Geochronology and Geochemistry of Mesozoic Mafic Intrusive Rocks in Zhongtiao Mountain Area: Characterizing Lithospheric Mantle of Southern North China Craton
-
摘要: 镁铁质岩石作为幔源岩浆产物,其成因研究有助于探讨华北克拉通深部地幔性质及其演化过程.对中条山地区镁铁质侵入岩开展了系统的锆石U-Pb年代学、全岩主、微量元素、全岩Sr-Nd同位素和锆石Hf同位素研究,揭示了晚三叠世(217±2 Ma)和早白垩世(121±2 Ma)两期镁铁质岩浆活动.晚三叠世镁铁质侵入岩SiO2含量低至中等(46.03%~53.87%),MgO(14.37%~18.61 %)、Ni(282×10-6~433×10-6)、Cr(619×10-6~1 847×10-6)异常富集,亲岩浆元素丰度较低,上凸型稀土配分模式发育显著,指示岩体为堆晶成因.大量原生角闪石的发育表明晚三叠世杂岩的母岩浆高度富水,所有样品具有近平行的微量元素配分模式指示其轻度分异的LILE-HFSE(大离子亲石元素-高场强元素)组成反映地幔源区固有属性,母岩浆可能起源于经大洋板片沉积物熔/流体交代的地幔楔部分熔融.早白垩世镁铁质侵入岩SiO2含量介于49.23%~54.99%,MgO和Fe2O3T含量分别为4.29%~7.17%和9.70%~14.79%,大离子亲石元素(Rb、Ba、K、Pb)和轻稀土元素富集,高场强元素(Nb、Ta、Zr、Hf、Ti)和重稀土元素亏损,可能为经俯冲陆壳衍生熔体交代的岩石圈地幔部分熔融形成.晚三叠世杂岩可能响应于扬子板块与华北克拉通碰撞引起的造山后岩石圈拆沉,早白垩世侵入岩则可能与古太平洋板块西向俯冲后回撤所引起的弧后岩石圈伸展有关.此外,二者均具有相对典型克拉通富集地幔亏损的全岩Nd(εNd(t)=-18.56~-12.64)和锆石Hf(εHf(t)=-20.2~+10.4),指示华北克拉通中南部岩石圈地幔性质自晚三叠世以来发生了显著改变,早白垩世克拉通破坏可能延及华北中部.Abstract: The mafic rocks originating from deep earth are probes for lithospheric mantle evolution. In this paper, it presents a synthesis study of zircon U-Pb chronology, whole-rock elemental and Sr-Nd isotopic geochemistry, and zircon Hf isotope of the mafic intrusive rocks in the Zhongtiao Mountain area. Two periods of magmatism during the Late Triassic (217±2 Ma) and the Early Cretaceous (121±2 Ma) are unraveled. The Late Triassic samples are characterized by low to intermediate SiO2 contents (46.03%-53.87%), high MgO (14.37%-18.61%), Ni (282×10-6-433×10-6) and Cr (619×10-6-1 847×10-6) concentrations, low magmatophile element abundances, and convex rare earth element distribution patterns, indicating a cumulate origin. The existence of a large number of original amphiboles indicates that the parental magma is highly water-rich. All samples have nearly parallel trace element distribution patterns, which implies that their mild LILE-HFSE (large ion lithophile element - high field strength element) differentiation reflects the inherent attributes of mantle source region, and their parental magma probably originated from partial melting of the mantle wedge metasomatized by subducted sediment melt/fluid. The SiO2 content of Early Cretaceous mafic intrusive rocks lies between 49.23%-54.99%, while the contents of MgO and Fe2O3T are 4.29%-7.17% and 9.70%-14.79%, respectively. Meanwhile, these rocks are enriched in LILEs and light rare earth elements (LREEs), and depleted in HFSEs and heavy rare earth elements (HREEs). Their formation is ascribed to partial melting of lithospheric mantle metasomatized by subducted continental crust-derived melt. The Late Triassic complex may be related to post-orogenic oceanic slab breakoff caused by collision between the Yangtze plate and the North China craton (NCC), while the Early Cretaceous intrusive rocks may be linked with back arc lithospheric extension triggered by the retreat of Paleo-Pacific plate during its westward subduction. In addition, the relative depletion of whole-rock Nd (εNd(t)=-18.56 to -12.64) and zircon Hf (εHf(t)=-20.2 to +10.4) isotopic compositions in samples compared with that of typical craton lithospheric mantle indicates that the lithospheric mantle nature of the central and southern part of the NCC have changed significantly since the Late Triassic, and the Early Cretaceous craton destruction extends to the central part of the NCC.
-
图 1 华北克拉通中生代镁铁质岩浆岩分布
图中数字表示年龄,单位为Ma;五角星代表洋岛型岩浆岩,圆形代表岛弧型岩浆岩.数据引自Guo et al.(2014),Ma et al.(2014),Hong et al.(2017),Deng et al.(2017),郑永飞等(2018),Yang et al.(2019),Li et al.(2020),Liu et al.(2020),Quan et al.(2020)及Zhao et al.(2020)
Fig. 1. The distribution of Mesozoic mafic magmatic rocks in the North China craton
图 2 华北克拉通基底构造单元划分(根据Zhao et al., 2000修改)及研究区位置(a);中条山地区地质简图采样位置(b)
Fig. 2. Division of basement tectonic units in the North China craton and the location of study area (a); geological sketch map of the Zhongtiao Mountain area and sampling locations (b)
图 7 中条山镁铁质岩石元素地球化学特征
a.TAS分类图解(据Middlemost,1994);b.SiO2-K2O图解(据Peccerillo and Taylor, 1976);c.原始地幔标准化微量元素蛛网图(据Sun and McDonough, 1989);d.球粒陨石标准化稀土元素配分曲线(据Sun and McDonough, 1989)
Fig. 7. Elemental geochemical characteristics of mafic rocks in the Zhongtiao Mountain area
图 8 中条山镁铁质岩石(87Sr/86Sr)i-εNd(t)图解(a)与锆石εHf(t)-U-Pb年龄图解(b)
图a底图据Yang et al.(2019)和汤艳杰等(2021)修改;图b中华北克拉通东陆块中-新生代镁铁质岩的数据引自Liu et al.(2020);T-J.三叠纪-侏罗纪;K1.早白垩世;K2-Cz.晚白垩世-新生代
Fig. 8. (87Sr/86Sr)i vs. εNd(t) (a) and zircon εHf(t) vs. U-Pb age (b) diagrams of mafic rocks in the Zhongtiao Mountain area
图 11 中条山早白垩世镁铁质岩石SiO2-Th/La图解(a);SiO2-U/Nb图解(b);SiO2-Nb/Ta图解(c);SiO2-Lu/Yb图解(d);SiO2-εNd(t)图解(e);La-La/Sm图解(f)
图c据Weyer et al., 2002;图d据Sun and McDonough(1989)
Fig. 11. Diagrams of SiO2 vs. Th/La (a), SiO2 vs. U/Nb (b), SiO2 vs. Nb/Ta (c), SiO2 vs. Lu/Yb (d), SiO2 vs. εNd(t) (e) and La vs. La/Sm (f) for the Early Cretaceous mafic rocks in the Zhongtiao Mountain area
图 12 中条山早白垩世镁铁质岩石Nb/Yb-Th/Yb图解(a),Nb-Nb/U图解(b),Nb/Y-Rb/Y图解(c),Th-Ba/Th图解(d)
图a据Liu et al., 2020;图b据Ayers,1998和Hofmann et al., 1986;图c据Zhao et al., 2020;图d据Zhao et al., 2020. SMLM.俯冲交代岩石圈地幔;SMAM.俯冲交代软流圈地幔;OIB.洋岛玄武岩;N-MORB.正常洋中脊玄武岩;E-MORB.富集洋中脊玄武岩
Fig. 12. Diagrams of Nb/Yb vs. Th/Yb (a), Nb vs. Nb/U (b), Nb/Y vs. Rb/Y (c) and Th vs. Ba/Th (d) for the Early Cretaceous mafic rocks of Zhongtiao Mountain area
图 13 中条山早白垩世镁铁质岩石K/Yb×1 000-Dy/Yb图解(据Duggen et al., 2005)
Fig. 13. K/Yb×1 000 vs. Dy/Yb plot of the Early Cretaceous mafic rocks in the Zhongtiao Mountain area
图 14 华北克拉通南缘中生代构造演化过程示意图
据Yang et al.(2007a);郑永飞等(2018)修改
Fig. 14. Schematic cartoons illustrating the Mesozoic tectonic evolution of the southern margin of the North China craton
表 1 华北克拉通中条山地区镁铁质岩石锆石U-Pb同位素年代学测试结果
Table 1. Zircon U-Pb isotopic data and ages of mafic rocks from Zhongtiao Mountain area, North China craton
分析点 Th U Th/U Pb 同位素比值 年龄(Ma) No. (10-6) (10-6) (10-6) 207Pb/206Pb 1σ (%) 207Pb/235U 1σ (%) 206Pb/238U 1σ (%) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ XX14-7-1@3 473 400 1.18 11 0.048 80 1.64 0.125 49 2.24 0.018 7 1.53 138.1 38.0 120.0 2.5 119.1 1.8 XX14-7-1@4 783 693 1.13 18 0.054 56 14.85 0.140 66 14.94 0.018 7 1.66 394.2 302.5 133.6 18.9 119.4 2.0 XX14-7-1@5 854 701 1.22 19 0.047 63 1.71 0.124 42 2.28 0.018 9 1.50 81.1 40.1 119.1 2.6 121.0 1.8 XX14-7-1@1 3 620 1 434 2.52 51 0.049 20 0.92 0.128 85 1.76 0.019 0 1.50 157.3 21.4 123.1 2.0 121.3 1.8 XX14-7-1@2 383 386 0.99 10 0.048 57 1.64 0.129 11 2.22 0.019 3 1.51 127.3 38.0 123.3 2.6 123.1 1.8 XX14-7-1@7 9 634 21 605 0.45 1 159 0.051 85 1.60 0.333 74 2.20 0.046 7 1.51 278.9 36.3 292.4 5.6 294.1 4.3 XX14-7-1@6 3 973 3 167 1.25 259 0.065 99 9.69 0.533 90 9.82 0.058 7 1.60 806.2 190.7 434.4 35.3 367.6 5.7 WX15-1-1@08 192 323 0.59 6 0.039 51 27.70 0.092 86 27.74 0.017 0 1.50 -382.8 598.8 90.2 24.2 109.0 1.6 WX15-1-1@02 165 224 0.74 5 0.049 01 24.10 0.120 27 24.22 0.017 8 2.35 148.1 484.7 115.3 26.8 113.7 2.7 WX15-1-1@03 112 203 0.55 5 0.045 31 16.37 0.115 58 16.47 0.018 5 1.83 -38.8 356.0 111.1 17.5 118.2 2.1 WX15-1-1@11 143 246 0.58 6 0.047 96 6.10 0.125 09 6.39 0.018 9 1.89 97.1 138.4 119.7 7.2 120.8 2.3 WX15-1-1@14 53 115 0.46 3 0.047 83 4.84 0.127 10 5.10 0.019 3 1.62 90.9 110.8 121.5 5.9 123.1 2.0 WX15-1-1@10 584 716 0.82 18 0.046 84 3.05 0.124 50 3.44 0.019 3 1.58 40.9 71.5 119.1 3.9 123.1 1.9 WX15-1-1@13 738 961 0.77 25 0.047 78 1.47 0.132 40 2.23 0.020 1 1.68 88.3 34.4 126.3 2.7 128.3 2.1 WX15-1-1@07 215 244 0.88 9 0.050 16 2.39 0.190 80 2.91 0.027 6 1.66 202.4 54.7 177.3 4.7 175.4 2.9 WX15-1-1@12 419 986 0.43 44 0.052 28 1.28 0.273 62 2.60 0.038 0 2.27 297.8 28.9 245.6 5.7 240.2 5.3 WX15-1-1@06 421 1 242 0.34 57 0.051 15 0.88 0.278 30 2.29 0.039 5 2.12 247.7 20.1 249.3 5.1 249.5 5.2 WX15-1-1@1 619 948 0.65 47 0.051 57 0.97 0.282 57 2.19 0.039 7 1.97 266.2 22.1 252.7 4.9 251.2 4.8 WX15-1-1@05 207 339 0.61 17 0.051 65 1.17 0.294 16 2.03 0.041 3 1.66 270.1 26.7 261.8 4.7 260.9 4.2 WX15-1-1@15 382 504 0.76 45 0.055 54 0.62 0.526 21 1.63 0.068 7 1.51 434.0 13.7 429.3 5.7 428.4 6.3 WX15-1-1@17 116 718 0.16 120 0.069 20 0.34 1.420 72 1.63 0.148 9 1.59 904.6 6.9 897.7 9.7 894.8 13.3 WX15-1-1@09 28 39 0.72 8 0.069 59 4.47 1.538 74 4.97 0.160 4 2.18 916.3 89.2 946.0 31.1 958.8 19.5 WX15-1-1@16 290 421 0.69 154 0.103 84 0.25 4.016 38 1.56 0.280 5 1.54 1 693.9 4.6 1 637.5 12.8 1 593.9 21.8 WX15-1-1@04 162 413 0.39 207 0.136 29 0.23 7.553 82 1.58 0.402 0 1.56 2 180.6 4.1 2 179.4 14.3 2 178.1 29.0 XX14-2-1@4 123 398 0.31 16 0.049 02 4.57 0.236 81 4.81 0.035 0 1.50 148.6 103.8 215.8 9.4 222.0 3.3 XX14-2-1@16 280 751 0.37 29 0.049 07 4.45 0.224 64 4.70 0.033 2 1.50 151.1 101.1 205.8 8.8 210.6 3.1 XX14-2-1@5 663 1 151 0.58 48 0.050 22 0.90 0.237 18 1.75 0.034 3 1.50 205.4 20.7 216.1 3.4 217.1 3.2 XX14-2-1@12 211 478 0.44 19 0.050 23 1.79 0.232 39 2.34 0.033 6 1.51 205.7 40.9 212.2 4.5 212.7 3.2 XX14-2-1@9 174 400 0.44 16 0.050 62 1.85 0.238 43 2.40 0.034 2 1.52 223.4 42.2 217.1 4.7 216.6 3.2 XX14-2-1@6 297 732 0.41 30 0.050 76 1.12 0.240 77 1.87 0.034 4 1.51 230.0 25.6 219.0 3.7 218.0 3.2 XX14-2-1@14 528 1 082 0.49 44 0.050 97 1.66 0.239 97 2.24 0.034 1 1.50 239.3 37.8 218.4 4.4 216.5 3.2 XX14-2-1@13 424 1 025 0.41 42 0.050 99 1.34 0.245 63 2.02 0.034 9 1.50 240.4 30.7 223.0 4.0 221.4 3.3 XX14-2-1@2 218 736 0.30 213 0.090 27 0.32 3.055 31 1.54 0.245 5 1.50 1 431.3 6.2 1 421.6 11.8 1 415.0 19.1 XX14-2-1@3 21 691 0.03 234 0.117 20 0.37 4.885 07 1.55 0.302 3 1.50 1 914.0 6.6 1 799.7 13.1 1 702.7 22.5 XX14-2-1@1 48 347 83 766 0.58 32 946 0.117 64 15.04 5.697 18 15.20 0.351 2 2.20 1 920.7 247.6 1 930.9 140.5 1 940.5 36.9 XX14-2-1@11 3 361 3 007 1.12 885 0.119 50 0.22 3.434 59 1.52 0.208 4 1.50 1 948.8 4.0 1 512.3 12.0 1 220.5 16.8 XX14-2-1@10 534 389 1.37 239 0.145 02 0.56 7.986 34 1.60 0.399 4 1.50 2 288.0 9.7 2 229.5 14.6 2 166.4 27.7 XX14-2-1@8 327 589 0.56 336 0.158 45 0.40 9.494 85 1.55 0.434 6 1.50 2 439.2 6.8 2 387.0 14.4 2 326.4 29.4 表 2 华北克拉通中条山地区晚三叠世镁铁质岩石中角闪石电子探针成分(%)
Table 2. Electron microprobe analyses of amphibole in Late Triassic mafic rocks from Zhongtiao Mountain area, North China craton (%)
样品号 XX14-2-1 XX14-2-1 矿物编号 AM1 AM2 AM3 AM4 AM5 AM6 AM7 AM8 AM9 AM10 AM11 AM12 AM13 AM14 SiO2 53.77 53.94 54.07 54.10 53.90 54.51 54.35 54.48 53.29 54.07 53.54 53.95 54.24 53.91 TiO2 0.19 0.16 0.14 0.19 0.14 0.10 0.14 0.20 0.15 0.13 0.15 0.14 0.09 0.13 Al2O3 3.3 3.30 3.14 3.17 2.98 2.74 3.16 3.07 3.01 2.93 3.13 2.95 3.02 3.15 FeO 8.32 8.19 7.95 8.24 8.05 7.91 8.20 8.31 8.16 8.11 8.25 8.16 7.96 8.40 MnO 0.21 0.25 0.24 0.23 0.24 0.25 0.24 0.28 0.24 0.27 0.21 0.23 0.24 0.28 MgO 18.73 18.31 18.76 18.49 18.42 18.96 18.83 18.80 18.35 18.50 18.83 18.87 18.75 18.62 CaO 11.65 11.59 11.45 11.51 11.83 11.94 11.76 11.41 11.80 11.72 11.44 11.37 11.82 11.54 Na2O 0.77 0.67 0.59 0.62 0.55 0.48 0.61 0.64 0.58 0.62 0.72 0.61 0.55 0.65 K2O 0.15 0.13 0.11 0.14 0.10 0.08 0.11 0.13 0.13 0.09 0.13 0.12 0.15 0.12 Cr2O3 0.24 0.30 0.17 0.21 0.13 0.16 0.17 0.17 0.18 0.21 0.23 0.09 0.13 0.10 NiO 0.04 0.04 0.02 0.04 0 0.01 0.05 0.05 0.08 0.04 0.05 0.01 0.06 0.08 Total 97.37 96.88 96.64 96.94 96.26 97.14 97.62 97.54 95.97 96.69 96.68 96.5 97.01 96.98 T Si 7.575 7.621 7.633 7.636 7.639 7.668 7.631 7.651 7.585 7.643 7.576 7.626 7.643 7.609 Al 0.412 0.365 0.358 0.351 0.353 0.320 0.356 0.334 0.410 0.347 0.417 0.368 0.345 0.384 Ti 0.021 0.017 0.015 0.020 0.015 0.010 0.015 0.021 0.014 0.014 0.016 0.015 0.010 0.013 C Al 0.135 0.184 0.164 0.176 0.133 0.134 0.166 0.174 0.095 0.142 0.104 0.124 0.156 0.140 Cr 0.026 0.034 0.019 0.023 0.015 0.018 0.019 0.018 0.020 0.023 0.025 0.010 0.015 0.011 Fe3+ 0.249 0.215 0.252 0.229 0.224 0.229 0.239 0.265 0.246 0.234 0.276 0.282 0.229 0.285 Mg 3.930 3.851 3.940 3.883 3.893 3.976 3.941 3.927 3.892 3.899 3.953 3.964 3.940 3.913 Fe2+ 0.691 0.741 0.646 0.714 0.737 0.679 0.680 0.652 0.736 0.721 0.654 0.632 0.690 0.668 Mn2+ 0.003 0.009 0.005 0.005 0.006 0.007 0.006 0.008 0.006 0.010 0.002 0.002 0.006 0.009 B Ca 1.766 1.761 1.738 1.748 1.807 1.808 1.775 1.721 1.811 1.784 1.743 1.731 1.793 1.753 Na 0.152 0.189 0.172 0.181 0.176 0.143 0.148 0.170 0.163 0.181 0.153 0.164 0.163 0.163 A Na 0.058 0.000 0.000 0.000 0.000 0.000 0.019 0.005 0.000 0.000 0.045 0.003 0.000 0.014 K 0.018 0.014 0.010 0.016 0.009 0.003 0.009 0.013 0.017 0.007 0.016 0.013 0.017 0.013 Mg# 0.80 0.80 0.81 0.80 0.80 0.81 0.80 0.80 0.80 0.80 0.80 0.80 0.81 0.80 注:离子数计算结果据 Li et al., 2020 . 标准的角闪石晶体化学通式为: A0~1 B2 C5Ⅵ T8Ⅳ O2 2(OH, F, Cl),其中,A为Na+、K+、Ca2+、(H3O)+; B为Na+、Li+、K+、Ca2+、Mg2+、Fe2+、Mn2+; C为Mg2+、Fe2+、Mn2+、Al3+、Fe3+、Ti4+、Cr3+; T为Si4+、Al3+、Fe3+、Ti4+、Cr3+,式中上角注的罗马数字表示配位数, 下角注的阿拉伯数码表示原子数.表 3 华北克拉通中条山地区晚三叠世镁铁质岩石中角闪石微量元素(10-6)分析结果(样品号:XX19-8-1)
Table 3. Trace element compositions (10-6) of amphibole in Late Triassic mafic rocks from Zhongtiao Mountain area, North China craton(Sample No. XX19-8-1)
编号 AM1 AM2 AM3 AM4 AM5 AM6 AM7 编号 AM1 AM2 AM3 AM4 AM5 AM6 AM7 Li 1.85 2.17 2.40 3.01 2.15 2.46 2.79 Ba 44.0 17.2 20.7 16.6 16.5 21.4 13.0 Mg 94 154 97 799 98 882 96 189 98 952 97 722 98 456 La 1.58 1.20 1.67 1.01 1.22 1.07 1.06 P 13.80 12.40 11.80 24.00 15.10 14.60 2.96 Ce 7.05 5.73 6.90 5.36 5.77 4.94 5.39 Ca 91 361 91 205 91 887 90 125 91 444 92 002 91 146 Pr 1.29 1.10 1.22 1.07 1.10 0.95 1.06 Sc 47.9 43.6 44.0 46.5 46.0 43.1 43.6 Nd 7.73 6.35 6.95 6.53 6.68 6.18 6.29 Ti 2 259 1 776 1 778 1 913 1 740 2 106 1 694 Sm 2.31 1.81 1.94 1.91 1.90 1.96 1.94 V 164 144 139 157 147 154 145 Eu 0.65 0.48 0.52 0.51 0.50 0.56 0.51 Cr 463 116 1 003 482 707 251 452 Gd 2.08 1.68 1.70 1.78 1.75 1.88 1.78 Mn 1 713 1 820 1 807 1 817 1 774 1 772 1 806 Tb 0.29 0.22 0.23 0.23 0.24 0.26 0.21 Fe 60 218 56 742 56 305 57 579 56 416 58 652 56 298 Dy 1.68 1.36 1.41 1.43 1.39 1.54 1.36 Co 70.1 68.1 68.5 68.1 67.0 69.5 67.1 Ho 0.33 0.25 0.26 0.27 0.26 0.28 0.25 Ni 304 312 313 316 321 311 322 Er 0.97 0.71 0.66 0.72 0.68 0.78 0.69 Cu 0.29 0.18 0.61 0.21 0.12 0.59 0.53 Tm 0.15 0.09 0.09 0.09 0.09 0.11 0.09 Zn 115 123 116 130 141 115 132 Yb 1.10 0.56 0.57 0.60 0.58 0.72 0.57 Rb 0.84 0.86 0.95 0.81 0.80 0.81 0.63 Lu 0.22 0.09 0.08 0.09 0.08 0.10 0.08 Sr 36.0 40.7 40.4 42.2 41.2 44.4 41.1 Hf 37.7 0.34 0.33 1.16 0.30 0.26 0.29 Y 8.71 6.36 6.43 6.83 6.68 7.58 6.46 Ta 0.08 0.05 0.05 0.06 0.04 0.04 0.04 Zr 1 268.00 4.14 3.80 27.90 3.08 3.31 2.87 Pb 1.03 1.83 1.75 1.49 1.66 1.81 1.35 Nb 1.38 0.89 0.98 1.13 0.98 0.86 0.96 Th 0.09 0.01 0.02 0.02 0.01 0.03 0.01 Mo 2.33 2.30 1.99 35.2 2.37 1.03 4.36 K 31 596 27 126 26 935 29 312 26 602 27 490 25 504 Cs 0.01 0.00 0.01 0.00 0.00 0.01 0.00 表 4 华北克拉通中条山地区镁铁质岩石的Rb-Sr同位素和Sm-Nd同位素组成
Table 4. Rb-Sr and Sm-Nd isotopic data of mafic rocks from the Zhongtiao Mountain area, North China craton
样品 年龄(Ma) Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr ±2σ (87Sr/86Sr)i Sm(10-6) XX14-2-1 217 7.884 35.17 0.649 4 0.716 915 0.000 012 0.714 910 5 2.171 XX14-2-2 217 9.770 34.10 0.829 1 0.721 172 0.000 007 0.718 613 8 2.140 XX14-7-1 217 25.240 370.70 0.197 1 0.708 759 0.000 008 0.708 419 9 6.078 XX14-7-2 217 12.700 500.00 0.073 5 0.708 504 0.000 326 0.709 377 3 6.340 XX14-7-7 217 61.590 541.80 0.329 2 0.713 247 0.000 014 0.712 680 7 5.752 XX14-8-1 121 37.770 339.40 0.322 3 0.712 795 0.000 014 0.711 795 4 5.408 WX15-1-1 120 179.700 283.60 1.839 0 0.736 672 0.000 015 0.733 562 5 4.495 样品 Nd(10-6) 147Sm/144Nd 143Nd/144Nd ±2σ (143Nd/144Nd)i εNd (0) εNd (t) TDM(Ma) XX14-2-1 8.160 0.158 2 0.511 935 0.000 006 0.511 711 -13.70 -12.64 3 319 XX14-2-2 29.040 0.126 7 0.511 684 0.000 009 0.511 584 -18.61 -17.53 2 555 XX14-7-1 29.600 0.129 4 0.511 634 0.000004 0.511 531 -19.59 -18.56 2 731 XX14-7-2 27.740 0.125 5 0.511 664 0.000 008 0.511 565 -18.99 -17.90 2 555 XX14-7-7 25.190 0.130 0 0.511 710 0.000 009 0.511 524 -18.11 -16.26 2 608 XX14-8-1 21.940 0.124 0 0.511 713 0.000 010 0.511 616 -18.05 -16.95 2 431 表 5 华北克拉通中条山地区镁铁质岩石锆石Hf同位素组成
Table 5. Zircon Hf isotopic composition of mafic rocks from Zhongtiao Mountain area, North China craton
样品 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ Hfi εHf(0) εHf(t) TDMHf (Ma) TDMC (Ma) U-Pb age (Ma) XX14-2-1_04 0.029 7 0.001 1 0.282 935 0.000 017 0.282 928 +5.7 +10.4 453 592 222.0 XX14-2-1_05 0.040 3 0.001 5 0.282 870 0.000 019 0.282 862 +3.4 +7.9 552 746 217.0 XX14-2-1_06 0.033 2 0.001 2 0.282 862 0.000 014 0.282 856 +3.1 +7.7 558 760 218.0 XX14-2-1_09 0.031 8 0.001 2 0.282 866 0.000 015 0.282 859 +3.2 +7.9 552 752 217.0 XX14-2-1_12 0.043 0 0.001 5 0.282 874 0.000 018 0.282 866 +3.5 +8.0 546 739 213.0 XX14-2-1_13 0.043 3 0.001 8 0.282 566 0.000 018 0.282 557 -7.3 -2.8 995 1 431 221.0 XX14-2-1_14 0.027 8 0.001 1 0.282 823 0.000 017 0.282 817 +1.7 +6.4 611 848 217.0 XX14-2-1_16 0.063 5 0.002 2 0.282 890 0.000 019 0.282 879 +4.1 +8.4 533 711 211.0 XX14-7-1 05 0.023 4 0.000 9 0.282 253 0.000 044 0.282 249 -18.4 -15.9 1 407 2 174 121.0 XX14-7-1 01 0.020 6 0.000 8 0.282 239 0.000 039 0.282 235 -18.9 -16.3 1 424 2 204 121.3 XX14-7-1 02 0.020 4 0.000 8 0.282 201 0.000 038 0.282 197 -20.3 -17.6 1 477 2 288 123.1 WX15-1-1_02 0.038 9 0.001 4 0.282 871 0.000 018 0.282 866 +3.4 +5.8 549 801 114.0 WX15-1-1_03 0.031 8 0.001 2 0.282 817 0.000 017 0.282 812 +1.5 +4.0 622 920 118.0 WX15-1-1_08 0.036 4 0.001 4 0.282 842 0.000 017 0.282 837 +2.4 +4.7 590 869 109.0 WX15-1-1_10 0.040 9 0.001 5 0.282 845 0.000 019 0.282 840 +2.5 +5.1 587 854 123.0 WX15-1-1_11 0.042 2 0.001 5 0.282 855 0.000 025 0.282 849 +2.8 +5.4 574 835 121.0 WX15-1-1_13 0.015 6 0.000 6 0.282 124 0.000 015 0.282 120 -23.0 -20.2 1 576 2 452 128.0 WX15-1-1_14 0.035 7 0.001 3 0.282 798 0.000 020 0.282 793 +0.9 +3.5 652 960 123.0 -
[1] Ayers, J., 1998. Trace Element Modeling of Aqueous Fluid-Peridotite Interaction in the Mantle Wedge of Subduction Zones. Contributions to Mineralogy and Petrology, 132(4): 390-404. https://doi.org/10.1007/s004100050431 [2] Chen, L., Zhao, Z.F., Zheng, Y.F., 2014. Origin of Andesitic Rocks: Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China. Lithos, 190/191: 220-239. https://doi.org/10.1016/j.lithos.2013.12.011 [3] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., 2015. Tectonic Development from Oceanic Subduction to Continental Collision: Geochemical Evidence from Postcollisional Mafic Rocks in the Hong'an-Dabie Orogens. Gondwana Research, 27(3): 1236-1254. https://doi.org/10.1016/j.gr.2013.12.005 [4] Deng, J., Liu, X., Wang, Q., et al., 2017. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking-Lithospheric Extension in the North China Craton, Eastern Asia. GSA Bulletin, 129(11-12): 1379-1407. https://doi.org/10.1130/b31609.1 doi: 10.1130/B31609.1 [5] Ding, L., Ma, C., Li, J., et al., 2016. Geochronological, Geochemical and Mineralogical Constraints on the Petrogenesis of Appinites from the Laoniushan Complex, Eastern Qinling, Central China. Geochemistry, 76(4): 579-595. https://doi.org/10.1016/j.chemer.2016.10.002 [6] Duggen, S., Hoernle, K., van den Bogaard, P., et al., 2005. Post-Collisional Transition from Subduction- to Intraplate-Type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. Journal of Petrology, 46(6): 1155-1201. https://doi.org/10.1093/petrology/egi013 [7] Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., et al., 1997. A Simple Method for the Precise Determination of ≥40 Trace Elements in Geological Samples by ICPMS Using Enriched Isotope Internal Standardisation. Chemical Geology, 134(4): 311-326. http://dx.doi.org/10.1016/S0009-2541(96)00100-3 [8] Gao, S., Rudnick, R., Carlson, R., et al., 2003. Removal of Lithospheric Mantle in the North China Craton: Re-Os Isotopic Evidence for Coupled Crust-Mantle Growth. Earth Science Frontiers, 10(3): 61-67(in Chinese with English abstract). [9] Gao, S., Zhang, J., Xu, W., et al., 2009. Delamination and Destruction of the North China Craton. Chinese Science Bulletin, 54(19): 3367-3378. https://doi.org/10.1007/s11434-009-0395-9 [10] Griffin, W.L., Zhang, A., O'Reilly, S.Y., et al., 1998. Phanerozoic Evolution of the Lithosphere Beneath the Sino-Korean Craton. Mantle Dynamics and Plate Interactions in East Asia Geodynamics, 27: 107-126. https://doi.org/10.1029/GD027p0107 [11] Guo, F., Fan, W., Li, C., et al., 2014. Hf-Nd-O Isotopic Evidence for Melting of Recycled Sediments beneath the Sulu Orogen, North China. Chemical Geology, 381: 243-258. https://doi.org/10.1016/j.chemgeo.2014.04.028 [12] Halama, R., Marks, M., Brügmann, G., et al., 2004. Crustal Contamination of Mafic Magmas: Evidence from a Petrological, Geochemical and Sr-Nd-Os-O Isotopic Study of the Proterozoic Isortoq Dike Swarm, South Greenland. Lithos, 74(3-4): 199-232. https://doi.org/10.1016/j.lithos.2004.03.004. [13] Hirose, K., 1997. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Magnesian Andesitic Melts. Geology, 25(1) 42-44. https://doi.org/10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2 doi: 10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2 [14] Hofmann, A.W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821X(88)90132-X [15] Hofmann, A.W., Jochum, K.P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1-2): 33-45. https://doi.org/10.1016/0012-821X(86)90038-5 [16] Holloway, J.R., Burnham, C.W., 1972. Melting Relations of Basalt with Equilibrium Water Pressure less than Total Pressure. Journal of Petrology, 13(1): 1-29. https://doi.org/10.1093/petrology/13.1.1 [17] Hong, L., Zhang, Y., Xu, Y., et al., 2017. Hydrous Orthopyroxene-Rich Pyroxenite Source of the Xinkailing High Magnesium Andesites, Western Liaoning: Implications for the Subduction-Modified Lithospheric Mantle and the Destruction Mechanism of the North China Craton. Lithos, 282-283: 10-22. https://doi.org/10.1016/j.lithos.2017.02.014 [18] Jiang, C.Y., An, S.Y., 1984. On Chemical Characteristics of Calcic Amphiboles from Igneous Rocsk and Their Petrogenesis Significance. Journal of Mineralogy and Petrology, 4(3): 1-9(in Chinese with English abstract). [19] Jiang, Y.H., Jiang, S.Y., Zhao, K.D., et al., 2005. SHRIMP Zircon U-Pb Ages of Lamprophyres in the Liaodong Peninsula and Their Constraints on the Beginning Time of Lithospheric Thinning in Eastern China. Chinese Science Bulletin, 50(19): 2161-2168 (in Chinese). [20] Kamber, B.S., Greig, A., Schoenberg, R., et al., 2003. A Refined Solution to Earth's Hidden Niobium: Implications for Evolution of Continental Crust and Mode of Core Formation. Precambrian Research, 126(3-4): 289-308. http://doi.org/10.1016/S0301-9268(03)00100-1 [21] Kelemen, P.B., Hanghøj, K., Greene, A.R., 2007. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1-70. https://doi.org/10.1016/b0-08-043751-6/03035-8 [22] Klemme, S., O'Neill, H.S., 2000. The Near-Solidus Transition from Garnet Lherzolite to Spinel Lherzolite. Contributions to Mineralogy and Petrology, 138(3): 237-248. https://doi.org/10.1007/s004100050560 [23] Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630: 208-221. https://doi.org/10.1016/j.tecto.2014.05.028. [24] Li, B.P., Greig, A., Zhao, J.X., et al., 2005. ICP-MS Trace Element Analysis of Song Dynasty Porcelains from Ding, Jiexiu and Guantai Kilns, North China. Journal of Archaeological Science, 32(2): 251-259. http://dx.doi.org/10.1016/j.jas.2004.09.004 [25] Li, C, F., Chu, Z.Y., Guo, J.H., et al., 2015. A Rapid Single Column Separation Scheme for High Precision Sr-Nd-Pb Isotopic Analysis in Geological Samples Using Thermal Ionization Mass Spectrometry. Analytical Methods. 7(11): 4793-4802. doi: 10.1039/C4AY02896A [26] Li, R., Yang, J.H., Wang, H., et al., 2020. Triassic Lithospheric Modification of the Northern North China Craton: Evidences from the Composite Kalaqin Batholith and Ultramafic-Mafic Heilihe Intrusive Complex in Inner Mongolia. Lithos, 362-363: 105501. https://doi.org/10.1016/j.lithos.2020.105501 [27] Li, S.G., Xiao, Y.L., Liou, D.L., et al., 1993. Collision of the North China and Yangtse Blocks and Formation of Coesite-Bearing Eclogites: Timing and Processes. Chemical Geology, 109(1/2/3/4): 89-111. https://doi.org/10.1016/0009-2541(93)90063-O [28] Li, X.H., Liu, Y., Li, Q.Y., et al., 2009. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010. https://doi.org/10.1029/2009GC002400 [29] Liu, X., Fan, H.R., Qiu, Z.J., et al., 2015. Formation Ages of the Jiangxian and Zhongtiao Groups in the Zhongtiao Mountain Region, North China Craton: Insights from SIMS U-Pb Dating on Zircons of Intercalated Plagioclase Amphibolites. Acta Petrologica Sinica, 31(6): 1564-1572(in Chinese with English abstract). [30] Liu, S., Hu, R., Gao, S., et al., 2008. U-Pb Zircon Age, Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints on Age and Origin of Alkaline Intrusions and Associated Mafic Dikes from Sulu Orogenic Belt, Eastern China. Lithos, 106(3-4): 365-379. https://doi.org/10.1016/j.lithos.2008.09.004 [31] Liu, S., Hu, R., Gao, S., et al., 2012. Geochemical and Isotopic Constraints on the Age and Origin of Mafic Dikes from Eastern Shandong Province, Eastern North China Craton. International Geology Review, 54(12): 1389-1400. https://doi.org/10.1080/00206814.2011.641732 [32] Liu, Y., Wei, J., Zhang, D., et al., 2020. Early Cretaceous Wulong Intermediate-Mafic Dike Swarms in the Liaodong Peninsula: Implications for Rapid Lithospheric Delamination of the North China Craton. Lithos, 362-363: 105473. https://doi.org/10.1016/j.lithos.2020.105473 [33] Ma, L., Jiang, S.Y., Hou, M.L., et al., 2014. Geochemistry of Early Cretaceous Calc-Alkaline Lamprophyres in the Jiaodong Peninsula: Implication for Lithospheric Evolution of the Eastern North China Craton. Gondwana Research, 25(2): 859-872. https://doi.org/10.1016/j.gr.2013.05.012. [34] Ma, X., Chen, B., Niu, X.L., 2009. Genesis of the Late Paleozoic Dongwanzi Pluton, Eastern Hebei. Acta Petrologica Sinica, 25(8): 1975-1988(in Chinese with English abstract). [35] Middlemost, E., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [36] Paton, C., Woodhead, J.D., Hellstrom, J.C., et al., 2010. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06. https://doi.org/10.1029/2009GC002618 [37] Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745 [38] Pei, F.P., Xu, W.L., Wang, Q.H., et al., 2004. Mesozoic Basalt and Mineral Chemistry of the Mantle-Derived Xenocrysts in Feixian, Western Shandong, China: Constraints on Nature of Mesozoic Lithospheric Mantle. Geological Journal of China Universities, 10(1): 88-97(in Chinese with English abstract). [39] Polat, A., Hofmann, A.W., Rosing, M.T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3/4): 231-254. https://doi.org/10.1016/S0009-2541(01)00363-1 [40] Princivalle, F., De Min, A., Lenaz, D., et al., 2014. Ultramafic Xenoliths from Damaping (Hannuoba Region, NE China): Petrogenetic Implications from Crystal Chemistry of Pyroxenes, Olivine and Cr-Spinel and Trace Element Content of Clinopyroxene. Lithos, 188: 3-14. https://doi.org/10.1016/j.lithos.2013.10.013 [41] Quan, Y.K., Yang, D.B., Mu, M.S., et al., 2020. Tectonic Evolution of the Northeastern North China Craton: Constraints from Geochronology and Sr-Nd-Hf-O Isotopic Data from Late Triassic Intrusive Rocks on Liaodong Peninsula, NE China. Lithos, 362-363: 105489. https://doi.org/10.1016/j.lithos.2020.105489 [42] Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b0-08-043751-6/03016-4 [43] Shao, J.A., Han, Q.J., Zhang, L.Q., et al., 1999. Two Kinds of Vertical Accretion of the Continental Crust: An Example of the Da Hinggan Mts. Acta Petrologica Sinica, 15(4): 600-606(in Chinese with English abstract). [44] Shao, J.A., Tian, W., Zhang, J.H., 2015. Early Permian Cumulates in Northern Margin of North China Craton and Their Tectonic Significances. Earth Science, 40(9): 1441-1457(in Chinese with English abstract). [45] Sisson, T.W., Grove, T.L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2): 143-166. https://doi.org/10.1007/BF00283225. [46] Sláma, J., Košler, J., Condon, D.J., et al., 2008. Plešovice Zircon: A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1): 1-35. http://doi.org/10.1016/j.chemgeo.2007.11.005 [47] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [48] Sun, J.F., Yang, J.H., 2009. Early Cretaceous A-Type Granites in the Eastern North China Block with Relation to Destruction of the Craton. Earth Science, 34(1): 137-147(in Chinese with English abstract). [49] Sun, J.F., Yang, J.H., 2013. Mesozoic Magmatism Related to Decratonization of the North China Craton. Acta Petrologica et Mineralogica, 32(5): 577-592(in Chinese with English abstract). [50] Tang, Y.J., Ying, J.F., Zhao, Y.P., et al., 2021. Nature and Secular Evolution of the Lithospheric Mantle beneath the North China Craton. Science China Earth Sciences. https://doi.org/10.1007/s11430-020-9737-4 (in Chinese) [51] Wang, W., Xu, W.L., Ji, W.Q., et al., 2006. Late Mesozoic and Paleogene Basalts and Deep-Derived Xenocrysts in Eastern Liaoning Province, China: Constraints on Nature of Lithospheric Mantle. Geological Journal of China Universities, 12(1): 30-40(in Chinese with English abstract). [52] Weyer, S., Münker, C., Rehkämper, M., et al., 2002. Determination of Ultra-Low Nb, Ta, Zr and Hf Concentrations and the Chondritic Zr/Hf and Nb/Ta Ratios by Isotope Dilution Analyses with Multiple Collector ICP-MS. Chemical Geology, 187(3): 295-313. https://doi.org/10.1016/S0009-2541(02)00129-8 [53] Wu, F., Lin, J., Wilde, S., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119. https://doi.org/10.1016/j.epsl.2005.02.019 [54] Xu, W., Yang, D., Shan, G., et al., 2010. Geochemistry of Peridotite Xenoliths in Early Cretaceous High-Mg# Diorites from the Central Orogenic Block of the North China Craton: The Nature of Mesozoic Lithospheric Mantle and Constraints on Lithospheric Thinning. Chemical Geology, 270(1-4): 257-273. https://doi.org/10.1016/j.chemgeo.2009.12.006 [55] Xu, W.L., Wang, Q.H., Wang, D.Y., et al., 2004. Mesozoic Lithospheric Thinning Process and Mechanism in the Eastern North China Craton: Evidence from Mesozoic Igneous Rocks and Deep-Source Xenoliths. Earth Science Frontiers, 11(3): 9(in Chinese with English abstract). [56] Xu, Y.G., Li, H.Y., Pang, C.J., et al., 2009. On the Timing and Duration of the Destruction of the North China Craton. Science Bulletin, 54(19): 3379-3396. https://doi.org/10.1007/s11434-009-0346-5 [57] Yan, J., Chen, J.F., Xie, Z., et al., 2003. Slow-Source Xenoliths in Late Cretaceous Basalts in Eastern Shandong: New Evidence for Time Constraints on Lithospheric Thinning in Eastern China. Chinese Science Bulletin, 48(14): 1570-1574(in Chinese). doi: 10.1360/csb2003-48-14-1570 [58] Yan, Q.R., Wang, Z.Q., Yan, Z., et al., 2007. SHRIMP Analyses for Ophiolitic-Mafic Blocks in the Kangxian-Mianxian Section of the Mianxian-Lueyang Melange: Their Geological Implications. Geological Review, 53(6): 755-764(in Chinese with English abstract). [59] Yang, H.T., Yang, D.B., Mu, M.S., et al., 2019. Sr-Nd-Hf Isotopic Compositions of Lamprophyres in Western Shandong, China: Implications for the Nature of the Early Cretaceous Lithospheric Mantle beneath the Eastern North China Craton. Lithos, 336-337: 1-13. https://doi.org/10.1016/j.lithos.2019.03.030 [60] Yang, J.H., Sun, J.F., Chen, F., et al., 2007a. Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-Collisional Lithosphere Thinning of the Eastern North China Craton. Journal of Petrology, 48(10): 1973-1997. https://doi.org/10.1093/petrology/egm046 [61] Yang, J.H., Wu, F.Y., Wilde, S.A., et al., 2007b. Petrogenesis of Late Triassic Granitoids and Their Enclaves with Implications for Post-Collisional Lithospheric Thinning of the Liaodong Peninsula, North China Craton. Chemical Geology, 242(1-2): 155-175. https://doi.org/10.1016/j.chemgeo.2007.03.007 [62] Zhang, H.F., Min, S., Zhou, X.H., et al., 2002. Mesozoic Lithosphere Destruction beneath the North China Craton: Evidence from Major-, Trace-Element and Sr-Nd-Pb Isotope Studies of Fangcheng Basalts. Contributions to Mineralogy and Petrology, 144(2): 241-254. https://doi.org/10.1007/s00410-002-0395-0 [63] Zhang, H.F., Ying, J.F., Xu, P., et al., 2004. Mantle Olivine Xenoliths from Mesozoic Basalts in North China: Implications for Lithospheric Mantle Replacement Processes. Chinese Science Bulletin, 49(8): 784-789(in Chinese). doi: 10.1360/csb2004-49-8-784 [64] Zhang, S.H., Zhao, Y., Davis, G.A., et al., 2014. Temporal and Spatial Variations of Mesozoic Magmatism and Deformation in the North China Craton: Implications for Lithospheric Thinning and Decratonization. Earth-Science Reviews, 131: 49-87. https://doi.org/10.1016/j.earscirev.2013.12.004 [65] Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1/2): 55-88. https://doi.org/10.1016/S0301-9268(00)00076-0 [66] Zhao, B., Wang, D.H., Hou, K.J., et al., 2012. Isochronology Study on Sushui Complex in Zhongtiao Mountains and Its Geological Significance. Journal of Earch Sciences and Environment, 34(1): 1-8(in Chinese with English abstract). [67] Zhao, Z., Liang, S., Santosh, M., et al., 2020. Lithospheric Extension Associated with Slab Rollback: Insights from Early Cretaceous Magmatism in the Southern Segment of Tan-Lu Fault Zone, Central-Eastern China. Lithos, 362-363. https://doi.org/10.1016/j.lithos.2020.105487 [68] Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2015. Two Types of the Crust-Mantle Interaction in Continental Subduction Zones. Scientia Sinica (Terrae), 58(8): 1269-1283 (in Chinese). [69] Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4): 353-385(in Chinese). doi: 10.1007/s11430-017-9160-3 [70] Zheng, J.P., Lu, F.X., Griffin, W., et al., 2006. Lithospheric Thinning Accompanying Mantle Lateral Spreading, Erosion and Replacement beneath the Eastern Part of North China: Evidence from Peridotites. Earth Science Frontiers, 13(2): 76-85(in Chinese with English abstract). [71] Zheng, J.P., Dai, H.K., 2018. Mantle Replacement in Eastern North China Caused by Plate Subduction and Retracement in the Western Pacific, Resulting in Intracontinental Basin-Mountain Coupling. Science China Earth Sciences, 48: 436-456(in Chinese). [72] Zheng, T., Zhao, L., Zhu, R.X., 2009. New Evidence from Seismic Imaging for Subduction during Assembly of the North China Craton. Geology, 37(5): 395-398. https://doi.org/10.1130/g25600a.1 doi: 10.1130/G25600A.1 [73] Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Scientia Sinica (Terrae), 45(6): 711-735(in Chinese). doi: 10.1360/zd-2015-45-6-711 [74] Zheng, Y.F., Wu, F.Y., 2009. Growth and Reworking of Cratonic Lithosphere. Chinese Science Bulletin, 54(14): 1945-1949(in Chinese). doi: 10.1360/csb2009-54-14-1945 [75] Zheng, Y.F., Xu, Z., Zhao, Z.F., et al., 2018. Mesozoic Mafic Magmatism and Craton Thinning and Destruction in North China. Science China Earth Sciences, 48: 379-414(in Chinese). [76] 高山, Rudnick, R.L., Carlson, R.W., et al., 2003. 华北克拉通岩石圈地幔置换作用和壳幔生长耦合的Re-Os同位素证据. 地学前缘, 10(3): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303006.htm [77] 姜常义, 安三元, 1984. 论火成岩中钙质角闪石的化学组成特征及其岩石学意义. 矿物岩石, 4(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198403000.htm [78] 姜耀辉, 蒋少涌, 赵葵东, 等, 2005. 辽东半岛煌斑岩SHRIMP锆石U-Pb年龄及其对中国东部岩石圈减薄开始时间的制约. 科学通报, 50(19): 2161-2168. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200519016.htm [79] 刘玄, 范宏瑞, 邱正杰, 等, 2015. 中条山地区绛县群和中条群沉积时限: 夹层斜长角闪岩SIMS锆石U-Pb年代学证据. 岩石学报, 31(6): 1564-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201506006.htm [80] 马旭, 陈斌, 牛晓露, 2009. 冀东晚古生代东湾子岩体的岩石成因研究. 岩石学报, 25(8): 1975-1988. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908023.htm [81] 裴福萍, 许文良, 王清海, 等, 2004. 鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学: 对岩石圈地幔性质的制约. 高校地质学报, 10(1): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200401007.htm [82] 邵济安, 韩庆军, 张履桥, 等, 1999. 陆壳垂向增生的两种方式: 以大兴安岭为例. 岩石学报, 15(4): 600-606. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199904013.htm [83] 邵济安, 田伟, 张吉衡, 2015. 华北克拉通北缘早二叠世堆晶岩及其构造意义. 地球科学, 40(9): 1441-1457. doi: 10.3799/dqkx.2015.131 [84] 孙金凤, 杨进辉, 2009. 华北东部早白垩世A型花岗岩与克拉通破坏. 地球科学, 34(1): 137-147. doi: 10.3321/j.issn:1000-2383.2009.01.013 [85] 孙金凤, 杨进辉, 2013. 华北中生代岩浆作用与去克拉通化. 岩石矿物学杂志, 32(5): 577-592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201305003.htm [86] 汤艳杰, 英基丰, 赵月鹏, 等, 2021. 华北克拉通岩石圈地幔特征与演化过程. 中国科学: 地球科学, https://doi.org/10.1360/SSTe-2020-0303 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109006.htm [87] 王微, 许文良, 纪伟强, 等, 2006. 辽东中生代晚期和古近纪玄武岩及深源捕虏晶: 对岩石圈地幔性质的制约. 高校地质学报, 12(1): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200601005.htm [88] 许文良, 王清海, 王冬艳, 等, 2004. 华北克拉通东部中生代岩石圈减薄的过程与机制: 中生代火成岩和深源捕虏体证据. 地学前缘, 11(3): 9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403040.htm [89] 闫峻, 陈江峰, 谢智, 等, 2003. 鲁东晚白垩世玄武岩中的幔源捕虏体: 对中国东部岩石圈减薄时间制约的新证据. 科学通报, 48(14): 1570-1574. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200314017.htm [90] 闫全人, 王宗起, 闫臻, 等, 2007. 秦岭勉略构造混杂带康县: 勉县段蛇绿岩块-铁镁质岩块的SHRIMP年代及其意义. 地质论评, 53(6): 755-764. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200706010.htm [91] 张宏福, 英基丰, 徐平, 等, 2004. 华北中生代玄武岩中地幔橄榄石捕虏晶: 对岩石圈地幔置换过程的启示. 科学通报, 49(8): 784-789. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200408014.htm [92] 赵斌, 王登红, 侯可军, 等, 2012. 中条山涑水杂岩的同位素年代学研究及其地质意义. 地球科学与环境学报, 34(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201201003.htm [93] 赵子福, 戴立群, 郑永飞, 2015. 大陆俯冲带两类壳幔相互作用. 中国科学: 地球科学, 45(7): 900-915. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201507002.htm [94] 郑建平, 路凤香, Griffin, W.L., 等, 2006. 华北东部橄榄岩与岩石圈减薄中的地幔伸展和侵蚀置换作用. 地学前缘, 13(2): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602008.htm [95] 郑建平, 戴宏坤, 2018. 西太平洋板片俯冲与后撤引起华北东部地幔置换并导致陆内盆-山耦合. 中国科学: 地球科学, 48: 436-456. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201804004.htm [96] 郑永飞, 陈伊翔, 戴立群, 等, 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带. 中国科学: 地球科学, 45(6): 711-735. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201506001.htm [97] 郑永飞, 吴福元, 2009. 克拉通岩石圈的生长和再造. 科学通报, 54(14): 1945-1949. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914002.htm [98] 郑永飞, 徐峥, 赵子福, 等, 2018. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏. 中国科学: 地球科学, 48: 379-414. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201804002.htm -
刘洁 附表1~2.doc