Two Epochs of Mo Mineralization in Cuihongshan Fe-Mo-Polymetallic Ore field, Heilongjiang Province
-
摘要:
黑龙江省翠宏山铁钼多金属矿田属于小兴安岭-张广才岭铁多金属成矿带,发育铁、铅、锌、钼、钨等多金属大规模成矿作用. 尤以钼矿化最具特色,出现矽卡岩-斑岩型钼钨矿化、斑岩型钼矿化和隐爆角砾岩型钼矿化等多种类型的钼矿化在单一矿田中并存的现象. 但三种钼矿化类型的矿化特征和时空关系等缺乏系统梳理,钼成矿事件尚未清晰厘定. 选取该矿田内翠宏山、霍吉河和宏铁山等含钼矿床,开展矿床地质特征解析,结合辉钼矿Re-Os定年,初步厘定翠宏山矿田存在晚三叠世矽卡岩-斑岩型和隐爆角砾岩型钼矿化以及早侏罗世斑岩型钼矿化两期钼成矿事件. 辉钼矿Re含量和成矿岩浆岩石学研究揭示翠宏山矿田中钼为幔源新生物质与古老地壳混源,相较于晚三叠世成矿期,早侏罗世成矿期加入了更多幔源新生物质. 综合矿化特征和成矿物质来源分析认为区内钼成矿与松嫩地块与佳木斯地块在晚三叠世-早侏罗世期间的碰撞拼合过程有关.
Abstract:Cuihongshan Fe-Mo-polymetallic ore field in Heilongjiang Province belongs to the Lesser Xing'an Range-Zhangguangcailing Fe-polymetallic metallogenic belt, and is characterized by the large-scale mineralization of Fe, Pb, Zn, Mo and W. Among them, Mo mineralization is the most noticeable, with three mineralization styles, including skarn-porphyry Mo-W, porphyry Mo-only, and cryptoexplosion breccias Mo, coexisting in a single ore field. However, the mineralization characteristics and spatio-temporal relationship of the three Mo mineralization types have not been systematically analyzed, and the Mo mineralization events have not been clearly defined. In this paper, the Cuihongshan, Huojihe and Hongtieshan Mo (polymetallic) deposits were selected for the geological characteristics analyses. Combining the geological characteristics with molybdenite Re-Os dating, two Mo mineralization events in Cuihongshan ore field were defined, including the Late Triassic skarn-porphyry Mo-Wand cryptoexplosion Mo mineralization and the Early Jurassic porphyry Mo-only mineralization. The Re content of molybdenite and petrogenesis of ore-forming magma reveal that Mo in Cuihongshan ore field were derived from a mixed source containing mantle-derived juvenile materials and ancient crustal components. And compared with the Late Triassic mineralization, more mantle-derived juvenile materials were involved during the Early Jurassic mineralization. Based on the mineralization characteristics and ore-forming material source analysis, the Mo mineralization is suggested to be related to the collision process between Songnen block and Jiamusi block during Late Triassic to Early Jurassic.
-
Key words:
- Cuihongshan /
- Fe-Mo-polymetallic ore field /
- Mo mineralization /
- Re-Os dating /
- Heilongjiang Province /
- mineral deposit
-
图 1 东北大地构造单元格架及研究区位置(a)和翠宏山矿田区域地质简图(b)
图a据Hu et al. (2014);图b据杨健等(2020)
Fig. 1. Tectonic framework of Northeast China and location of the study area (a) and geological map of the Cuihongshan ore field area (b)
图 2 翠宏山铁钼多金属矿床地质图(a)和54号勘探线剖面图(b)(据Hu et al.,2014)
Fig. 2. Sketch geological map (a) and No. 54 cross section (b) of the Cuihongshan Fe-Mo-polymetallic deposit (from Hu et al., 2014)
图 3 翠宏山铁钼多金属矿床矿化蚀变特征
a. 辉钼矿化花岗斑岩;b. 绿泥石化花岗斑岩;c. 花岗斑岩与透辉石矽卡岩接触带;d. 透辉石矽卡岩;e. 花岗斑岩穿插矽卡岩;f. 矽卡岩中浸染状磁铁矿和方解石团块;g. 块状磁铁矿石;h. 黄铜矿石中浸染状辉钼矿;i. 大理岩中浸染状辉钼矿;j. 花岗斑岩中浸染状白钨矿;k. 花岗斑岩中浸染状辉钼矿;l. 辉钼矿呈叶片状穿插黄铜矿. 矿物缩写:Mag. 磁铁矿;Ccp. 黄铜矿;Mol. 辉钼矿;Cal. 方解石;Phl. 金云母;Sch. 白钨矿
Fig. 3. Typical mineralization and alteration features of the Cuihongshan Fe-Mo-polymetallic deposit
图 4 霍吉河钼矿床地质简图(a)和西矿段7号勘探线剖面图(b)(据Hu et al.,2019)
Fig. 4. Geological map (a) and No. 7 cross section in the western block (b) of the Huojihe Mo deposit (from Hu et al., 2019)
图 5 霍吉河钼矿床矿化蚀变特征
a. 花岗闪长岩;b. 斑状花岗闪长岩;c. 斑状花岗闪长岩中辉钼矿网脉状;d. 二长花岗岩中辉钼矿网脉状;e. 镜下的脉状辉钼矿;f. 镜下的浸染状辉钼矿;g. 黄铁矿包裹磁黄铁矿和黄铜矿;h. 浸染状黄铁矿和黄铜矿;i. 钾化;j. 硅化;k. 青磐岩化;l. 绢云母化‒泥化. 矿物缩写:Py. 黄铁矿;Kfs. 钾长石;Mol. 辉钼矿;Ccp. 黄铜矿;Po. 磁黄铁矿;Qtz. 石英;Ep. 绿帘石;Chl. 绿泥石
Fig. 5. Typical mineralization and alteration features of the Huojihe Mo deposit
表 1 翠宏山矿田辉钼矿Re⁃Os年龄测试结果
Table 1. Re-Os isotopic data for molybdenite from the Cuihongshan ore field
矿区 样品编号 样重(g) Re (ng/g) 普Os (ng/g) 187Re (ng/g) 187Os (ng/g) 模式年龄(Ma) 数据来源 含量 2σ 含量 2σ 含量 2σ 含量 2σ 含量 2σ 霍吉河 HJH-21 0.006 37 57 491 398 0.001 6 0.055 0 36 134 250 110.00 0.70 182.4 2.5 Hu et al., 2019 HJH-22 0.006 54 45 262 370 0.576 1 0.023 0 28 448 233 86.40 0.56 181.9 2.6 HJH-23 0.006 63 19 515 131 0.118 1 0.037 0 12 266 82 37.10 0.22 181.4 2.4 HJH-24 0.025 58 45 338 663 0.809 0 0.020 0 28 496 417 85.20 0.62 179.2 3.4 TWH1-1 0.050 68 19 800 150 0.563 8 0.057 6 12 440 90 37.55 0.36 180.9 2.7 谭红艳等, 2013 TWH1-2 0.050 80 21 720 160 0.004 9 0.027 4 13 650 100 41.04 0.35 180.2 2.5 TWH1-4 0.050 99 17 330 140 0.052 1 0.021 1 10 890 90 33.30 0.30 183.3 2.7 TWH1-5 0.050 63 13 190 100 0.004 9 0.000 0 8 292 60 25.24 0.25 182.5 2.7 TWH1-3 0.030 89 20 090 160 0.089 6 0.018 1 12 630 100 37.89 0.30 179.8 2.5 090817-3 0.050 46 12 040 90 0.004 3 0.009 6 7 565 57 22.89 0.21 181.3 2.6 张琳琳等, 2014 090817-5 0.050 26 30 920 230 0.056 6 0.014 3 19 430 140 58.58 0.48 180.7 2.5 13HJH11 0.006 27 580 210 17 330 130 51.58 0.48 178.3 2.6 杜晓慧和张勇, 2015 13HJH13 0.030 18 910 140 11 880 90 35.44 0.28 178.7 2.4 13HJH20 0.030 17 920 140 11 260 90 33.27 0.27 177.1 2.5 13HJH22 0.030 36 500 280 22 940 180 67.72 0.54 176.9 2.4 13HJH25 0.031 31 050 230 19 510 150 57.70 0.46 177.2 2.4 平均值 0.032 27 166 225 0.207 4 0.026 17 073 141 51.30 0.40 180.1 2.6 翠宏山 CHS-10 0.100 52 789.3 7.0 0.001 0 0.004 6 496.1 4.4 1.639 0 0.016 0 198.0 3.1 Hu et al., 2014 CHS-12 0.100 63 1 055.0 9.0 0.000 8 0.002 7 663.2 5.5 2.236 0 0.023 0 202.1 3.1 CHS-13 0.100 38 773.2 7.1 0.433 4 0.508 9 485.9 4.5 1.623 0 0.023 0 200.1 3.7 CHS-4 0.100 48 72.1 0.2 0.002 1 0.000 2 45.3 0.13 0.155 4 0.000 7 205.4 2.3 陈贤等, 2017 CHS-5 0.019 91 581.0 13.4 0.005 0 0.314 3 365.2 8.40 1.253 2 0.013 6 205.6 5.5 CHS-6 0.097 23 42.8 0.9 0.002 5 0.024 9 26.9 0.54 0.091 8 0.000 7 204.6 4.7 CHS-7 0.202 34 39.4 0.9 0.000 9 0.002 1 24.7 0.59 0.083 4 0.001 0 202.0 5.7 CHS-8 0.152 15 36.1 0.1 0.002 0 0.000 1 22.7 0.07 0.077 6 0.000 3 205.2 2.3 CHS-9 0.197 14 130.4 1.6 0.000 9 0.001 0 82.0 0.99 0.279 4 0.002 5 204.3 3.5 CHS-10 0.102 19 188.3 4.1 0.001 1 0.004 4 118.3 2.60 0.401 4 0.003 6 203.3 5.1 CN3-1-2 0.050 31 614.3 7.8 0.004 2 0.014 2 386.1 4.9 1.302 0.030 202.1 5.6 郝宇杰等, 2013 CN3-1-1 0.300 32 1 074.0 15.0 0.002 0 0.000 6 674.8 9.4 2.264 0.023 201.1 3.8 CN3-1-2 0.302 03 599.7 7.5 0.006 0 0.000 9 376.9 4.7 1.272 0.015 202.2 3.9 CN3-1-3 0.191 44 1 549.0 15.0 0.000 3 0.001 5 973.7 9.4 3.234 0.030 199.0 3.1 CN3-1-4 0.301 25 763.3 10.1 0.000 2 0.001 1 479.7 6.3 1.633 0.017 203.9 3.8 CN3-1-5 0.300 42 1 290.0 15.0 0.001 1 0.000 4 810.9 9.7 2.742 0.023 202.6 3.4 CN3-1-6 0.300 26 1 043.0 16.0 0.000 2 0.000 9 655.4 10.3 2.201 0.022 201.2 4.1 翠中 ZK2032-6 0.200 31 1 118 9 0.002 7 0.002 0 702.6 5.4 2.374 0.018 202.5 2.9 杨健等, 2020 CZ-94 0.200 72 1 758 14 0.007 1 0.006 3 1 105 9 3.779 0.030 204.9 2.9 陈贤等, 2017 CZ-89C 0.093 19 259 3 0.001 8 0.004 0 163 2.1 0.545 0.006 200.9 3.8 CZ-90 0.061 73 2 402 17 0.001 8 0.013 8 1 510 11 5.175 0.045 205.4 2.9 CZ-93 0.022 62 1 962 17 0.001 7 0.020 3 1 233 10 4.254 0.041 206.7 3.1 CZ-119 0.012 62 1 117 10 0.002 4 0.013 2 702 6.5 2.358 0.039 201.3 4.2 平均值 0.152 62 837 9 0.020 9 0.041 0 526 5 1.781 0.018 202.8 3.8 宏铁山 HTS-5A 0.200 43 669.2 5.3 0.005 4 0.001 0 420.6 3.3 1.399 0.010 199.3 2.9 本次研究 -
[1] Audétat, A., 2010. Source and Evolution of Molybdenum in the Porphyry Mo (-Nb) Deposit at Cave Peak, Texas. Journal of Petrology, 51(8): 1739-1760. https://doi.org/10.1093/petrology/egq037 [2] Bao, Z. W., Wang, C. Y., Zhao, T. P., et al., 2014. Petrogenesis of the Mesozoic Granites and Mo Mineralization of the Luanchuan Ore Field in the East Qinling Mo Mineralization Belt, Central China. Ore Geology Reviews, 57: 132-153. https://doi.org/10.1016/j.oregeorev.2013.09.008 [3] Chen, X., Liu, J.J., Zhang, D.H., et al., 2017. Re-Os Dating of Molybdenites and S-Pb Isotopic Characteristics of the Cuihongshan Iron Polymetallic Deposit, Heilongjiang Province. Acta Petrologica Sinica, 33(2): 529-544 (in Chinese with English abstract). [4] Chen, Y.J., Li, N., 2009. Nature of Ore-Fluids of Intracontinental Intrusion-Related Hypothermal Deposits and Its Difference from Those in Island Arcs. Acta Petrologica Sinica, 25(10): 2477-2508 (in Chinese with English abstract). [5] Chen, Y.J., Zhang, C., Li, N., et al., 2012. Geology of the Mo Deposits in Northeast China. Journal of Jilin University (Earth Science Edition), 42(5): 1223-1268 (in Chinese with English abstract). [6] Chen, Y. J., Zhang, C., Wang, P., et al., 2017. The Mo Deposits of Northeast China: A Powerful Indicator of Tectonic Settings and Associated Evolutionary Trends. Ore Geology Reviews, 81: 602-640. https://doi.org/10.1016/j.oregeorev.2016.04.017 [7] Clark, K. F., 1972. Stockwork Molybdenum Deposits in the Western Cordillera of North America. Economic Geology, 67(6): 731-758. https://doi.org/10.2113/gsecongeo.67.6.731 [8] Deng, K., Li, Q. G., Chen, Y. J., et al., 2018. Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes of the Early Jurassic Granodiorite from the Sankuanggou Intrusion, Heilongjiang Province, Northeastern China: Petrogenesis and Geodynamic Implications. Lithos, 296-299: 113-128. https://doi.org/10.1016/j.lithos.2017.10.016 [9] Dong, Y., Ge, W. C., Yang, H., et al., 2017. Permian Tectonic Evolution of the Mudanjiang Ocean: Evidence from Zircon U-Pb-Hf Isotopes and Geochemistry of a N-S Trending Granitoid Belt in the Jiamusi Massif, NE China. Gondwana Research, 49: 147-163. https://doi.org/10.1016/j.gr.2017.05.017 [10] Du, A.D., He, H.L., Yin, N.W., et al., 1994. A Study on the Rhenium-Osmium Geochronometry of Molybdenites. Acta Geologica Sinica, 68(4): 339-347 (in Chinese with English abstract). [11] Du, X.H., Zhang, Y., 2015. Metallogenic Epoch and Geochemistry of Heilongjiang's Huojihe Molybdenum Deposit. Resources & Industries, 17(1): 48-55 (in Chinese with English abstract). [12] Du, A. D., Wu, S. Q., Sun, D. Z., et al., 2004. Preparation and Certification of Re-Os Dating Reference Materials: Molybdenites HLP and JDC. Geostandards and Geoanalytical Research, 28(1): 41-52. https://doi.org/10.1111/j.1751-908x.2004.tb01042.x [13] Duan, P. X., Liu, C., Mo, X. X., et al., 2018. Discriminating Characters of Ore-Forming Intrusions in the Super-Large Chalukou Porphyry Mo Deposit, NE China. Geoscience Frontiers, 9(5): 1417-1431. https://doi.org/10.1016/j.gsf.2018.04.003 [14] Feng, G.Y., Liu, S., Niu, X.L., et al., 2018. Geochronology, Geochemistry and Petrogenesis of Early- Middle Permian Mafic Intrusion in Zhangguangcai Range, China. Earth Science, 43(4): 1293-1310 (in Chinese with English abstract). [15] Ge, M. H., Zhang, J. J., Li, L., et al., 2017. Geochronology and Geochemistry of the Heilongjiang Complex and the Granitoids from the Lesser Xing'an-Zhangguangcai Range: Implications for the Late Paleozoic-Mesozoic Tectonics of Eastern NE China. Tectonophysics, 717: 565-584. https://doi.org/10.1016/j.tecto.2017.09.004 [16] Ge, M. H., Zhang, J. J., Liu, K., et al., 2016. Geochemistry and Geochronology of the Blueschist in the Heilongjiang Complex and Its Implications in the Late Paleozoic Tectonics of Eastern NE China. Lithos, 261: 232-249. https://doi.org/10.1016/j.lithos.2015.11.019 [17] Hao, Y. J., Ren, Y. S., Duan, M. X., et al., 2015. Metallogenic Events and Tectonic Setting of the Duobaoshan Ore Field in Heilongjiang Province, NE China. Journal of Asian Earth Sciences, 97: 442-458. https://doi.org/10.1016/j.jseaes.2014.08.007 [18] Hao, Y.J., Ren, Y.S., Zhao, H.L., et al., 2013. Re-Os Isotopic Dating of the Molybdenite from the Cuihongshan W-Mo Polymetallic Deposit in Heilongjiang Province and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 43(6): 1840-1850 (in Chinese with English abstract). [19] He, C., Li, S.Y., Gao, H.X., et al., 2010. Cuihongshan Skarn-Type Iron Polymetallic Mineralization Geologic Conditions of Heilongjiang Province. Jilin Geology, 29(3): 56-58 (in Chinese). [20] He, Y.S., Gao, F.H., Xiu, M., et al., 2019. Age, Provenance and Tectonic Setting of Fuxingtun Formation in Zhangguangcai Range. Earth Science, 44(10): 3223-3236 (in Chinese with English abstract). [21] Hou, Z.Q., Qu, X.M., Zhou, J.R., et al., 2001. Collision-Orogenic Processes of the Yidun Arc in the Sanjiang Region: Record of Granites. Acta Geologica Sinica, 75(4): 484-497 (in Chinese with English abstract). [22] Hu, X.L., 2015. Mineralization and Magmatism of the Porphyry Cu, Mo Deposits in the Northern Great Xing'an and Lesser Xing'an Ranges (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [23] Hu, X. L., Ding, Z. J., He, M. C., et al., 2014. Two Epochs of Magmatism and Metallogeny in the Cuihongshan Fe-Polymetallic Deposit, Heilongjiang Province, NE China: Constrains from U-Pb and Re-Os Geochronology and Lu-Hf Isotopes. Journal of Geochemical Exploration, 143: 116-126. https://doi.org/10.1016/j.gexplo.2014.03.027 [24] Hu, X. L., Gong, Y. J., Pi, D. H., et al., 2017. Jurassic Magmatism Related Pb-Zn-W-Mo Polymetallic Mineralization in the Central Nanling Range, South China: Geochronologic, Geochemical, and Isotopic Evidence from the Huangshaping Deposit. Ore Geology Reviews, 91: 877-895. https://doi.org/10.1016/j.oregeorev.2017.08.016 [25] Hu, X. L., Yao, S. Z., Tan, C. Y., et al., 2020. Early Paleozoic Geodynamic Evolution of the Eastern Central Asian Orogenic Belt: Insights from Granitoids in the Xing'an and Songnen Blocks. Geoscience Frontiers, 11(6): 1975-1992. https://doi.org/10.1016/j.gsf.2020.05.018 [26] Hu, X. L., Yao, S. Z., Zeng, G. P., et al., 2019. Multistage Magmatism Resulting in Large-Scale Mineralizaion: A Case from the Huojihe Porphyry Mo Deposit in NE China. Lithos, 326-327: 397-414. https://doi.org/10.1016/j.lithos.2018.12.036 [27] Li, C. Y., Zhang, H., Wang, F. Y., et al., 2012. The Formation of the Dabaoshan Porphyry Molybdenum Deposit Induced by Slab Rollback. Lithos, 150: 101-110. https://doi.org/10.1016/j.lithos.2012.04.001 [28] Li, R.C., Chen, H.Y., Li, G.H., et al., 2020. Geological Characteristics and Application of Short Wavelength Infra-Red Technology (SWIR) in the Fukeshan Porphyry Copper Deposit in the Great Xing'an Range Area. Earth Science, 45(5): 1517-1530 (in Chinese with English abstract). [29] Li, X.R., Yang, H.Z., Shao, J., 2011. Characteristics of the Magmatic Rocks and Mineralization Age in the Cuihongshan Pb-Zn Polymetallic Deposit, Heilongjiang Province. Geological Survey and Research, 34(2): 114-118, 138 (in Chinese with English abstract). [30] Luan, J. P., Wang, F., Xu, W. L., et al., 2017. Provenance, Age, and Tectonic Implications of Neoproterozoic Strata in the Jiamusi Massif: Evidence from U-Pb Ages and Hf Isotope Compositions of Detrital and Magmatic Zircons. Precambrian Research, 297: 19-32. https://doi.org/10.1016/j.precamres.2017.05.012 [31] Luan, J. P., Yu, J. J., Yu, J. L., et al., 2019. Early Neoproterozoic Magmatism and the Associated Metamorphism in the Songnen Massif, NE China: Petrogenesis and Tectonic Implications. Precambrian Research, 328: 250-268. https://doi.org/10.1016/j.precamres.2019.04.004 [32] Ludwig, K.R., 2004. Isoplot/Ex: A Geochronological Toolkit for Microsoft Excel, Version 3.00. Berkeley Geochronology Center, Berkeley. [33] Mao, J. W., Zhang, Z. C., Zhang, Z. H., et al., 1999. Re-Os Isotopic Dating of Molybdenites in the Xiaoliugou W (Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818. https://doi.org/10.1016/s0016-7037(99)00165-9 [34] Mao, J.W., Zhang, Z.H., Zhang, Z.C., et al., 1999. Re-Os Age Dating of Molybdenites in the Xiaoliugou Tungsten Deposit in the Northern Qilian Mountains and Its Significance. Geological Review, 45(4): 412-417 (in Chinese with English abstract). [35] Selby, D., Nesbitt, B. E., Muehlenbachs, K., et al., 2000. Hydrothermal Alteration and Fluid Chemistry of the Endako Porphyry Molybdenum Deposit, British Columbia. Economic Geology, 95(1): 183-202. https://doi.org/10.2113/gsecongeo.95.1.183 [36] Shao, J., Li, X.R., Yang, H.Z., 2011. Zircon SHRIMP U-Pb Dating of Granite in the Cuihongshan Polymetallic Deposit and Its Geological Implications. Acta Geoscientica Sinica, 32(2): 163-170 (in Chinese with English abstract). [37] Shao, J.A., Li, Y.F., Tang, K.D., 2013. Restoration of the Orogenic Processes of Zhangguangcai Range. Acta Petrologica Sinica, 29(9): 2959-2970 (in Chinese with English abstract). [38] Shen, J., He, M.C., Hu, X.L., et al., 2015. Characteristics of Ore-Forming Fluids and the Metallogenic Mechanism of the Daheishan Mo Deposit in the Great Xing'an Range, Heilongjiang Province. Geological Science and Technology Information, 34(3): 150-159 (in Chinese with English abstract). [39] Song, G., Qin, K., Li, G., et al., 2014. Scheelite Elemental and Isotopic Signatures: Implications for the Genesis of Skarn-Type W-Mo Deposits in the Chizhou Area, Anhui Province, Eastern China. American Mineralogist, 99(2-3): 303-317. https://doi.org/10.2138/am.2014.4431 [40] Soregaroli, A. E., 1975. Geology and Genesis of the Boss Mountain Molybdenum Deposit, British Columbia. Economic Geology, 70(1): 4-14. https://doi.org/10.2113/gsecongeo.70.1.4 [41] Tan, H.Y., Wang, D.D., Lü, J.C., et al., 2013. Petrogenesis and Mineralization Chronology Study on the Huojihe Molybdenum Deposit Xiao Hinggan Mountains and Its Geological Implication. Acta Petrologica et Mineralogica, 32(5): 733-750 (in Chinese with English abstract). [42] Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth: U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 328(1-2): 89-113. https://doi.org/10.1016/s0040-1951(00)00179-7 [43] Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41: 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 [44] Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/s0009-2541(02)00018-9 [45] Yang, J., Hu, X.L., Li, C.F., et al., 2020. Petrogenic and Metallogenic Geochronology, Geochemical Characteristics and Its Geological Implications of Cuizhong Fe Polymetallic Deposit, Heilongjiang Province. Earth Science, 45(5): 1593-1608 (in Chinese with English abstract). [46] Yin, B.C., Ran, Q.C., 1997. Metallogenic Evolution in Xiaohingganling-Zhangguangcailing Region, Heilongjiang Province. Mineral Deposits, 16(3): 44-51 (in Chinese with English abstract). [47] Zhang, H.R., Hou, Z.Q., 2015. Pattern and Process of Continent-Continent Collision Orogeny: A Case Study of the Tethys Collisional Orogen. Acta Geologica Sinica, 89(9): 1539-1559 (in Chinese with English abstract). [48] Zhang, L.L., Liu, C., Zhou, S., et al., 2014. Characteristics of Ore-Bearing Granites and Ore-Forming Age of the Huojihe Molybdenum Deposit in Lesser Xing'an Range. Acta Petrologica Sinica, 30(11): 3419-3431 (in Chinese with English abstract). [49] Zhu, Q.Q., Xie, G.Q., Han, Y.X., 2019. Characteristics of Tungsten Mineralization from the Tongshankou Skarn-Porphyry Cu (Mo) Deposit in Daye, Hubei Province, and Its Geological Implications. Earth Science, 44(2): 441-455 (in Chinese with English abstract). [50] 陈贤, 刘家军, 张德会, 等, 2017. 黑龙江翠宏山铁多金属矿床辉钼矿Re-Os定年及S-Pb同位素特征研究. 岩石学报, 33(2): 529-544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702014.htm [51] 陈衍景, 李诺, 2009. 大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异. 岩石学报, 25(10): 2477-2508. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910016.htm [52] 陈衍景, 张成, 李诺, 等, 2012. 中国东北钼矿床地质. 吉林大学学报(地球科学版), 42(5): 1223-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205002.htm [53] 杜安道, 何红蓼, 殷宁万, 等, 1994. 辉钼矿的铼‒锇同位素地质年龄测定方法研究. 地质学报, 68(4): 339-347. doi: 10.3321/j.issn:0001-5717.1994.04.005 [54] 杜晓慧, 张勇, 2015. 黑龙江霍吉河钼矿床成矿时代及岩石地球化学研究. 资源与产业, 17(1): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIYU201501010.htm [55] 冯光英, 刘燊, 牛晓露, 等, 2018. 张广才岭地块早‒中二叠世镁铁质侵入岩体的年代学、地球化学及岩石成因. 地球科学, 43(4): 1293-1310. doi: 10.3799/dqkx.2018.721 [56] 郝宇杰, 任云生, 赵华雷, 等, 2013. 黑龙江省翠宏山钨钼多金属矿床辉钼矿Re-Os同位素定年及其地质意义. 吉林大学学报(地球科学版), 43(6): 1840-1850. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306014.htm [57] 何财, 李少云, 高贺祥, 等, 2010. 黑龙江省翠宏山矽卡岩型铁多金属矿床的成矿地质条件. 吉林地质, 29(3): 56-58. doi: 10.3969/j.issn.1001-2427.2010.03.013 [58] 何雨思, 高福红, 修铭, 等, 2019. 张广才岭福兴屯组的形成时代、物源及构造背景. 地球科学, 44(10): 3223-3236. doi: 10.3799/dqkx.2019.145 [59] 侯增谦, 曲晓明, 周继荣, 等, 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录. 地质学报, 75(4): 484-497. doi: 10.3321/j.issn:0001-5717.2001.04.008 [60] 胡新露, 2015. 大兴安岭北段‒小兴安岭地区斑岩型铜、钼矿床成矿作用与岩浆活动(博士学位论文). 武汉: 中国地质大学. [61] 李如操, 陈华勇, 李光辉, 等, 2020. 大兴安岭地区富克山斑岩铜钼矿床地质特征与SWIR勘查应用. 地球科学, 45(5): 1517-1530. doi: 10.3799/dqkx.2019.192 [62] 李秀荣, 杨宏智, 邵军, 2011. 黑龙江翠宏山铅锌多金属矿床岩浆岩特征及成矿年龄. 地质调查与研究, 34(2): 114-118, 138. doi: 10.3969/j.issn.1672-4135.2011.02.004 [63] 毛景文, 张作衡, 张招崇, 等, 1999. 北祁连山小柳沟钨矿床中辉钼矿Re-Os年龄测定及其意义. 地质论评, 45(4): 412-417. doi: 10.3321/j.issn:0371-5736.1999.04.012 [64] 邵军, 李秀荣, 杨宏智, 2011. 黑龙江翠宏山铅锌多金属矿区花岗岩锆石SHRIMP U-Pb测年及其地质意义. 地球学报, 32(2): 163-170. doi: 10.3975/cagsb.2011.02.04 [65] 邵济安, 李永飞, 唐克东, 2013. 张广才岭造山过程的重构及其大地构造意义. 岩石学报, 29(9): 2959-2970. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309001.htm [66] 沈军, 何谋惷, 胡新露, 等, 2015. 黑龙江省大兴安岭地区大黑山钼矿床流体包裹体特征及成矿机制探讨. 地质科技情报, 34(3): 150-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503021.htm [67] 谭红艳, 汪道东, 吕骏超, 等, 2013. 小兴安岭霍吉河钼矿床成岩成矿年代学及其地质意义. 岩石矿物学杂志, 32(5): 733-750. doi: 10.3969/j.issn.1000-6524.2013.05.013 [68] 杨健, 胡新露, 李春芳, 等, 2020. 黑龙江省翠中铁钨多金属矿床成岩成矿年代学、地球化学特征及地质意义. 地球科学, 45(5): 1593-1608. doi: 10.3799/dqkx.2019.190 [69] 尹冰川, 冉清昌, 1997. 小兴安岭‒张广才岭地区区域成矿演化. 矿床地质, 16(3): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ703.004.htm [70] 张洪瑞, 侯增谦, 2015. 大陆碰撞造山样式与过程: 来自特提斯碰撞造山带的实例. 地质学报, 89(9): 1539-1559. doi: 10.3969/j.issn.0001-5717.2015.09.001 [71] 张琳琳, 刘翠, 周肃, 等, 2014. 小兴安岭霍吉河钼矿区含矿花岗岩类特征及成矿年龄. 岩石学报, 30(11): 3419-3431. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411024.htm [72] 朱乔乔, 谢桂青, 韩颖霄, 2019. 湖北大冶铜山口铜(钼)矿床中钨矿化特征及其地质意义. 地球科学, 44(2): 441-455. doi: 10.3799/dqkx.2018.288