• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    单井注抽试验测算地下水流速的数值分析

    李旭 苏世林 文章 许光泉

    李旭, 苏世林, 文章, 许光泉, 2022. 单井注抽试验测算地下水流速的数值分析. 地球科学, 47(2): 633-641. doi: 10.3799/dqkx.2021.102
    引用本文: 李旭, 苏世林, 文章, 许光泉, 2022. 单井注抽试验测算地下水流速的数值分析. 地球科学, 47(2): 633-641. doi: 10.3799/dqkx.2021.102
    Li Xu, Su Shilin, Wen Zhang, Xu Guangquan, 2022. Numerical Analysis of Estimating Groundwater Velocity through Single-Well Push-Pull Test. Earth Science, 47(2): 633-641. doi: 10.3799/dqkx.2021.102
    Citation: Li Xu, Su Shilin, Wen Zhang, Xu Guangquan, 2022. Numerical Analysis of Estimating Groundwater Velocity through Single-Well Push-Pull Test. Earth Science, 47(2): 633-641. doi: 10.3799/dqkx.2021.102

    单井注抽试验测算地下水流速的数值分析

    doi: 10.3799/dqkx.2021.102
    基金项目: 

    安徽高校自然科学研究重点项目 KJ2020A0316

    安徽理工大学引进人才基金 13200399

    详细信息
      作者简介:

      李旭(1990-), 男, 讲师, 主要从事地下水渗流及溶质运移数值模拟工作. ORCID: 0000-0002-7746-8598. E-mail: lixu@aust.edu.cn

      通讯作者:

      文章, ORCID: 0000-0001-9672-3219. E-mail: wenz@cug.edu.cn

    • 中图分类号: P641.2

    Numerical Analysis of Estimating Groundwater Velocity through Single-Well Push-Pull Test

    • 摘要: 为了分析注入阶段地下水流速及含水层弥散度对单井注抽试验解析模型测算地下水流速的影响机理,通过采用GMS(groundwater modeling system)软件建立了单井注抽试验数值模型,通过与Leap and Kaplan(1988)近似解析模型计算结果对比分析上述因素对解析模型计算结果的影响.研究结果表明:地下水流速越大或自由迁移阶段时间越长,近似解析模型计算的误差越大;注入阶段地下水流速的作用对溶质羽质心迁移的影响较小,故近似解析模型中考虑注入阶段质心位移会导致计算误差增大;含水层弥散度越大,解析模型计算的误差越大.总体而言,注入阶段地下水流速对近似解析模型计算结果影响较小,而弥散度有着显著的影响.

       

    • 图  1  单井注抽试验概念模型

      Fig.  1.  Conceptual model of single-well push-pull test

      图  2  网格剖分平面示意图

      Fig.  2.  Mesh generation in a plan view

      图  3  网格剖分三维示意图

      Fig.  3.  Mesh generation in 3D view

      图  4  数值解与Wang et al.(2018)的解析解对比图

      Fig.  4.  Comparison between the numerical solutions of this study and the analytical solutions of Wang et al. (2018)

      图  5  不同流速情况下的SWPP试验的穿透曲线

      a. 低流速情况;b. 高流速情况

      Fig.  5.  Breakthrough curves of SWPP tests for different groundwater flow

      图  6  SWPP试验计算地下水流速平面示意图

      据Paradis et al.(2018)修改

      Fig.  6.  The conceptual model of single-well push-pull test in a plan view

      图  7  相对误差随地下水流速变化图

      Fig.  7.  Relative errors curves for different groundwater flow velocities

      图  8  不同自由迁移时间情况下的SWPP试验的穿透曲线

      Fig.  8.  Breakthrough curves of SWPP tests for different rest times

      图  9  相对误差随不同自由迁移阶段时间变化图

      Fig.  9.  Relative errors curves for different rest times

      图  10  两种模型对于不同地下水流速条件下的相对误差$ {E}_{va} $变化曲线

      Fig.  10.  Variation curve of relative error $ {E}_{va} $ of the two models under different groundwater velocity conditions

      图  11  不同弥散度情况下的SWPP试验的穿透曲线

      Fig.  11.  Breakthrough curves of SWPP tests for different longitudinal dispersivities

      图  12  不同弥散度条件下相对误差的变化图

      Fig.  12.  Relative errors curves for different longitudinal dispersivities

      表  1  模型中默认参数取值

      Table  1.   Default parameter values used in the model

      参数 符号
      含水层宽度(m) 2W 40
      含水层长度(m) 2L 40
      含水层厚度(m) M 10
      储水系数 Ss 10-6
      含水层有效孔隙度 θ 0.3
      含水层的渗透系数(m/d) K 8
      边界S1的水头(m) H1 21.33
      边界S2的水头(m) H2 20
      纵向弥散度(m) αL 0.05
      注入与抽取的流量(m3/d) Q 15,30
      注入阶段时间(h) tinj 2
      自由迁移时间(h) tdrift 36
      抽水阶段时间(h) tpump 36
      下载: 导出CSV

      表  2  计算的地下水流速

      Table  2.   Calculated groundwater velocities

      tdrift(h) ta(h) va(m/s) vx(m/s) Eva
      36 13.2 5.28×10-6 1.03×10-5 0.49
      36 11.2 5.07×10-6 9.33×10-6 0.46
      36 9.2 4.80×10-6 8.33×10-6 0.42
      36 7.1 4.42×10-6 7.33×10-6 0.40
      36 3.3 3.31×10-6 5.00×10-6 0.34
      36 2.3 2.83×10-6 4.00×10-6 0.29
      36 1.5 2.34×10-6 3.00×10-6 0.22
      36 1.1 2.02×10-6 2.00×10-6 0.01
      下载: 导出CSV
    • [1] Chen, K.W., Zhan, H.B., Yang, Q., 2017. Fractional Models Simulating Non-Fickian Behavior in Four-Stage Single-Well Push-Pull Tests. Water Resources Research, 53(11): 9528-9545. https://doi.org/10.1002/2017WR021411
      [2] Fan, C.H., Gao, Y.L., Fan, Q., 2017. Regression Analysis of Flow Velocity and Initial Concentration Aboutrepair Lead Contaminated Groundwater with Permeable Reactive Barrier. Journal of Shaanxi University of Science & Technology, (2): 23-27, 55 (in Chinese with English abstract).
      [3] Fernandez-Garcia, D., Illangasekare, T.H., Rajaram, H., 2004. Conservative and Sorptive Forced-Gradient and Uniform Flow Tracer Tests in a Three-Dimensional Laboratory Test Aquifer. Water Resources Research, 40(10): 2709-2710. https://doi.org/10.1029/2004WR003112
      [4] Gu, H.C., Wang, Q.R., Zhan, H.B., 2020. An Improved Approach in Modeling Injection-Withdraw Test of the Partially Penetrating Well. Earth Science, 43(2): 685-692(in Chinese with English abstract).
      [5] Haggerty, R., Fleming, S.W., Meigs, L.C., et al., 2001. Tracer Tests in a Fractured Dolomite: 2. Analysis of mass Transfer in Single-Well Injection-Withdrawal Tests. Water Resources Research, 37(5): 1129-1142. https://doi.org/10.1029/2000WR900334
      [6] Hall, S. H, Luttrell, S.P., Cronin, W.E., 1991. A Method for Estimating Effective Porosity and Ground-Water Velocity. Ground Water, 29(2): 171-174. https://doi.org/10.1016/0148-9062(91)91266-T
      [7] Jinag, L.Q., Sun, R.L., Liang, X., 2021. Predicting Groundwater Flow and Transport in the Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150-4160(in Chinese with English abstract).
      [8] Jutta, K., Oliver, P., Schroth, M.H., et al., 2002. Sulfate-Reducing Bacterial Community Response to Carbon Source Amendments in Contaminated Aquifer Microcosms. Fems Microbiology Ecology, (1): 109-118. https://doi.org/10.1016/S0168-6496(02)00307-0
      [9] Leap, D.I., Kaplan, P.G., 1988. A Single-Well Tracing Method for Estimating Regional Advective Velocity in a Confined Aquifer: Theory and Preliminary Laboratory Verification. Water Resources Research, 24(24): 993-998. https://doi.org/10.1029/WR024i007p00993
      [10] Li, X., Wen, Z., Zhan, H.B., et al., 2019. Skin Effect on Single-Well Push-Pull Tests With the Presence of Regional Groundwater Flow. Journal of Hydrology, 577(12): 123931. https://doi.org/10.1016/j.jhydrol.2019.123931
      [11] Matsumoto, S., Machida, I., Hebig, K., et al., 2020. Estimation of Very Slow Groundwater Movement Using a Single-Well Push-Pull Test. Journal of Hydrology, 1: 125676. https://doi.org/10.1016/j.jhydrol.2020.125676
      [12] Panteleit, B., Kessels, W., Binot, F., 2006. Mud Tracer Test during Soft Rock Drilling. Water Resources Research, 42(11): 150-152. https://doi.org/10.1029/2005WR004487
      [13] Paradis, C.J., Mckay, L.D., Perfect, E., et al., 2019. Correction: Push-Pull Tests for Estimating Effective Porosity: Expanded Analytical Solution and In-Situ Application. Hydrogeology Journal, 27, 437-439. https://doi.org/10.1007/s10040-018-1879-y
      [14] Paradis, C.J., Mckay, L.D., Perfect, E., et al., 2018. Push-Pull Tests for Estimating Effective Porosity: Expanded Analytical Solution and In-Situ Application. Hydrogeology Journal, 26: 381-393. https://doi.org/10.1007/s10040-017-1672-3
      [15] Schroth, M.H., Istok, J.D., 2010. Models to Determine First-Order Rate Coefficients from Single-Well Push-Pull Tests. Ground Water, 44(2): 275-283. https://doi.org/10.1111/j.1745-6584.2005.00107.x
      [16] Wang, Q.R., Shi, W.G., Zhan, H.B., et al., 2018. Models of Single-Well Push-Pull Test with Mixing Effect in the Wellbore. Water Resources Research, 54: 10155-10171. https://doi.org/10.1029/2018WR023317
      [17] Wang, Q.R., Zhan, H.B., 2019. Reactive Transport with Wellbore Storages in a Single-Well Push-Pull Test. Hydrology and Earth System Sciences, 23(4): 2207-2223. https://doi.org/10.5194/hess-2018-181
      [18] Wang, Q.R., Zhan, H.B., Wang, Y., 2017. Single-Well Push-Pull Test in Transient Forchheimer Flow Field. Journal of Hydrology, 549: 125-132. https://doi.org/10.1016/j.jhydrol.2017.03.066
      [19] Ye, H.J., Zhang, R.X., Wu, P., et al., 2019. Characteristics and Driving Factor of Hydrochemical Evolution in Karst Water in the Critical Zone of Liupanshui Mining Area. Earth Science, 44(9): 2887-2898(in Chinese with English abstract).
      [20] Zhang, R.Q., 2003. Characteristics of Groundwater Resources and Their Reasonable Development. Hydrogeology & Engineering Geology, (6): 1-5(in Chinese with English abstract).
      [21] Zhang, Y., Xu, B., Liu, X.H., 2018. Groundwater Contamination and Human Health Risk Assessment in Jinghui Irrigation District, Shaanxi Province. Journal of Jilin University(Earth Science Edition), 48(5): 167-180(in Chinese with English abstract).
      [22] Zheng, C.Q., Zhi, G.Q., Li, T.F., et al., 2018. Analysis of Current Situation and Countermeasures of Groundwater Pollution in China. Environmental Science Survey, 37(S1): 49-52(in Chinese with English abstract).
      [23] Zheng, F., Gao, Y.W., Shi, X.Q., et al., 2015. Influence of Groundwater Flow Velocity and Geological Heterogeneity on DNAPL Migration in Saturated Porous Media. Journal of Hydraulic Engineering, (8): 925-933(in Chinese with English abstract).
      [24] Zhu. Q., Wen, Z., Zhan, H.B., et al., 2020. Optimization Strategies for in Situ Groundwater Remediation by a Vertical Circulation Well Based on Particle-Tracking and Node-Dependent Finite Difference Methods. Water Resources Research, 56(11): 1-12.
      [25] 顾昊琛, 王全荣, 詹红兵, 2020. 非完整井下单井注抽试验数值模拟方法改进. 地球科学, 43(2): 685-692. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002026.htm
      [26] 范春辉, 高雅琳, 樊琼, 2017. 流速和初始浓度对可渗透反应墙修复模拟铅污染地下水的回归分析研究. 陕西科技大学学报, (2): 23-27, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-XBQG201702005.htm
      [27] 蒋立群, 孙蓉琳, 梁杏, 2021. 含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响. 地球科学, 46(11): 4150-4160. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111027.htm
      [28] 张人权, 2003. 地下水资源特性及其合理开发利用. 水文地质工程地质, (6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200306001.htm
      [29] 张艳, 徐斌, 刘秀花, 2018. 陕西省泾惠渠灌区地下水污染与人体健康风险评价. 吉林大学学报(地球科学版), 48(5): 167-180. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201805037.htm
      [30] 叶慧君, 张瑞雪, 吴攀, 等, 2019. 六盘水矿区关键带岩溶水水化学演化特征及驱动因子. 地球科学, 44(9): 2887-2898. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909007.htm
      [31] 郑才庆, 支国强, 李田富, 等, 2018. 我国地下水污染现状及对策措施分析. 环境科学导刊, 37(S1): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK2018S1014.htm
      [32] 郑菲, 高燕维, 施小清, 等, 2015. 地下水流速及介质非均质性对重非水相流体运移的影响. 水利学报, (8): 925-933. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201508006.htm
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  482
    • HTML全文浏览量:  101
    • PDF下载量:  54
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-02
    • 刊出日期:  2022-02-25

    目录

      /

      返回文章
      返回