与液相卤水溴氯系数(据Valyashko,1956)
Fig. 3. Br×103/Cl of the halite and brine for the seawater in different concentration stages (from Valyashko, 1956)
表 1 世界主要海相钾盐矿床石盐、含钾石盐与钾石盐(含光卤石)溶滤分析结果
Table 1. Chemical compositions of halite, sylvinite and sylvite in marine potassium deposit of the world
地点 样品号 岩性 矿化度(g/L) K+(g/L) Na+(g/L) Ca2+(g/L) Mg2+(g/L) Cl‒(g/L) SO42‒(g/L) Br‒(mg/L) Li+(mg/L) B2O3(mg/L) Br×103/Cl K×103/Cl K×103/盐 K/Br nNa/nCl nMg/nCl 中国 my6#‒12 石盐 48.5 0.14 18.6 0.07 < 0.01 29.7 0.16 22.9 < 0.1 6.92 0.77 4.71 2.89 6.11 0.97 ‒ my6#‒13 含钾石盐 59.8 0.61 22.9 0.01 < 0.01 36.2 < 0.03 37.3 < 0.1 5.47 0.59 16.85 10.21 28.50 0.98 ‒ my6#‒5 钾石盐
(含光卤石)44.3 6.50 10.2 0.05 1.41 27.4 0.04 21.4 < 0.1 4.32 3.60 237.20 146.70 65.92 0.57 0.076 加拿大 jnd‒2 含钾石盐 48.4 0.87 16.4 0.55 0.02 27.4 0.84 9.9 < 0.1 9.88 0.36 31.75 17.99 88.24 0.92 0.001 jnd‒1 含钾石盐 58.6 1.68 22.0 0.13 0.01 34.8 0.30 16.2 < 0.1 7.67 0.47 48.28 28.67 103.70 0.98 0.000 jnd‒3 钾石盐 57.7 9.20 13.5 0.18 0.02 31.0 0.40 31.2 < 0.1 9.59 1.01 296.77 159.50 294.87 0.67 0.001 老挝 lw‒67 石盐 62.4 0.05 23.2 0.08 0.02 35.9 0.18 25.1 < 0.1 11.0 0.70 1.39 0.80 1.99 1.00 0.001 lw‒71 钾盐
(含光卤石)46.8 3.68 11.8 0.05 1.86 28.0 0.05 128.0 < 0.1 8.87 4.57 131.43 78.64 28.75 0.65 0.098 lw‒79 钾盐
(含光卤石)49.7 7.91 9.7 0.03 2.03 28.8 < 0.03 162.0 < 0.1 14.7 5.63 274.65 159.12 48.83 0.52 0.104 德国 K7 石盐 65.5 0.08 23.0 0.02 0.01 36.1 0.03 21.8 < 0.1 5.22 0.60 2.08 1.15 3.44 0.98 0.000 K4 含钾石盐 63.2 1.05 21.4 0.23 0.29 34.2 1.63 28.6 < 0.1 4.93 0.84 30.70 16.62 36.71 0.97 0.013 K9 钾石盐 46.3 15.30 5.3 1.02 0.01 24.5 2.34 178.0 0.11 3.98 7.27 624.4 330.40 85.96 0.33 0.001 表 2 天星桥构造寒武系深部地下卤水化学组成
Table 2. Chemical compositions of Cambrian brine of Well Tian1 and Well Tian2
井名 序号 采样时间 矿化度(g/L) 采样层位或深度(m) pH 离子含量(mg/L) 重量比 摩尔浓度比 数据来源 K+ Na+ Ca2+ Mg2+ Cl- SO42- Br- B2O3 Br×103/Cl K×103/Cl K×103/盐 K/Br nNa/nCl nMg/nCl 天1井 1 1990‒11 281.22 ∈2 6.91 3 100 94 120 9 813 1 692 171 765 583 573.12 215.83 3.34 18.05 11.02 5.41 0.85 0.015 1972‒1993年生产分析数据 2 1993‒05 285.67 ∈2 / 3 550 97 700 8 310 1 360 171 200 2 320 465.00 486.56 2.72 20.74 12.43 7.63 0.88 0.012 3 1987‒05 134.22 ∈3 7.83 684 48 612 2 076 521 76 630 5 455 75.62 100.99 0.99 8.93 5.10 9.05 0.98 0.010 4 1972‒10 220.36 / / 2 599 72 112 5 865 1 082 136 659 1 310 334.67 / 2.45 19.01 11.79 7.76 0.81 0.012 5 1987‒08 134.50 / 7.39 669 48 659 2 086 531 76 726 5 415 75.58 92.38 0.99 8.72 4.97 8.85 0.98 0.010 6 1988‒05 142.31 / 7.32 707 51 626 2 183 493 81 481 5 462 81.91 92.82 1.01 8.67 4.96 8.62 0.98 0.009 7 1988‒12 119.26 ∈3 8.30 636 43 371 2 044 481 72 109 419 65.66 95.73 0.91 8.83 5.34 9.69 0.93 0.010 天2井 8 1972‒10 293.02 / / 4 151 96 002 9 434 1541 179 830 877 532.81 / 2.96 23.08 14.17 7.79 0.82 0.013 9 1993‒05 218.80 / / 2 000 78 830 3 860 640 129 700 3 150 211.00 327.05 1.63 15.42 9.14 9.48 0.94 0.007 10 1990‒10 234.29 ∈3 7.42 1 850 83 748 4 658 863 140 261 2 374 250.63 139.65 1.79 13.19 7.90 7.38 0.92 0.009 11 1989‒07 261.92 / 5.80 2 375 92 826 5 678 1 175 157 970 1 290 315.00 327.05 1.99 15.03 9.07 7.54 0.91 0.011 12 1988‒12 317.20 / 5.70 4 578 105 210 10 655 1 847 189 215 3 948 885.94 226.26 4.68 24.19 14.43 5.17 0.86 0.014 13 2012‒08 119.66 160 / 1 134 41 848 2 246 345 71 699 2 173 120.00 93.14 1.67 15.82 9.48 9.45 0.90 0.007 本文 14 2012‒08 177.05 200 / 1 678 61 487 3 141 570 106 629 3 268 120.00 159.12 1.13 15.73 9.47 13.98 0.89 0.008 15 2012‒08 184.88 260 / 1 734 66 931 3 574 608 108 468 3 309 88.00 170.76 0.81 15.99 9.38 19.71 0.95 0.008 16 2012‒08 167.11 360 / 1 549 58 846 3 615 557 99 276 3 029 80.00 159.12 0.81 15.61 9.27 19.37 0.91 0.008 注:“/”表示未分析该项;卤水矿化度随埋藏深度的加深逐渐增大. 本文采集样品为井中的混合水,只能代表采样时水在井中的位置. 表 3 川东北寒武系深部地下卤水盐泉氢氧同位素组成
Table 3. Isotopic analysis of subsurface brine and salt spring in Northeast Sichuan Basin
序号 采样时间 样品名称 出露方式 含卤层位 δD (H2O)
[‰ vs. SMOW]δ18O (H2O)
[‰ vs. SMOW]1 2012‒08 天2井 地下卤水 寒武系 ‒81.8 ‒11.7 2 2012‒08 天2井 地下卤水 寒武系 ‒92.9 ‒14.3 3 2012‒08 天2井 地下卤水 寒武系 ‒93.5 ‒12.0 4 2012‒08 天2井 地下卤水 寒武系 ‒97.3 ‒14.8 5 2012‒03 ZK4‒1 盐泉 寒武系 ‒84.9 ‒13.2 6 2012‒08 ZK4‒2 盐泉 寒武系 ‒87.4 ‒13.9 -
[1] Alcalá, F. J., Custodio, E., 2008. Using the Cl/Br Ratio as a Tracer to Identify the Origin of Salinity in Aquifers in Spain and Portugal. Journal of Hydrology, 359(1-2): 189-207. https://doi.org/10.1016/j.jhydrol.2008.06.028 [2] Boschetti, T., Toscani, L., Shouakar-Stash, O., et al., 2011. Salt Waters of the Northern Apennine Foredeep Basin (Italy): Origin and Evolution. Aquatic Geochemistry, 17(1): 71-108. https://doi.org/10.1007/s10498-010-9107-y [3] Bottomley, D. J., Katz, A., Chan, L. H., et al., 1999. The Origin and Evolution of Canadian Shield Brines: Evaporation or Freezing of Seawater? New Lithium Isotope and Geochemical Evidence from the Slave Craton. Chemical Geology, 155(3-4): 295-320. https://doi.org/10.1016/S0009-2541(98)00166-1 [4] Braitsch, O., 1971. Salt Deposits, Their Origin and Composition. Springer Verlag, Heidelberg, 215-245. https://doi.org/10.1007/978-3-642-65083-3_5 [5] Bureau of Chemical Mines, Ministry of Petrochemical Industry, 1977. Methods for Potash Deposits in Petroleum Exploration. Petrochemical Industry Press, Beijing, 93-121 (in Chinese). [6] Cai, C. F., Wang, J. Y., Zeng, F. G., et al., 2001. Origin, Migration and Mixing of Oilfield Brines: Stable Isotopic Evidence from Kuqa Foreland Basin. Science in China Series E: Technological Sciences, 44(1): 175-180. https://doi.org/10.1007/bf02916812 [7] Chan, L. H., Starinsky, A., Katz, A., 2002. The Behavior of Lithium and Its Isotopes in Oilfield Brines: Evidence from the Heletz-Kokhav Field, Israel. Geochimica et Cosmochimica Acta, 66(4): 615-623. https://doi.org/10.1016/s0016-7037(01)00800-6 [8] Chen, Y.H., 1983. Sequence of Salt Separation and Regularity of Some Trace Elements Distribution during Isothermal Evaporation (25℃) of the Huanghai Sea Water. Acta Geologica Sinica, 57(4): 379-390 (in Chinese with English abstract). [9] Cheng, H.D., Ma, H.Z., Tan, H.B., et al., 2008. Geochemical Characteristics of Bromide in Potassium Deposits: Review and Research Perspectives. Bulletin of Mineralogy, Petrology and Geochemistry, 27(4): 399-408 (in Chinese with English abstract). [10] Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702 [11] Davis, S. N., Fabryka-Martin, J., Wolfsberg, L. E., 2004. Variations of Bromide in Potable Ground Water in the United States. Groundwater, 42(6): 902-909. https://doi.org/10.1111/j.1745-6584.2004.t01-8-.x [12] Davis, S. N., Whittemore, D. O., Fabryka-Martin, J., 1998. Uses of Chloride/Bromide Ratios in Studies of Potable Water. Groundwater, 36(2): 338-350. https://doi.org/10.1111/j.1745-6584.1998.tb01099.x [13] Eastoe, C. J., Long, A., Land, L. S., et al., 2001. Stable Chlorine Isotopes in Halite and Brine from the Gulf Coast Basin: Brine Genesis and Evolution. Chemical Geology, 176(1-4): 343-360. https://doi.org/10.1016/s0009-2541(00)00374-0 [14] Edmunds, W. M., 1996. Bromine Geochemistry of British Groundwaters. Mineralogical Magazine, 60(399): 275-284. https://doi.org/10.1180/minmag.1996.060.399.03 [15] Fontes, J. C., Matray, J. M., 1993. Geochemistry and Origin of Formation Brines from the Paris Basin, France: 2. Saline Solutions Associated with Oil Fields. Chemical Geology, 109(1-4): 177-200. https://doi.org/10.1016/0009-2541(93)90069-u [16] Freeman, J. T., 2007. The Use of Bromide and Chloride Mass Ratios to Differentiate Salt-Dissolution and Formation Brines in Shallow Groundwaters of the Western Canadian Sedimentary Basin. Hydrogeology Journal, 15(7): 1377-1385. https://doi.org/10.1007/s10040-007-0201-1 [17] García-Veigas, J., Cendón, D. I., Rosell, L., et al., 2013. Salt Deposition and Brine Evolution in the Granada Basin (Late Tortonian, SE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 369: 452-465. https://doi.org/10.1016/j.palaeo.2012.11.010 [18] Gleeson, S. A., Wilkinson, J. J., Stuart, F. M., et al., 2001. The Origin and Evolution of Base Metal Mineralising Brines and Hydrothermal Fluids, South Cornwall, UK. Geochimica et Cosmochimica Acta, 65(13): 2067-2079. https://doi.org/10.1016/s0016-7037(01)00579-8 [19] Gupta, I., Wilson, A. M., Rostron, B. J., 2012. Cl/Br Compositions as Indicators of the Origin of Brines: Hydrogeologic Simulations of the Alberta Basin, Canada. Geological Society of America Bulletin, 124(1-2): 200-212. https://doi.org/10.1130/b30252.1 [20] Han, J.J., Zhou, X., Jiang, C.L., et al., 2013. Hydrochemical Characteristics, Origin and Evolution of the Subsurface Brines in Western Qaidam Basin. Geoscience, 27(6): 1454-1464 (in Chinese with English abstract). [21] Herrmann, A. G., 1972. Bromine Distribution Coefficients for Halite Precipitated from Modern Sea Water under Natural Conditions. Contributions to Mineralogy and Petrology, 37(3): 249-252. https://doi.org/10.1007/bf00373073 [22] Herrmann, A. G., 1980. Bromide Distribution between Halite and NaCl-Saturated Seawater. Chemical Geology, 28: 171-177. https://doi.org/10.1016/0009-2541(80)90043-1 [23] Herrmann, A. G., Knake, D., Schneider, J., et al., 1973. Geochemistry of Modern Seawater and Brines from Salt Pans: Main Components and Bromine Distribution. Contributions to Mineralogy and Petrology, 40(1): 1-24. https://doi.org/10.1007/bf00371760 [24] Huang, S.J., Zeng, Y.F., 1997. Geochemical Characteristics of Deep Formation Brine, Leikoupo Formation of Middle Triassic Sichuan Province. Acta Sedimentologica Sinica, 15(3): 67-71 (in Chinese with English abstract). [25] Hudak, P. F., 2003. Chloride/Bromide Ratios in Leachate Derived from Farm-Animal Waste. Environmental Pollution, 121(1): 23-25. https://doi.org/10.1016/s0269-7491(02)00211-7 [26] Jensen, G. K. S., Rostron, B. J., Duke, M. J. M., et al., 2006. Bromine and Stable Isotopic Profiles of Formation Waters from Potash Mine-Shafts, Saskatchewan, Canada. Journal of Geochemical Exploration, 89(1-3): 170-173. https://doi.org/10.1016/j.gexplo.2005.11.071 [27] Katz, B. G., Eberts, S. M., Kauffman, L. J., 2011. Using Cl/Br Ratios and Other Indicators to Assess Potential Impacts on Groundwater Quality from Septic Systems: A Review and Examples from Principal Aquifers in the United States. Journal of Hydrology, 397(3-4): 151-166. https://doi.org/10.1016/j.jhydrol.2010.11.017 [28] Kesler, S. E., Martini, A. M., Appold, M. S., et al., 1996. Na-Cl-Br Systematics of Fluid Inclusions from Mississippi Valley-Type Deposits, Appalachian Basin: Constraints on Solute Origin and Migration Paths. Geochimica et Cosmochimica Acta, 60(2): 225-233. https://doi.org/10.1016/0016-7037(95)00390-8 [29] Khaska, M., le Gal la Salle, C., Lancelot, J., et al., 2013. Origin of Groundwater Salinity (Current Seawater vs. Saline Deep Water) in a Coastal Karst Aquifer Based on Sr and Cl Isotopes: Case Study of the La Clape Massif (Southern France). Applied Geochemistry, 37: 212-227. https://doi.org/10.1016/j.apgeochem.2013.07.006 [30] Kloppmann, W., Négrel, P., Casanova, J., et al., 2001. Halite Dissolution Derived Brines in the Vicinity of a Permian Salt Dome (N German Basin). Evidence from Boron, Strontium, Oxygen, and Hydrogen Isotopes. Geochimica et Cosmochimica Acta, 65(22): 4087-4101. https://doi.org/10.1016/s0016-7037(01)00640-8 [31] Kovalevych, V. M., Marshall, T., Peryt, T. M., et al., 2006. Chemical Composition of Seawater in Neoproterozoic: Results of Fluid Inclusion Study of Halite from Salt Range (Pakistan) and Amadeus Basin (Australia). Precambrian Research, 144(1-2): 39-51. https://doi.org/10.1016/j.precamres.2005.10.004 [32] Li, H.P., Zheng, M.P., Hou, X.H., et al., 2014. Hydrochemistry Characteristics and Origin of New Brine Sandy Gravel in Early Pleistocene of Heibei Concave in Qaidam Basin. Earth Science, 39(10): 1433-1442 (in Chinese with English abstract). [33] Li, T.W., Tan, H.B., Fan, Q.S., 2006. Hydrochemical Characteristics and Origin Analysis of the Underground Brines in West Qaidam Basin. Journal of Salt Lake Research, 14(4): 26-32 (in Chinese with English abstract). [34] Li, Y.W., Cai, K.Q., Han, W.T., 1998. Origin of Potassium Riched Brine and the Metamorphism of Triassic Evaporites in Sichuan Basin. Geoscience, 12(2): 73-79 (in Chinese with English abstract). [35] Lin, C.L., 1994. Metamorphic Evolution of K-Bearing Rock Series of the Triassic and Implication in Search for Potash Salt in Sichuan Basin. Acta Geologica Sichuan, 14(2): 122-129 (in Chinese with English abstract). [36] Lin, Y.T., 1994. On K-Bearing Property of the Marine Triassic and Search for Potash Salt in Sichuan Basin. Acta Geologica Sichuan, 14(2): 111-121 (in Chinese with English abstract). [37] Lin, Y.T., 1995. Geochemical Behaviour of Bromine and Its Application to Prospection for Potash Resource in Sichuan. Geology of Chemical Minerals, 17(3): 175-181 (in Chinese with English abstract). [38] Lin, Y.T., 2009. Cambrian Bittern Sediment Characteristic and Finding Potassium Prospect in Sichuan Basin. Journal of Salt Lake Research, 17(2): 13-20 (in Chinese with English abstract). [39] Lin, Y.T., Xiong, S.J., 1996. Research on Origination of Saline Water in Sichuan Basin with Reference to Hydrogen and Oxygen Isotopic Behaviours. Geology of Chemical Minerals, 18(4): 300-306 (in Chinese with English abstract). [40] Lin, Y.T., Yan, Y.J., Wu, Y.L., 1997. Discovery of Potassium-Rich and High-Grade Brines in Western Sichuan Basin: Geochemistry and Significance. Geology-Geochemistry, 25(3): 31-39 (in Chinese with English abstract). [41] Matray, J. M., Fontes, J. C., 1990. Origin of the Oil-Field Brines in the Paris Basin. Geology, 18(6): 501-504. https://doi.org/10.1130/0091-7613(1990)0180501:ootofb>2.3.co;2 doi: 10.1130/0091-7613(1990)0180501:ootofb>2.3.co;2 [42] McCaffrey, M. A., Lazar, B., Holland, H. D., 1987. The Evaporation Path of Seawater and the Coprecipitation of Br- and K+ with Halite. Journal of Sedimentary Research, 57(5): 928-937. https://doi.org/10.1306/212f8cab-2b24-11d7-8648000102c1865d [43] Niu, X.S., Liu, X.F., Chen, W.X., 2014. Hydrochemical Characteristic and Origin for Salt Springs Water in Dogai Coring Area of North Qiangtang Basin, Tibet. Acta Geologica Sinica, 88(6): 1003-1010 (in Chinese with English abstract). [44] Qu, J.Y., Wu, B.H., Li, J.M., 1984. Origin of Underground Brine Statistical Analysis: A Case Study in Qianjiang Depression. Geotechnical Investigation and Surveying, 12(1): 65-70 (in Chinese). [45] Rahimpour-Bonab, H., Alijani, N., 2003. Petrography, Diagenesis and Depositional Model for Potash Deposits of North Central Iran, and Use of Bromine Geochemistry as a Prospecting Tool. Carbonates and Evaporites, 18(1): 19-28. https://doi.org/10.1007/bf03178384 [46] Richard, A., Banks, D. A., Mercadier, J., et al., 2011. An Evaporated Seawater Origin for the Ore-Forming Brines in Unconformity-Related Uranium Deposits (Athabasca Basin, Canada): Cl/Br and δ37Cl Analysis of Fluid Inclusions. Geochimica et Cosmochimica Acta, 75(10): 2792-2810. https://doi.org/10.1016/j.gca.2011.02.026 [47] Shan, H.M., Ma, T., Tan, T., et al., 2013. Sources and Genesis of Subsurface Brine in Sua Pan, Botswana. Earth Science, 38(3): 607-615 (in Chinese with English abstract). [48] Shouakar-Stash, O., Alexeev, S. V., Frape, S. K., et al., 2007. Geochemistry and Stable Isotopic Signatures, Including Chlorine and Bromine Isotopes, of the Deep Groundwaters of the Siberian Platform, Russia. Applied Geochemistry, 22(3): 589-605. https://doi.org/10.1016/j.apgeochem.2006.12.005 [49] Skrzypek, G., Dogramaci, S., Grierson, P. F., 2013. Geochemical and Hydrological Processes Controlling Groundwater Salinity of a Large Inland Wetland of Northwest Australia. Chemical Geology, 357: 164-177. https://doi.org/10.1016/j.chemgeo.2013.08.035 [50] Smith, D. B., Raup, O. B., Holmes, R., 1995. Bromine Content of English Zechstein Cycle 3 Chloride Salts on Teesside and in the Staithes Area of Co. Cleveland, N.E. England. Proceedings of the Yorkshire Geological Society, 50(3): 239-244. https://doi.org/10.1144/pygs.50.3.239 [51] Stueber, A. M., Walter, L. M., 1991. Origin and Chemical Evolution of Formation Waters from Silurian-Devonian Strata in the Illinois Basin, USA. Geochimica et Cosmochimica Acta, 55(1): 309-325. https://doi.org/10.1016/0016-7037(91)90420-a [52] Sun, S. R., Li, M. H., Yan, M. D., et al., 2019. Bromine Content and Br/Cl Molar Ratio of Halite in a Core from Laos: Implications for Origin and Environmental Changes. Carbonates and Evaporites, 34(3): 1107-1115. https://doi.org/10.1007/s13146-019-00508-0 [53] The 16th Geological Team of Yunnan Geological Bureau, 1978. How to Find Potash Deposit. Geological Publishing House, Beijing, 112-123 (in Chinese). [54] Valyashko, M. F., 1956. Geochemistry of Bromide in the Processes of Salt Deposition and the Use of the Bromide Content as a Genetic and Prospecting Tool. Geochemistry USSR, 1(6): 487-570. [55] Walter, L. M., Stueber, A. M., Huston, T. J., 1990. Br-Cl-Na Systematics in Illinois Basin Fluids: Constraints on Fluid Origin and Evolution. Geology, 18(4): 315-318. https://doi.org/10.1130/0091-7613(1990)0180315:bcnsii>2.3.co;2 doi: 10.1130/0091-7613(1990)0180315:bcnsii>2.3.co;2 [56] Wang, D.S., 1988. The Hydrologic Geothemistry Characteristics of Underground Salt Brine Water in Shichuan Basin. Journal of East China College of Geology, 11(4): 401-410 (in Chinese with English abstract). [57] Wang, D.S., 1989. Stable Isotope Research on the Origin of Yellow Brine and Black Brine in the Sichuan Basin. Hydrogeology and Engineering Geology, 16(2): 21-24 (in Chinese). [58] Wang, S. L., Zheng, M. P., 2014. The Discovery of Polyhalite of Triassic and Its Origin Study in Changshou Area of Eastern Sichuan Basin. Mineral Deposits, 33(5): 1045-1056 (in Chinese with English abstract). [59] Wang, S.L., Zheng, M.P., Jiao, J., 2012. Sedimentary Facies of the Cambrian Evaporites in the Upper Yangtze Region and Their Potash-Forming Potential. Geology and Exploration, 48(5): 947-958 (in Chinese with English abstract). [60] Wang, S. L., Zheng, M. P., Liu, X. F., et al., 2013. Distribution of Cambrian Salt-Bearing Basins in China and Its Significance for Halite and Potash Finding. Journal of Earth Science, 24(2): 212-233. https://doi.org/10.1007/s12583-013-0319-0 [61] Wang, Y. P., 1984. Hydrochemical Field and Its Formation in the South of Sichuan Basin. Earth Science, (2): 105-128 (in Chinese with English abstract). [62] Wittrup, M. B., Kyser, T. K., 1990. The Petrogenesis of Brines in Devonian Potash Deposits of Western Canada. Chemical Geology, 82: 103-128. https://doi.org/10.1016/0009-2541(90)90077-k [63] Xiao, Z.Q., 1982. Study on the Method of Hydrochemical for Potassium Prospecting in Zigong Area of Sichuan Basin. Geological Publishing House, Beijing, 176-181 (in Chinese). [64] Xie, X. J., Wang, Y. X., Su, C. L., et al., 2012. Influence of Irrigation Practices on Arsenic Mobilization: Evidence from Isotope Composition and Cl/Br Ratios in Groundwater from Datong Basin, Northern China. Journal of Hydrology, 424-425: 37-47. https://doi.org/10.1016/j.jhydrol.2011.12.017 [65] Xu, X.S., Wu, J.L., 1983. Potash Deposits in Mengyejing, Yunnan—A Study of Certain Characteristics, Geochemistry of Trace Elements and Genesis of the Deposits. Acta Geoscientica Sinia, 4(1): 17-36, 117-118 (in Chinese with English abstract). [66] Yager, R. M., Kappel, W. M., Plummer, L. N., 2007. Origin of Halite Brine in the Onondaga Trough near Syracuse, New York State, USA: Modeling Geochemistry and Variable-Density Flow. Hydrogeology Journal, 15(7): 1321-1339. https://doi.org/10.1007/s10040-007-0186-9 [67] Yan, Q. S., Gao, Z. Y., Ni, S. J., et al., 2013. Evolution of Isotopic Composition and Deuterium Excess of Brines in the Sichuan Basin, China. Chinese Journal of Geochemistry, 32(1): 69-77. https://doi.org/10.1007/s11631-013-0608-4 [68] Yu, X. C., Liu, C. L., Wang, C. L., et al., 2021. Origin of Geothermal Waters from the Upper Cretaceous to Lower Eocene Strata of the Jiangling Basin, South China: Constraints by Multi-Isotopic Tracers and Water-Rock Interactions. Applied Geochemistry, 124: 104810. https://doi.org/10.1016/j.apgeochem.2020.104810 [69] Zarei, M., Raeisi, E., Merkel, B. J., et al., 2013. Identifying Sources of Salinization Using Hydrochemical and Isotopic Techniques, Konarsiah, Iran. Environmental Earth Sciences, 70(2): 587-604. https://doi.org/10.1007/s12665-012-2143-8 [70] Zhang, X.Y., Ma, H.Z., Tan, H.B., et al., 2010. Preliminary Studies on Geochemistry and Post-Depositional Change of Dong Tai Potash Deposit in Laos. Mineral Deposits, 29(4): 713-721 (in Chinese with English abstract). [71] Zhang, Z.G., 2009. Unconfined Brine Hydrochemistry Characteristic and Brine Cause Analysis of East Section of Qarhan Salt Lake. Journal of Salt Lake Research, 17(1): 19-26 (in Chinese with English abstract). [72] Zheng, S.H., Hou, F.G., Ni, B.L., 1983. The Studies of Hydrogen and Oxygen Stable Isotopes in Atmospheric Precipitation in China. Chinese Science Bulletin, 28(13): 801-806 (in Chinese). doi: 10.1360/csb1983-28-13-801 [73] Zhou, X., 1993. Hydrogeochemical Characteristics and Formation of Subsurface Brines of Deep Aquifers in Longnu Temple Brine-Bearing Structure, Sichuan Basin. Geoscience, 7(1): 83-92 (in Chinese with English abstract). [74] Zhou, X., Cao, Q., Li, S.P., et al., 2014. Formation of the Ningchang Salt Spring in Wuxi County of Chongqing. Quaternary Sciences, 34(5): 1036-1043 (in Chinese with English abstract). [75] Zhou, X., Li, C. J., 1992. Hydrogeochemistry of Deep Formation Brines in the Central Sichuan Basin, China. Journal of Hydrology, 138(1-2): 1-15. https://doi.org/10.1016/0022-1694(92)90152-L [76] Zhou, X., Li, C. J., Ju, X. M., et al., 1997. Origin of Subsurface Brines in the Sichuan Basin. Groundwater, 35(1): 53-58. https://doi.org/10.1111/j.1745-6584.1997.tb00060.x [77] 陈郁华, 1983. 黄海水25℃恒温蒸发时的析盐序列及某些微量元素的分布规律. 地质学报, 57(4): 379-390. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198304005.htm [78] 程怀德, 马海州, 谭红兵, 等, 2008. 钾盐矿床中Br的地球化学特征及研究进展. 矿物岩石地球化学通报, 27(4): 399-408. doi: 10.3969/j.issn.1007-2802.2008.04.011 [79] 韩佳君, 周训, 姜长龙, 等, 2013. 柴达木盆地西部地下卤水水化学特征及其起源演化. 现代地质, 27(6): 1454-1464. doi: 10.3969/j.issn.1000-8527.2013.06.025 [80] 黄思静, 曾允孚, 1997. 四川成都盆地某深层富钾卤水的地球化学特征及成因. 沉积学报, 15(3): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB703.012.htm [81] 李洪普, 郑绵平, 侯献华, 等, 2014. 柴达木黑北凹地早更新世新型砂砾层卤水水化学特征与成因. 地球科学, 39(10): 1433-1442. doi: 10.3799/dqkx.2014.125 [82] 李廷伟, 谭红兵, 樊启顺, 2006. 柴达木盆地西部地下卤水水化学特征及成因分析. 盐湖研究, 14(4): 26-32. doi: 10.3969/j.issn.1008-858X.2006.04.005 [83] 李亚文, 蔡克勤, 韩蔚田, 1998. 四川盆地三叠系蒸发岩的变质作用与富钾卤水的成因. 现代地质, 12(2): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ802.011.htm [84] 林传律, 1994. 四川盆地三叠系含钾岩系变质演化特点及找矿意义. 四川地质学报, 14(2): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB199402005.htm [85] 林耀庭, 1994. 论四川盆地海相三叠系含钾性及找钾方向. 四川地质学报, 14(2): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB199402003.htm [86] 林耀庭, 1995. 溴的地球化学习性及其在四川找钾工作中的应用. 化工矿产地质, 17(3): 175-181. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC199503003.htm [87] 林耀庭, 2009. 四川盆地寒武系盐卤沉积特征及找钾前景. 盐湖研究, 17(2): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200902005.htm [88] 林耀庭, 熊淑君, 1996. 氢氧稳定同位素习性及其在四川盆地卤水成因研究中的应用. 化工矿产地质, 18(4): 300-306. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC604.008.htm [89] 林耀庭, 颜仰基, 吴应林, 1997. 四川盆地西部富钾富矿卤水的发现及其地球化学特征和意义. 地质地球化学, 25(3): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199703005.htm [90] 牛新生, 刘喜方, 陈文西, 2014. 西藏北羌塘盆地多格错仁地区盐泉水化学特征及其物质来源. 地质学报, 88(6): 1003-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406004.htm [91] 渠洁瑜, 吴必豪, 李际明, 1984. 地下卤水成因类型的统计分析: 以潜江凹陷为例. 工程勘察, 12(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198401022.htm [92] 单慧媚, 马腾, 谭婷, 等, 2013. 博茨瓦纳Sua盐湖地下卤水来源及成因. 地球科学, 38(3): 607-615. doi: 10.3799/dqkx.2013.061 [93] 石油化学工业部化学矿山局, 1977. 石油勘探中找钾盐矿的方法. 北京: 石油化学工业出版社, 93-121. [94] 王东升, 1988. 四川盆地地下盐卤水的水文地球化学特征. 华东地质学院学报, 11(4): 401-410. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ198804016.htm [95] 王东升, 1989. 四川盆地黄卤与黑卤起源的稳定同位素研究. 水文地质工程地质, 16(2): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198902005.htm [96] 王淑丽, 郑绵平, 2014. 川东盆地长寿地区三叠系杂卤石的发现及其成因研究. 矿床地质, 33 (5): 1045-1056. doi: 10.3969/j.issn.0258-7106.2014.05.013 [97] 王淑丽, 郑绵平, 焦建, 2012. 上扬子区寒武系蒸发岩沉积相及成钾潜力分析. 地质与勘探, 48(5): 947-958. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201205012.htm [98] 汪蕴璞, 1984. 四川盆地南部水化学场及其形成原因. 地球科学, (2): 105-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198402013.htm [99] 肖章棋, 1982. 四川盆地自贡地区水化学找钾方法研究. 北京: 地质出版社, 176-181. [100] 许效松, 吴嘉陵, 1983. 云南勐野井钾盐矿床特征, 微量元素地球化学及成因探讨. 中国地质科学院院报, 4(1): 17-36, 117-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198301001.htm [101] 云南省地质局第十六地质队, 1978. 怎样找钾盐. 北京: 地质出版社, 112-123. [102] 张西营, 马海州, 谭红兵, 等, 2010. 老挝东泰钾盐矿床地球化学及其沉积后变化初步研究. 矿床地质, 29(4): 713-721. doi: 10.3969/j.issn.0258-7106.2010.04.015 [103] 张兆广, 2009. 察尔汗盐湖东段潜卤水水文地球化学特征及卤水成因分析. 盐湖研究, 17(1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200901006.htm [104] 郑淑蕙, 侯发高, 倪葆龄, 1983. 我国大气降水的氢氧稳定同位素研究. 科学通报, 28(13): 801-806. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198313010.htm [105] 周训, 1993. 四川盆地龙女寺储卤构造深层地下卤水的水文地球化学特征及成因. 现代地质, 7(1): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199301009.htm [106] 周训, 曹琴, 李双鹏, 等, 2014. 重庆巫溪县宁厂盐泉的形成. 第四纪研究, 34(5): 1036-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201405012.htm