Source of Fluid and Genesis of Jinchangzi Gold Deposit in Weiningbeishan, Ningxia: Evidence from Fluid Inclusions and C-H-O Isotopes
-
摘要: 卫宁北山地区是宁夏境内最有望实现找矿突破的多金属矿成矿区之一,已发现众多Au、Ag、Cu、Pb、Zn、Fe、Co等矿点或矿化点.金场子金矿是该地区已发现的最大的金矿床,矿体主要赋存在前黑山组及中宁组内的层间断裂破碎带中,呈东西向带状分布,产状与地层近乎一致.区域上除少量闪长玢岩脉出露外,岩浆岩不发育.为了探讨金场子金矿成矿流体性质、来源和矿床成因,对研究区流体包裹体和C-H-O同位素进行了研究.金场子金矿床成矿热液期可划分为4个成矿阶段,从早到晚分别是绢云母-黄铁矿-石英阶段(Ⅰ)、黄铁矿-重晶石-石英阶段(Ⅱ)、多金属硫化物-碳酸盐-石英阶段(Ⅲ)和黄铁矿-碳酸盐阶段(Ⅳ),其中Ⅲ阶段为主成矿阶段.不同成矿阶段的流体包裹体有4种类型,分别是水溶液包裹体、纯CO2包裹体、CO2-H2O包裹体和含子晶多相包裹体.显微测温结果显示,成矿流体的完全均一温度介于171~396 ℃,主要集中于180~270 ℃,盐度介于1.30%~10.99% NaCl equiv,密度为0.24~0.78 g/cm3,为中低温、低盐度、低密度的CO2-H2O-NaCl体系,含有少量N2.热液期石英的δD值为-66.0‰~-32.0‰,δ18OV-SMOW值为+19.7‰~+22.6‰,指示成矿流体为变质流体.C同位素显示,晚阶段(Ⅳ)方解石和菱铁矿的δ13C介于-2.540‰~-0.736‰,表明成矿流体中的C具有混合来源的特点,奥陶系-石炭系陆源碎屑岩和碳酸盐岩的变质脱水作用形成的流体可能是金成矿流体的主要来源.成矿过程中流体发生了明显的不混溶现象,是造成金沉淀的重要因素.矿床成因类型属造山型金矿.Abstract: The Weiningbeishan area is the most promising polymetallic ore target area in Ningxia, where numerous Au, Ag, Cu, Pb, Zn, Fe, Co, and other ore occurrences have been found. The Jinchangzi gold deposit is the largest gold deposit found in the area, and the ore bodies are mainly hosted in the intra-layer fault fractures, with an east-west distribution and near-uniform with the bedding. Magmatism is weak in this district, with several diorite porphyrite having been identified in exposures adjacent to the gold veins. In order to explore the nature, source and genesis of the ore-forming fluid of the Jinchangzi gold deposit, the fluid inclusions and C-H-O isotopes in the study area were studied. The ore-forming hydrothermal period of the deposit can be divided into 4 metallogenic stages, from early to late, they are sericite-pyrite-quartz stage (Ⅰ), pyrite-barite-quartz stage (Ⅱ), polymetallic sulfide-carbonate-quartz stage (Ⅲ) and pyrite-carbonatite stage (Ⅳ), of which stage Ⅲ is the main metallogenic stage. There are four types of fluid inclusions in the mineralization stage, which are aqueous solution inclusions, pure CO2 inclusions, CO2-H2O inclusions and multiphase inclusions containing daughter crystals. The completely homogenous temperature of the ore-forming fluids is between 171-396℃, the salinity is between 1.30%-10.99% NaCl equiv, and the density is 0.24-0.78 g/cm3, which are CO2-H2O-NaCl systems with medium-low temperature, low salinity, low density, CO2 rich, and a small amount of N2. The δD value of hydrothermal quartz is -66.0‰ to -32.0‰, and the δ18OV-SMOW value is (+19.7‰)-(+22.6‰), indicating that the ore-forming fluid is metamorphic and the magmatism is not obvious. The C isotope shows that the δ13C of calcite and siderite in the late stage (stage Ⅳ) is between -2.540‰ and -0.736‰, indicating that C in the ore-forming fluid has the characteristics of mixed sources. The fluids formed by the metamorphic dehydration of Ordovician-Carboniferous terrigenous clastic rocks and carbonate rocks may be the main source of gold ore-forming fluids. During the ore-forming process, the fluids had an obvious immiscibility phenomenon, which was an important factor causing gold precipitation. The genetic type of the deposit is an orogenic gold deposit.
-
图 1 研究区大地构造位置(a)与区域地质及矿床(点)空间分布图(b)
1.第四系; 2.新近纪干河沟组; 3.新近纪红柳沟组; 4.古近纪清水营组; 5.白垩纪庙湖山组; 6.石炭纪土坡组; 7.石炭纪臭牛沟组; 8.石炭纪前黑山组; 9.泥盆纪中宁组; 10.奥陶纪狼嘴子组; 11.闪长玢岩脉; 12.断裂/断层及编号; 13.地质界线; 14.铁矿床(点); 15.铜矿床(点); 16.金矿床(点); 17.铅矿点; 18.银、铅矿点; 19.铜、铅、锌矿点; 20.铜、金矿点; 21.铜、银矿点; 22.钴矿化点; 23.铁、钴矿化点; 24.锰、钴矿化点; 25.背斜轴及编号; 26.向斜轴及编号; 27.地名; 28.金矿区位置; a据霍福臣等(1989), 郭佩等(2017)修编; b据海连富等(2020)修编
Fig. 1. Tectonic location (a), regional geology and spatial distribution (b) maps of mineral deposits (points) in the study area
图 3 25号勘探线剖面示意图
金矿化体圈定指标为0.5 g/t金品位; 金矿体为1.0 g/t金品位; 勘探线位置见图 2]
Fig. 3. Schematic diagram of the cross-section of the No.25 exploration line
图 10 研究区金矿床δD-δ18O关系图(底图据Taylor, 1974修改)
Fig. 10. δD-δ18O relationship diagram of gold deposits in the study area(modified from Taylor, 1974)
表 1 金场子金矿主要金矿体特征
Table 1. Characteristics of main gold ore bodies in the Jinchangzi gold dopsit
矿体号 矿体位置 矿体产状 矿体形态 矿体规模(m) 矿体厚度(m) 矿体品位(g/t) 倾向 倾角 长度 斜深 最小 最多 平均 最低 最高 平均 JKT1 25线 180° 82° 透镜体 80 43 - 2.55 2.55 0.64 1.05 0.69 JKT2 25~35线 190°~234° 64°~76° 似层状 280 137~194 0.52 14.98 4.54 0.50 107.90 4.89 JKT3 25~41线 137°~234° 60°~86° 似层状 280 20~225 0.40 9.15 2.73 0.50 29.40 5.91 JKT4 25~41线 173°~228° 67°~84° 似层状 280 10~230 0.67 5.35 2.64 0.58 45.40 4.65 JKT5 15~29线 185°~200° 64°~83° 脉状 300 43~146 0.71 2.43 1.59 0.50 6.39 2.04 JKT6 17~19线 200° 72° 脉状 160 71~152 0.71 5.62 1.85 0.50 14.73 3.47 JKT7 19线 182° 65° 脉状 80 42 - 1.84 1.84 - 0.52 0.52 JKT8 19线 179° 61° 似层状 80 43 1.08 3.23 2.33 0.85 6.64 2.79 JKT9 19线 182° 79° 层状 40 16 - 1.00 1.00 - 22.78 22.78 JKT10 25~27线 265° 19° 似层状 160 195~300 1.15 25.26 11.52 0.52 3.51 1.32 JKT11 75线 13° 85° 透镜体 40 20 1.61 1.61 0.53 6.06 2.13 JKT12 76线 95° 66° 透镜体 - - 1.00 1.00 - 2.57 2.57 JKT13 64线 40° 79° 脉状 - - 0.80 0.80 - 0.95 0.95 JKT14 60线 345° 82° 脉状 45 150~155 - 1.97 1.97 - 6.21 6.21 JKT15 60线 345° 82° 脉状 50 235~240 - 1.22 1.22 - 1.02 1.02 JKT16 39线 165° 60° 脉状 - - - 1.00 1.00 - 0.59 0.59 表 2 金场子金矿不同成矿阶段流体包裹体测温结果
Table 2. Temperature measurement results of fluid inclusions in different metallogenic stages of Jinchangzi gold deposit
成矿
阶段岩石类型 包裹体
类型Tm, ice(℃) Tm, $ {}_{\mathrm{C}{\mathrm{O}}_{2}} $(℃) Tm, clath(℃) Th, $ {}_{\mathrm{C}{\mathrm{O}}_{2}} $(℃) Th, total(℃) 盐度
(%NaCl)密度
(g/cm3)Ⅰ~Ⅱ 石英脉 Ⅰ型 -2.2~-7.4 - - - 171~396 3.69~10.99 0.46~0.57 Ⅲ 多金属硫化物
石英脉Ⅲ型 - -61.5~-56.7 7.0~9.4 24.8~29.8 187~350 1.30~5.30 0.24~0.78 注: Tm, $ {}_{\mathrm{C}{\mathrm{O}}_{2}} $为固相CO2的初熔温度; Th, $ {}_{\mathrm{C}{\mathrm{O}}_{2}} $为CO2的部分均一温度; Th, total为完全均一温度; Tm, ice为冰点温度; Tm, clath为CO2-H2O笼形化合物消失温度. 表 3 金场子金矿床C-O同位素组成(‰)
Table 3. C-O isotopic composition of Jinchangzi gold deposit
样品号 测试矿物 δ18O矿物 δ13C J-3-2 碳酸盐 20.90 -1.033 J-3-4 碳酸盐 19.50 -0.736 JCZ-19-7 碳酸盐 21.70 -1.267 JCZ-19-20 碳酸盐 20.70 -1.077 JCZ-19-21 碳酸盐 23.20 -1.227 H-7 菱铁矿 15.87 -1.720 2501-23 菱铁矿 16.18 -2.540 2501-109 菱铁矿 18.42 -1.737 表 4 研究区金矿床H-O同位素组成(‰)
Table 4. H-O isotopic compositions of gold deposits in the study area
样品号 测试矿物 成矿阶段 δ18O矿物(‰) 温度(℃) δ18O$ {}_{\mathrm{H}} $$ {}_{{}_{2}} $$ {}_{\mathrm{O}} $(‰) δD(‰) 来源 JCZ-19-4 石英 Ⅰ~Ⅱ 20.7 259.8 11.2 -48.0 本文 J-3-4 石英 Ⅰ~Ⅱ 22.6 259.8 13.3 -66.0 J-3-2 石英 Ⅰ~Ⅱ 20.7 259.8 11.2 -48.0 E-1-4 石英 Ⅲ 20.1 240.2 10.7 -32.0 B6010-3 石英 Ⅲ 19.7 240.2 10.3 -59.0 2502-167-8 石英 Ⅲ 20.3 240.2 10.9 -61.0 2502-202 石英 Ⅲ 22.0 240.2 12.6 -66.0 JCZ-5 石英 - 19.17 261.6 10.69 -83.136 艾宁(2014) JCZ-6 石英 - 17.86 240.5 8.39 -81.090 JCZ-9 石英 - 19.02 299.9 12.07 -82.780 JCZ-10 石英 - 19.19 242.8 9.83 -86.071 JCZ-25-1 石英 - 19.65 282.8 12.05 -83.395 JCZ-25-4 石英 - 18.85 281.8 11.21 -82.818 注: δ18Ofluid由公式1 000×lnαquartz-water=3.38×106T2-3.40 ( Clayton et al., 1972 )计算而来.表 5 主要碳储库的δ13C组成
Table 5. δ13C compositions of major carbon storage
碳储库类型 δ13CPDB(‰, 平均值或范围) 文献 大气CO2 -8或-7~-11 Hoefs and Sywall, 1997 淡水CO2 -20~-9 Hoefs and Sywall, 1997 岩浆系统 -30~-3 Hoefs and Sywall, 1997 海相碳酸盐 +0.5 Hoefs and Sywall, 1997 地壳总碳 -7 Faure, 1986 地幔总碳 -7~-5 Hoefs and Sywall, 1997 -
[1] Ai, N., 2014. Studies on the Geochemical and Geological Characteristics of Weiningbeishan Jingchangzi Gold Deposit (Dissertation). Northwest University, Xi'an(in Chinese with English abstract). [2] Ai, N., Ren, Z.L., Li, W.H., et al., 2011. Metallogenic Epoch and Ore-Forming Types of Ore Deposits in Weiningbeishan Area, Ningxia. Mineral Deposits, 30(5): 941-948(in Chinese with English abstract) [3] Bowers, T.S., 1991. The Deposition of Gold and Other Metals: Pressure-Induced Fluid Immiscibility and Associated Stable Isotope Signatures. Geochimica et Cosmochimica Acta, 55(9): 2417-2434. https://doi.org/10.1016/0016-7037(91)90363-a [4] Bodnar, R.J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions. Geochimica et Cosmochimica Acta, 57(3): 683-684. https://doi.org/10.1016/0016-7037(93)90378-a [5] Chen, Y.J., Ni, P., Fan, H.R., et al., 2007. Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits. Acta Petrologica Sinica, 23(9): 2085-2108(in Chinese with English abstract). [6] Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972. Oxygen Isotope Exchange between Quartz and Water. Journal of Geophysical Research, 77(17): 3057-3067. https://doi.org/10.1029/jb077i017p03057 [7] Collins, P.L.F., 1979. Gas Hydrates in CO2-Bearing Fluid Inclusions and Use Freezing Data for Estimation of Salinity. Economic Geology, 74: 1435-1444. doi: 10.2113/gsecongeo.74.6.1435 [8] Coplen, T.B., Kendall, C., Hopple, J., 1983. Comparison of Stable Isotope Reference Samples. Nature, 302: 236-238. https://doi.org/10.1038/302236a0 [9] Craw, D., Teagle, D.A.H., Belocky, R., 1993. Fluid Immiscibility in Late-Alpine Gold-Bearing Veins, Eastern and Northwestern European Alps. Mineralium Deposita, 28(1): 28-36. https://doi.org/10.1007/bf00199007 [10] Elmer, F.L., White, R.W., Powell, R., 2006. Devolatilization of Metabasic Rocks during Greenschist-Amphibolite Facies Metamorphism. Journal of Metamorphic Geology, 24(6): 497-513. https://doi.org/10.1111/j.1525-1314.2006.00650.x [11] Evans, K.A., Powell, R., Holland, T.J.B., 2010. Internally Consistent Data for Sulphur-Bearing Phases and Application to the Construction of Pseudosections for Mafic Greenschist Facies Rocks in Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-CO2-O-S-H2O. Journal of Metamorphic Geology, 28(6): 667-687. https://doi.org/10.1111/j.1525-1314.2010.00890.x [12] Faure, G., 1986. Principles of Isotope Geology (Second Edition). John Wiley & Sons, New York. [13] Geological Survey Institute of Ningxia Hui Autonomous Region, 2017. Regional Geology of China. Geological Publishing House, Beijing (in Chinese). [14] Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., et al., 1988. Orogenic Au Deposits: A Proposed Classification in the Context of Their Crustal Distribution and Relation to Other Au Deposit Types. Ore Geology, 13(1-5): 7-27. https://doi.org/10.1016/s0169-1368(97)00012-7 [15] Guo, P., Liu, C.Y., Han, P., et al., 2017. Geochronology of Detrital Zircon from the Lower-Middle Jurassic Strata in the Southwestern Ordos Basin, China, and Its Geological Significance. Geotectonica et Metallogenia, 41(5): 892-907(in Chinese with English abstract). [16] Guo, W., Lin, X., Hu, S.H., 2020. Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications. Earth Science, 45(4): 1362-1374(in Chinese with English abstract). [17] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988. Freezing Point Depression of NaCl-KCl-H2O Solutions. Economic Geology, 83(1): 197-202. http://doi.org/10.2113/gsecongeo.83.1.197 [18] Hai, L.F., Liu, J.K., Li, H.F., et al., 2020. Geological Characteristics and Prospecting Directing of Weiningbeishan Polymetallic Deposit, Ningxia. Journal of Hunan University of Science & Technology (Natural Science Edition), 35(1): 30-39(in Chinese with English abstract). [19] Hoefs, J., Sywall, M., 1997. Lithium Isotope Composition of Quaternary and Tertiary Biogene Carbonates and a Global Lithium Isotope Balance. Geochimica et Cosmochimica Acta, 61(13): 2679-2690. https://doi.org/10.1016/s0016-7037(97)00101-4 [20] Hu, N.G., Yang, J.X., 1995. Geochemical Characteristics of the Helanshan Group Metamorphic Rocks. Acta Mineralogica Sinica, 15(1): 104-110(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199501016.htm [21] Hu, F.F., Fan, H.R., Shen, K., et al., 2005. Nature and Evolution of Ore-Forming Fluids in the Rushan Lode Gold Deposit, Jiaodong Peninsula of Eastern China. Acta Petrologica Sinica, 21(5): 1329-1338(in Chinese with English abstract). [22] Huo, F.C., Pan, X.S., You, G.L., et al., 1989. Introduction to Ningxia Geology. Science Press, Beijing(in Chinese). [23] Li, J., Hai, L.F., Mu, C.X., et al., 2018. Geological Characteristics and Prospecting Direction of the Zhaobishan Iron Deposit, Ningxia. Contributions to Geology and Mineral Resources Research, 33(2): 243-247(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_contributions-geology-mineral-resources-research_thesis/0201253334454.html [24] Li, J., Zhang, L.P., Song, M.C., et al., 2021. Formation Mechanism of Shuiwangzhuang Gold Deposit in Jiaodong Peninsula: Constraints from S-H-O Isotopes and Fluid Inclusions. Earth Science, 46(5): 1569-1584(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2451912X21000362 [25] Liao, H.R., 1989. The Basic Characteristics of the Regional Geology of the Hui Autonomous Region of Ningxia. Regional Geology of China, 8(4): 26-35(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD198904002.htm [26] Liu, B., Duan, G.X., 1987. The Density and Isochoric Formulae for NaCl-H2O Fluid Inclusions (Salinity ≤ 5 wt%) and Their Applications. Acta Mineralogica Sinica, 7(4): 345-352(in Chinese with English abstract). [27] Liu, Y., Li, T.D., Wang, Y.B., et al., 2010. Geological Characteristics and Zircon SHRIMP U-Pb Data of Jinchangzi Dioritic Porphyrite Dykes in Zhongwei City, Ningxia. Geology in China, 37(6): 1575-1583(in Chinese with English abstract). [28] Liu, Z.J., 2013. Metallogenic Characteristics of Weiningbeishan Au-Pb-Ag Polymetallic Deposit in Ningxia Province (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract). [29] Liu, J.K., Zhang, D.H., Wei, J.H., et al., 2016. Zircon U-Pb Age and Geochemical Characteristics of the Paleoproterozoic S-Type Granite in the Northern Part of Helanshan and Its Geological Significance. Journal of Central South University (Science and Technology), 47(1): 187-197(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZNGD201601026.htm [30] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid Inclusion. Geological Publishing House, Beijing(in Chinese) [31] Ma, X.J., Hai, L.F., Mu, C.X., et al., 2018. Study of the Tectono-Lithofacies Mineralization Regularities and Prospecting of the Molymetallic Deposit in Weiningbeishan. China Mining Magazine, 27(Suppl. 2): 91-95(in Chinese with English abstract). [32] Ma, W., Liu, Y.C., Yang, Z.S., et al., 2019. Characteristics of Ore-Forming Fluids of Lietinggang-Leqingla Pb-Zn-Fe-Cu-Mo Polymetallic Deposit in Tibetan: Evidence from Fluid Inclusions and Stable Isotope Compositions. Earth Science, 44(6): 1957-1973(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906015.htm [33] Mao, J.W., Xie, G.Q., Zhang, Z.H., et al., 2005. Mesozoic Large-Scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings. Acta Petrologica Sinica, 21(1): 169-188(in Chinese with English abstract). [34] Pan, G.T., Lu, S.N., Xiao, Q.H., et al., 2016. Division of Tectonic Stages and Tectonic Evolution in China. Earth Science Frontiers, 23(6): 1-23(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201606006.htm [35] Phillips, G.N., Powell, R., 2010. Formation of Gold Deposits: A Metamorphic Devolatilization Model. Journal of Metamorphic Geology, 28(6): 689-718. https://doi.org/10.1111/j.1525-1314.2010.00887.x [36] Powell, R., Will, T.M., Phillips, G.N., 1991. Metamorphism in Archaean Greenstone Belts: Calculated Fluid Compositions and Implications for Gold Mineralization. Journal of Metamorphic Geology, 9(2): 141-150. https://doi.org/10.1111/j.1525-1314.1991.tb00510.x [37] Qiu, Z.X., 1989. The Features of Microgranular Gold Grains in the Oxidation Zone of the Jinchangzi Au-Deposit, Ningxia. Geology and Prospecting, 25(8): 39-42(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT198908011.htm [38] Ridley, J.R., Diamond, L.W., 2000. Fluid Chemistry of Orogenic Lode Gold Deposits and Implications for Genetic Models. Reviews in Economic Geology, 13: 141-162. [39] Shepherd, T.J., Rankin, A.H., Alderton, D.H.M.A., 1985. A Practical Guide to Fluid Inclusion Studies. Mineralogical Magazine, 50(356): 352-353. https://doi.org/10.1180/minmag.1986.050.356.32 [40] Song, X.H., Yin, B.X., Yan, H., et al., 2010. The Relationship between the Aeromagnetic Weak Anomalies and the Polymetallic Ore Deposits (Ore Spots) in the Beishan Mountain, Weining. Geophysical and Geochemical Exploration, 34(3): 289-293(in Chinese with English abstract). [41] Taylor, H.P., 1974. The Application of Oxygen and Hydrogen Isotope Studies to Problem of Hydrothemal Alteration it and Ore Deposition. Economic Geology, 69(6): 843-883. https://doi.org/10.2113/gsecongeo.69.6.843. [42] Wang, M.F., 2015. Indication of Heavy Minerals Anomaly of Beishan Area, Weining, Ningxia. Resources & Industries, 17(2): 55-59(in Chinese with English abstract). [43] Wang, Q.F., Deng, J., Zhao, H.S., et al., 2019. Review on Orogenic Gold Deposits. Earth Science, 44(6): 2155-2186(in Chinese with English abstract). [44] Wu, W.Z., Meng, F., Wang, H., et al., 2013. Research on Material Sources of Cobalt Abnormality in the Weining Beishan of Ningxia. Journal of Taiyuan University of Technology, 44(4): 485-489(in Chinese with English abstract). [45] Xu, G.F., 1988. Source of Mineralized Material of Transmissive Hot Brine-Supergene Reformation Type Gold Deposit from Jinchangzi in Ningxia, China. Earth Science, 13(2): 147-153(in Chinese with English abstract). [46] Yin, B.X., Meng, F., Yang, Y., 2012. The Application of Geophysical and Geochemical Technology to the Prospecting for Polymetallic Deposits in Errenshan-Huangshipogou Area. Geophysical and Geochemical Exploration, 36(6): 898-901(in Chinese with English abstract). [47] Zhai, Y.S., Deng, J., Li, X.B., 1999. Regional Mineralization. Geological Publishing House, Beijing(in Chinese). [48] Zhang, D.H., 2017. Tectono-Magmatic Evolution and Ore Genesis of Gold Deposit in Northern Helanshan (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). [49] Zhong, J.X., Li, H., Li, P., et al., 2012. Geological Characteristics, Ore-Controlling Factors and Mineralization Law of Gold Ore in the North Mountain of Weining Area, Ningxia. Northwestern Geology, 45(3): 81-92(in Chinese with English abstract). [50] Zhong, J.X., Xu, G., Xiang, L.G., et al., 2018. Geological Characteristics and Metallogenetic Regularity of the Zhaobishan Iron Deposit in Beishan Area, Weining, Ningxia. Northwestern Geology, 51(1): 228-237(in Chinese with English abstract). [51] Zhu, D., Liu, T.Y., Dai, X.Q., 2015. Processing and Inversion of Gravity and Magnetic Data in Jinchangzi-Errenshan Rock in the North Mountain of Weining Area, Ningxia. Chinese Journal of Engineering Geophysics, 12(6): 766-771(in Chinese with English abstract). [52] 艾宁, 2014. 宁夏卫宁北山金场子金矿矿床地质与地球化学研究(博士学位论文). 西安: 西北大学. [53] 艾宁, 任战利, 李文厚, 等, 2011. 宁夏卫宁北山地区矿床类型及成矿时代. 矿床地质, 30(5): 941-948. doi: 10.3969/j.issn.0258-7106.2011.05.015 [54] 陈衍景, 倪培, 范宏瑞, 等, 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085-2108. doi: 10.3969/j.issn.1000-0569.2007.09.009 [55] 郭佩, 刘池洋, 韩鹏, 等, 2017. 鄂尔多斯盆地西南缘下-中侏罗统碎屑锆石U-Pb年代学及其地质意义. 大地构造与成矿学, 41(5): 892-907. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201705008.htm [56] 郭伟, 林贤, 胡圣虹, 2020. 单个流体包裹体LA-ICP-MS分析及应用进展. 地球科学, 45(4): 1362-1374. doi: 10.3799/dqkx.2019.199 [57] 海连富, 刘金科, 李海峰, 等, 2020. 宁夏卫宁北山多金属矿床地质特征与找矿方向. 湖南科技大学学报(自然科学版), 35(1): 30-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY202001005.htm [58] 胡能高, 杨家喜, 1995. 贺兰山群变质岩的地球化学特征. 矿物学报, 15(1): 104-110. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199501016.htm [59] 胡芳芳, 范宏瑞, 沈昆, 等, 2005. 胶东乳山脉状金矿床成矿流体性质与演化. 岩石学报, 21(5): 1329-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505001.htm [60] 霍福臣, 潘行适, 尤国林, 等, 1989. 宁夏地质概论. 北京: 科学出版社. [61] 李净, 海连富, 母彩霞, 等, 2018. 宁夏照壁山铁矿成矿地质特征与找矿方向. 地质找矿论丛, 33(2): 243-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201802010.htm [62] 李杰, 张丽鹏, 宋明春, 等, 2021. 胶东水旺庄金矿床成矿机制: 来自S-H-O同位素和流体包裹体的制约. 地球科学, 46(5): 1569-1584. doi: 10.3799/dqkx.2020.358 [63] 廖华瑞, 1989. 宁夏区域地质基本特征. 中国区域地质, 8(4): 26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD198904002.htm [64] 刘斌, 段光贤, 1987. NaCl-H2O溶液包裹体的密度式和等容式及其应用. 矿物学报, 7(4): 345-352. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198704010.htm [65] 刘勇, 李廷栋, 王彦斌, 等, 2010. 宁夏卫宁北山金场子闪长玢岩岩脉地质特征及SHRIMP锆石U-Pb年龄. 中国地质, 37(6): 1575-1583. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201006005.htm [66] 刘志坚, 2013. 宁夏卫宁北山金、铅、银多金属矿成矿地质特征(博士学位论文). 成都: 成都理工大学. [67] 刘金科, 张道涵, 魏俊浩, 等, 2016. 贺兰山北段古元古代S型花岗岩岩石地球化学、锆石U-Pb年代学及其地质意义. 中南大学学报(自然科学版), 47(1): 187-197. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201601026.htm [68] 卢焕章, 范宏瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社. [69] 马秀军, 海连富, 母彩霞, 等, 2018. 卫宁北山多金属矿构造岩相成矿规律与找矿研究. 中国矿业, 27(增刊2): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2018S2024.htm [70] 马旺, 刘英超, 杨竹森, 等, 2019. 西藏列廷冈-勒青拉铅锌铁铜钼矿床成矿流体特征: 来自流体包裹体及碳氢氧同位素的证据. 地球科学, 44(6): 1957-1973. doi: 10.3799/dqkx.2019.041 [71] 毛景文, 谢桂青, 张作衡, 等, 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm [72] 宁夏回族自治区地质调查院, 2017. 中国区域地质志·宁夏志. 北京: 地质出版社. [73] 潘桂棠, 陆松年, 肖庆辉, 等, 2016. 中国大地构造阶段划分和演化. 地学前缘, 23(6): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606006.htm [74] 邱朝霞, 1989. 宁夏金场子金矿床氧化带中微细金球特征. 地质与勘探, 25(8): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198908011.htm [75] 宋新华, 尹秉喜, 闫红, 等, 2010. 航磁资料在卫宁北山寻找多金属矿中的应用. 物探与化探, 34(3): 289-293. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201003006.htm [76] 王美芳, 2015. 宁夏卫宁北山地区自然重砂异常特征及其找矿指示意义. 资源与产业, 17(2): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIYU201502012.htm [77] 王庆飞, 邓军, 赵鹤森, 等, 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用. 地球科学, 44(6): 2155-2186. doi: 10.3799/dqkx.2019.105 [78] 吴文忠, 孟方, 王红, 等, 2013. 宁夏卫宁北山钴异常的物质来源研究. 太原理工大学学报, 44(4): 485-489. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201304018.htm [79] 徐国风, 1988. 论宁夏金场子渗流热卤水-表生改造型金矿床的矿源. 地球科学, 13(2): 147-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198802006.htm [80] 尹秉喜, 孟方, 杨勇, 2012. 物化探技术在二人山-黄石坡沟多金属矿勘查中的应用. 物探与化探, 36(6): 898-901. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201206003.htm [81] 翟裕生, 邓军, 李晓波, 1999. 区域成矿学. 北京: 地质出版社. [82] 张道涵, 2017. 宁夏贺兰山北段构造-岩浆演化与金矿床成因(博士学位论文). 武汉: 中国地质大学. [83] 仲佳鑫, 李欢, 李鹏, 等, 2012. 宁夏卫宁北山金场子金矿床地质特征与控矿因素分析. 西北地质, 45(3): 81-92. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201203019.htm [84] 仲佳鑫, 徐刚, 向连格, 等, 2018. 宁夏卫宁北山地区照壁山铁矿床地质特征及成矿规律探讨. 西北地质, 51(1): 228-237. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201801023.htm [85] 朱丹, 刘天佑, 代小强, 2015. 宁夏卫宁北山金场子-二人山岩体重磁资料处理解释. 工程地球物理学报, 12(6): 766-771. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201506011.htm