• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    金属稳定同位素示踪地球增氧事件

    王振飞 黄康俊 路雅雯 罗瑾 鞠鹏程 蒙泽坤

    王振飞, 黄康俊, 路雅雯, 罗瑾, 鞠鹏程, 蒙泽坤, 2021. 金属稳定同位素示踪地球增氧事件. 地球科学, 46(12): 4427-4451. doi: 10.3799/dqkx.2021.088
    引用本文: 王振飞, 黄康俊, 路雅雯, 罗瑾, 鞠鹏程, 蒙泽坤, 2021. 金属稳定同位素示踪地球增氧事件. 地球科学, 46(12): 4427-4451. doi: 10.3799/dqkx.2021.088
    Wang Zhenfei, Huang Kangjun, Lu Yawen, Luo Jin, Ju Pengcheng, Meng Zekun, 2021. Tracing Earth's Oxygenation Events Using Metal Stable Isotopes. Earth Science, 46(12): 4427-4451. doi: 10.3799/dqkx.2021.088
    Citation: Wang Zhenfei, Huang Kangjun, Lu Yawen, Luo Jin, Ju Pengcheng, Meng Zekun, 2021. Tracing Earth's Oxygenation Events Using Metal Stable Isotopes. Earth Science, 46(12): 4427-4451. doi: 10.3799/dqkx.2021.088

    金属稳定同位素示踪地球增氧事件

    doi: 10.3799/dqkx.2021.088
    基金项目: 

    国家自然科学基金项目 41973008

    国家自然科学基金项目 41890845

    国家自然科学基金项目 41621003

    中国科学院“西部之光”交叉团队项目 E0290101

    详细信息
      作者简介:

      王振飞(1997-), 男, 硕士研究生, 研究方向为前寒武纪古环境演化.ORCID: 0000-0003-2979-8397.E-mail: wangzhenfei184@163.com

      通讯作者:

      黄康俊, E-mail: hkj@nwu.edu.cn

    • 中图分类号: P581

    Tracing Earth's Oxygenation Events Using Metal Stable Isotopes

    • 摘要: 早期贫氧地球如何演化至现今富氧地球是理解地球宜居性形成与演化的关键,但重建地质历史时期地球大气与海洋氧含量仍是地球科学领域的重大挑战.金属稳定同位素的高精度测试分析为示踪地球大气与海洋氧化历史提供了新的研究手段.以Mo、U、Tl、Cr四种氧化还原敏感金属稳定同位素体系为例,详细介绍了氧化还原敏感金属稳定同位素地球化学行为及分馏机理.在此基础上,系统回顾了金属稳定同位素在研究产氧光合作用的起源、大氧化事件(Great Oxidation Event,GOE)、中元古代大气和海洋氧化还原状态、新元古代氧化事件(NOE)等重大科学问题中的研究进展.金属稳定同位素在重建地球表层圈层氧化过程具有广阔的应用前景,对认识地球宜居性的演化历史以及探索其未来发展趋势具有深远意义.

       

    • 图  1  地质历史时期大气氧气浓度变化(a)与海洋氧化还原条件变化(b)及生物演化重大事件(c)

      修改自Shields-Zhou and Och(2011)Lyons et al.(2014)Poulton(2017)

      Fig.  1.  The evolution of atmospheric oxygen levels (a), marine redox states (b), as well as the major biological innovative events (c) during the geological history

      图  2  氧化还原梯度带与氧化还原敏感金属稳定同位素关系概念

      a.早成岩阶段普通电子受体深度分布图;b.早成岩阶段厌氧代谢产物深度分布图;c.氧化还原条件深度变化;d.在不同的氧化还原相带下氧化还原敏感金属稳定同位素响应区间;修改自Canfield and Thamdrup(2009)Kendall(2021)Owens(2019)

      Fig.  2.  Conceptual figure of the relationship between redox gradient zone and redox sensitive metal stable isotopes

      图  3  现代海洋系统中Mo、U、Tl和Cr同位素循环

      ΔYXYXYSW,其中Y代表氧化还原元素,X代表不同元素不同的汇;数据来源:Mo同位素(Barling et al., 2001Siebert et al., 2003Archer and Vance, 2008Wasylenki et al., 2008Nägler et al., 2011Poulson Brucker et al., 2012Scholz et al., 2018Ahmad et al., 2021);U同位素(Dunk et al., 2002Andersen et al., 2014, 2015, 2016, 2017Tissot et al., 2018Zhang et al., 2020);Tl同位素(Nielsen et al., 2005, 2006a, 2006b, 2017Peacock and Moon, 2012Owens et al., 2017);Cr同位素(Jeandel and Minster, 1987Reinhard et al., 2013Gueguen et al., 2016Paulukat et al., 2016Goring-Harford et al., 2018Wei et al., 2018b

      Fig.  3.  Global cycles of Mo, U, Tl and Cr isotopes in the modern oceans.

      图  4  地质历史时期沉积物Mo、U、Tl、Cr同位素组成演化图解

      CZ为新生代;地壳U同位素值与现代海水U同位素平均值接近;数据来源:Mo同位素(Barling et al., 2001Siebert et al., 2003, 2005, 2006Arnold et al., 2004Lehmann et al., 2007Wille et al., 2007Gordon et al., 2009Voegelin et al., 2009Duan et al., 2010Pearce et al., 2010Scheiderich et al., 2010Voegelin et al., 2010Dahl et al., 2011Kendall et al., 2011Neubert et al., 2011Zhou et al., 2011Dickson et al., 2012Herrmann et al., 2012Xu et al., 2012Zhou et al., 2012Asael et al., 2013, 2018Wille et al., 2013Planavsky et al., 2014aChen et al., 2015Eroglu et al., 2015Kendall et al., 2015, 2020Kurzweil et al., 2015a, 2015b, 2016Wen et al., 2015Cheng et al., 2016, 2017, 2018Romaniello et al., 2016Diamond et al., 2018;Ossa Ossa et al., 2018aPlanavsky et al., 2018Scholz et al., 2018Dong et al., 2019Ostrander et al., 2019bThoby et al., 2019Zhang et al., 2019cGilleaudeau et al., 2020Greaney et al., 2020Mänd et al., 2020Stockey et al., 2020Ye et al., 2020Tan et al., 2021);U同位素(Montoya-Pino et al., 2010Brennecka et al., 2011Asael et al., 2013Kendall et al., 2013, 2015Dahl et al., 2014Holmden et al., 2015Noordmann et al., 2015Wang et al., 2016, 2018Elrick et al., 2017Jost et al., 2017Lau et al., 2017Lu et al., 2017;;Song et al., 2017Yang et al., 2017Bartlett et al., 2018Phan et al., 2018Wei et al., 2018aWhite et al., 2018Zhang et al., 2018a, 2018b, 2018c, 2018d, 2019aDahl et al., 2019Gilleaudeau et al., 2019Tostevin et al., 2019Cole et al., 2020Mänd et al., 2020Wang et al., 2020);Cr同位素(Frei et al., 2009, 2011, 2013Crowe et al., 2013Planavsky et al., 2014bCole et al., 2016Gilleaudeau et al., 2016Rodler et al., 2016Babechuk et al., 2017;D’Arcy et al., 2017Canfield et al., 2018Gilleaudeau et al., 2018Huang et al., 2018Wei et al., 2018a, 2021bColwyn et al., 2019Toma et al., 2019);Tl同位素(Them et al., 2018Bowman et al., 2019Ostrander et al., 2019a, 2020Fan et al., 2020

      Fig.  4.  Mo, U, Tl and Cr isotopic compositions of sediments through geological time

      表  1  Mo、U、Tl、Cr同位素组成表示方式

      Table  1.   The expressions of Mo, U, Tl, Cr isotopes

      同位素体系 表示方式 标样 参考文献
      Mo ${{\rm{ \mathsf{ δ} }}^{98}}{\rm{Mo}}\left({\rm{‰}} \right){\rm{}} = \left({\frac{{{{({}_{\rm{}}^{98}{\rm{Mo}}/{}_{\rm{}}^{95}{\rm{Mo}})}_{{\rm{sample}}}}}}{{{{({}_{\rm{}}^{98}{\rm{Mo}}/{}_{\rm{}}^{95}{\rm{Mo}})}_{{\rm{SRM}}3134}}}} - 1} \right) \times 1{\rm{}}000 + 0.25$ NIST SRM-3134 Kendall et al.(2017)
      U ${{\rm{ \mathsf{ δ} }}^{238}}{\rm{U}}\left({\rm{‰}} \right){\rm{}} = \left({\frac{{{{({}_{\rm{}}^{238}{\rm{U}}/{}_{\rm{}}^{235}{\rm{U}})}_{{\rm{sample}}}}}}{{{{({}_{\rm{}}^{238}{\rm{U}}/{}_{\rm{}}^{235}{\rm{U}})}_{{\rm{CRM}}145}}}} - 1} \right) \times 1{\rm{}}000$ NIST CRM-145 Andersen et al.(2017)
      Tl ${\varepsilon ^{205}}{\rm{Tl}} = \left({\frac{{{{({}_{\rm{}}^{205}{\rm{Tl}}/{}_{\rm{}}^{203}{\rm{Tl}})}_{{\rm{sample}}}}}}{{{{({}_{\rm{}}^{205}{\rm{Tl}}/{}_{\rm{}}^{203}{\rm{Tl}})}_{{\rm{SRM}}997}}}} - 1} \right) \times 10{\rm{}}000$ NIST SRM-997 Nielsen et al.(2017)
      Cr ${{\rm{ \mathsf{ δ} }}^{53}}{\rm{Cr}}\left({\rm{‰}} \right){\rm{}} = \left({\frac{{{{({}_{\rm{}}^{53}{\rm{Cr}}/{}_{\rm{}}^{52}{\rm{Cr}})}_{{\rm{sample}}}}}}{{{{({}_{\rm{}}^{53}{\rm{Cr}}/{}_{\rm{}}^{52}{\rm{Cr}})}_{{\rm{SRM}}979}}}} - 1} \right) \times 1{\rm{}}000$ NIST SRM-979 Qin and Wang(2017)
      下载: 导出CSV
    • [1] Ahmad, Q., Wille, M., König, S., et al., 2021. The Molybdenum Isotope Subduction Recycling Conundrum: A Case Study from the Tongan Subduction Zone, Western Alps and Alpine Corsica. Chemical Geology, 576: 120231. https://doi.org/10.1016/j.chemgeo.2021.120231
      [2] Albut, G., Babechuk, M.G., Kleinhanns, I.C., et al., 2018. Modern rather than Mesoarchaean Oxidative Weathering Responsible for the Heavy Stable Cr Isotopic Signatures of the 2.95 Ga Old Ijzermijn Iron Formation (South Africa). Geochimica et Cosmochimica Acta, 228: 157-189. https://doi.org/10.1016/j.gca.2018.02.034
      [3] Algeo, T.J., Li, C., 2020. Redox Classification and Calibration of Redox Thresholds in Sedimentary Systems. Geochimica et Cosmochimica Acta, 287: 8-26. https://doi.org/10.1016/j.gca.2020.01.055
      [4] Allwood, A.C., Walter, M.R., Kamber, B.S., et al., 2006. Stromatolite Reef from the Early Archaean Era of Australia. Nature, 441: 714-718. https://doi.org/10.1038/nature04764
      [5] Anbar, A.D., Knoll, A.H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science, 297(5584): 1137-1142. https://doi.org/10.1126/science.1069651
      [6] Anbar, A.D., Rouxel, O., 2007. Metal Stable Isotopes in Paleoceanography. Annual Review of Earth and Planetary Sciences, 35(1): 717-746. https://doi.org/10.1146/annurev.earth.34.031405.125029
      [7] Anders, E., Grevesse, N., 1989. Abundances of the Elements: Meteoritic and Solar. Geochimica et Cosmochimica Acta, 53(1): 197-214. https://doi.org/10.1016/0016-7037(89)90286-x doi: 10.1016/0016-7037(89)90286-X
      [8] Andersen, M.B., Elliott, T., Freymuth, H., et al., 2015. The Terrestrial Uranium Isotope Cycle. Nature, 517: 356-359. https://doi.org/10.1038/nature14062
      [9] Andersen, M.B., Matthews, A., Vance, D., et al., 2018. A 10-Fold Decline in the Deep Eastern Mediterranean Thermohaline Overturning Circulation during the Last Interglacial Period. Earth and Planetary Science Letters, 503: 58-67. https://doi.org/10.1016/j.epsl.2018.09.013
      [10] Andersen, M.B., Romaniello, S., Vance, D., et al., 2014. A Modern Framework for the Interpretation of 238U/235U in Studies of Ancient Ocean Redox. Earth and Planetary Science Letters, 400: 184-194. https://doi.org/10.1016/j.epsl.2014.05.051
      [11] Andersen, M.B., Stirling, C.H., Weyer, S., 2017. Uranium Isotope Fractionation. Reviews in Mineralogy and Geochemistry, 82(1): 799-850. https://doi.org/10.2138/rmg.2017.82.19
      [12] Andersen, M.B., Vance, D., Morford, J.L., et al., 2016. Closing in on the Marine 238U/235U Budget. Chemical Geology, 420: 11-22. https://doi.org/10.1016/j.chemgeo.2015.10.041
      [13] Archer, C., Vance, D., 2008. The Isotopic Signature of the Global Riverine Molybdenum Flux and Anoxia in the Ancient Oceans. Nature Geoscience, 1(9): 597-600. https://doi.org/10.1038/ngeo282
      [14] Arnold, G.L., Anbar, A., Barling, J., et al., 2004. Molybdenum Isotope Evidence for Widespread Anoxia in Mid-Proterozoic Oceans. Science, 304(5667): 87-90. https://doi.org/10.1126/science.1091785
      [15] Asael, D., Rouxel, O., Poulton, S.W., et al., 2018. Molybdenum Record from Black Shales Indicates Oscillating Atmospheric Oxygen Levels in the Early Paleoproterozoic. American Journal of Science, 318(3): 275-299. https://doi.org/10.2475/03.2018.01
      [16] Asael, D., Tissot, F.L.H., Reinhard, C.T., et al., 2013. Coupled Molybdenum, Iron and Uranium Stable Isotopes as Oceanic Paleoredox Proxies during the Paleoproterozoic Shunga Event. Chemical Geology, 362: 193-210. https://doi.org/10.1016/j.chemgeo.2013.08.003
      [17] Babechuk, M.G., Kleinhanns, I.C., Schoenberg, R., 2017. Chromium Geochemistry of the ca. 1.85 Ga Flin Flon Paleosol. Geobiology, 15(1): 30-50. https://doi.org/10.1111/gbi.12203
      [18] Barling, J., Arnold, G.L., Anbar, A.D., 2001. Natural Mass-Dependent Variations in the Isotopic Composition of Molybdenum. Earth and Planetary Science Letters, 193(3-4): 447-457. https://doi.org/10.1016/s0012-821x(01)00514-3 doi: 10.1016/S0012-821X(01)00514-3
      [19] Bartlett, R., Elrick, M., Wheeley, J.R., et al., 2018. Abrupt Global-Ocean Anoxia during the Late Ordovician-Early Silurian Detected Using Uranium Isotopes of Marine Carbonates. Proceedings of the National Academy of Sciences, 115(23): 5896-5901. https://doi.org/10.1073/pnas.1802438115
      [20] Bekker, A., Holland, H.D., 2012. Oxygen Overshoot and Recovery during the Early Paleoproterozoic. Earth and Planetary Science Letters, 317-318: 295-304. https://doi.org/10.1016/j.epsl.2011.12.012
      [21] Bekker, A., Holland, H.D., Wang, P.L., et al., 2004. Dating the Rise of Atmospheric Oxygen. Nature, 427: 117-120. https://doi.org/10.1038/nature02260
      [22] Bowman, C.N., Young, S.A., Kaljo, D., et al., 2019. Linking the Progressive Expansion of Reducing Conditions to a Stepwise Mass Extinction Event in the Late Silurian Oceans. Geology, 47(10): 968-972. https://doi.org/10.1130/g46571.1 doi: 10.1130/G46571.1
      [23] Brennecka, G.A., Herrmann, A.D., Algeo, T.J., et al., 2011. Rapid Expansion of Oceanic Anoxia Immediately before the End-Permian Mass Extinction. Proceedings of the National Academy of Sciences of the United States of America, 108(43): 17631-17634. https://doi.org/10.1073/pnas.1106039108
      [24] Brocks, J.J., Jarrett, A.J.M., Sirantoine, E., et al., 2017. The Rise of Algae in Cryogenian Oceans and the Emergence of Animals. Nature, 548: 578-581. https://doi.org/10.1038/nature23457
      [25] Brown, S.T., Basu, A., Ding, X., et al., 2018. Uranium Isotope Fractionation by Abiotic Reductive Precipitation. Proceedings of the National Academy of Sciences, 115(35): 8688-8693. https://doi.org/10.1073/pnas.1805234115
      [26] Brüske, A., Martin, A.N., Rammensee, P., et al., 2020. The Onset of Oxidative Weathering Traced by Uranium Isotopes. Precambrian Research, 338: 105583. https://doi.org/10.1016/j.precamres.2019.105583
      [27] Canfield, D.E., Poulton, S.W., Knoll, A.H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry. Science, 321(5891): 949-952. https://doi.org/10.1126/science.1154499
      [28] Canfield, D.E., Thamdrup, B., 2009. Towards a Consistent Classification Scheme for Geochemical Environments, or, Why We Wish the Term 'Suboxic' would Go away. Geobiology, 7(4): 385-392. https://doi.org/10.1111/j.1472-4669.2009.00214.x
      [29] Canfield, D.E., Zhang, S.C., Frank, A.B., et al., 2018. Highly Fractionated Chromium Isotopes in Mesoproterozoic-Aged Shales and Atmospheric Oxygen. Nature Communications, 9: 2871. https://doi.org/10.1038/s41467-018-05263-9
      [30] Cao, M.C., Daines, S.J., Lenton, T.M., et al., 2020. Comparison of Ediacaran Platform and Slope δ238U Records in South China: Implications for Global-Ocean Oxygenation and the Origin of the Shuram Excursion. Geochimica et Cosmochimica Acta, 287: 111-124. https://doi.org/10.1016/j.gca.2020.04.035
      [31] Catling, D.C., Zahnle, K.J., McKay, C.P., 2001. Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth. Science, 293(5531): 839-843. https://doi.org/10.1126/science.1061976
      [32] Chen, X., Ling, H.F., Vance, D., et al., 2015. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 6: 7142. https://doi.org/10.1038/ncomms8142
      [33] Chen, X.M., Romaniello, S.J., Herrmann, A.D., et al., 2018. Diagenetic Effects on Uranium Isotope Fractionation in Carbonate Sediments from the Bahamas. Geochimica et Cosmochimica Acta, 237: 294-311. https://doi.org/10.1016/j.gca.2018.06.026
      [34] Cheng, M., Li, C., Chen, X., et al., 2018. Delayed Neoproterozoic Oceanic Oxygenation: Evidence from Mo Isotopes of the Cryogenian Datangpo Formation. Precambrian Research, 319: 187-197. https://doi.org/10.1016/j.precamres.2017.12.007
      [35] Cheng, M., Li, C., Zhou, L., et al., 2015. Mo Marine Geochemistry and Reconstruction of Ancient Ocean Redox States. Scientia Sinica(Terrae), 45(11): 1649-1660(in Chinese).
      [36] Cheng, M., Li, C., Zhou, L., et al., 2016. Marine Mo Biogeochemistry in the Context of Dynamically Euxinic Mid-Depth Waters: A Case Study of the Lower Cambrian Niutitang Shales, South China. Geochimica et Cosmochimica Acta, 183: 79-93. https://doi.org/10.1016/j.gca.2016.03.035
      [37] Cheng, M., Li, C., Zhou, L., et al., 2017. Transient Deep-Water Oxygenation in the Early Cambrian Nanhua Basin, South China. Geochimica et Cosmochimica Acta, 210: 42-58. https://doi.org/10.1016/j.gca.2017.04.032
      [38] Cole, D.B., Planavsky, N.J., Longley, M., et al., 2020. Uranium Isotope Fractionation in Non-Sulfidic Anoxic Settings and the Global Uranium Isotope Mass Balance. Global Biogeochemical Cycles, 34(8): e2020gb006649. https://doi.org/10.1029/2020gb006649
      [39] Cole, D.B., Reinhard, C.T., Wang, X.L., et al., 2016. A Shale-Hosted Cr Isotope Record of Low Atmospheric Oxygen during the Proterozoic. Geology, 44(7): 555-558. https://doi.org/10.1130/g37787.1 doi: 10.1130/G37787.1
      [40] Collier, R.W., 1985. Molybdenum in the Northeast Pacific Ocean. Limnology and Oceanography, 30(6): 1351-1354. https://doi.org/10.4319/lo.1985.30.6.1351
      [41] Colwyn, D.A., Sheldon, N.D., Maynard, J.B., et al., 2019. A Paleosol Record of the Evolution of Cr Redox Cycling and Evidence for an Increase in Atmospheric Oxygen during the Neoproterozoic. Geobiology, 17(6): 579-593. https://doi.org/10.1111/gbi.12360
      [42] Crowe, S.A., Døssing, L.N., Beukes, N.J., et al., 2013. Atmospheric Oxygenation Three Billion Years Ago. Nature, 501: 535-538. https://doi.org/10.1038/nature12426
      [43] D'Arcy, J., Gilleaudeau, G.J., Peralta, S., et al., 2017. Redox Fluctuations in the Early Ordovician Oceans: An Insight from Chromium Stable Isotopes. Chemical Geology, 448: 1-12. https://doi.org/10.1016/j.chemgeo.2016.10.012
      [44] Dahl, T.W., Boyle, R.A., Canfield, D.E., et al., 2014. Uranium Isotopes Distinguish Two Geochemically Distinct Stages during the Later Cambrian SPICE Event. Earth and Planetary Science Letters, 401: 313-326. https://doi.org/10.1016/j.epsl.2014.05.043
      [45] Dahl, T.W., Canfield, D.E., Rosing, M.T., et al., 2011. Molybdenum Evidence for Expansive Sulfidic Water Masses in ~750 Ma Oceans. Earth and Planetary Science Letters, 311(3-4): 264-274. https://doi.org/10.1016/j.epsl.2011.09.016
      [46] Dahl, T.W., Connelly, J.N., Li, D., et al., 2019. Atmosphere-Ocean Oxygen and Productivity Dynamics during Early Animal Radiations. Proceedings of the National Academy of Sciences of the United States of America, 116(39): 19352-19361. https://doi.org/10.1073/pnas.1901178116
      [47] Diamond, C.W., Planavsky, N.J., Wang, C., et al., 2018. What the ~1.4 Ga Xiamaling Formation can and cannot Tell Us about the Mid-Proterozoic Ocean. Geobiology, 16(3): 219-236. https://doi.org/10.1111/gbi.12282.
      [48] Dickson, A.J., Cohen, A.S., Coe, A.L., 2012. Seawater Oxygenation during the Paleocene-Eocene Thermal Maximum. Geology, 40(7): 639-642. https://doi.org/10.1130/g32977.1 doi: 10.1130/G32977.1
      [49] Dong, B.H., Long, X.P., Li, J., et al., 2019. Mo Isotopic Variations of a Cambrian Sedimentary Profile in the Huangling Area, South China: Evidence for Redox Environment Corresponding to the Cambrian Explosion. Gondwana Research, 69: 45-55. https://doi.org/10.1016/j.gr.2018.12.002
      [50] Duan, Y., Anbar, A.D., Arnold, G.L., et al., 2010. Molybdenum Isotope Evidence for Mild Environmental Oxygenation before the Great Oxidation Event. Geochimica et Cosmochimica Acta, 74(23): 6655-6668. https://doi.org/10.1016/j.gca.2010.08.035
      [51] Dunk, R.M., Mills, R.A., Jenkins, W.J., 2002. A Reevaluation of the Oceanic Uranium Budget for the Holocene. Chemical Geology, 190(1-4): 45-67. https://doi.org/10.1016/s0009-2541(02)00110-9 doi: 10.1016/S0009-2541(02)00110-9
      [52] Eary, L.E., Rai, D., 1987. Kinetics of Chromium (Ⅲ) Oxidation to Chromium (Ⅵ) by Reaction with Manganese Dioxide. Environmental Science & Technology, 21(12): 1187-1193. https://doi.org/10.1021/es00165a005
      [53] Elrick, M., Polyak, V., Algeo, T.J., et al., 2017. Global-Ocean Redox Variation during the Middle-Late Permian through Early Triassic Based on Uranium Isotope and Th/U Trends of Marine Carbonates. Geology, 45(2): 163-166. https://doi.org/10.1130/g38585.1 doi: 10.1130/G38585.1
      [54] Erickson, B.E., Helz, G.R., 2000. Molybdenum (Ⅵ) Speciation in Sulfidic Waters: Stability and Lability of Thiomolybdates. Geochimica et Cosmochimica Acta, 64(7): 1149-1158. https://doi.org/10.1016/s0016-7037(99)00423-8 doi: 10.1016/S0016-7037(99)00423-8
      [55] Eroglu, S., Schoenberg, R., Wille, M., et al., 2015. Geochemical Stratigraphy, Sedimentology, and Mo Isotope Systematics of the ca. 2.58-2.50 Ga-Old Transvaal Supergroup Carbonate Platform, South Africa. Precambrian Research, 266: 27-46. https://doi.org/10.1016/j.precamres.2015.04.014
      [56] Erwin, D.H., Laflamme, M., Tweedt, S.M., et al., 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334(6059): 1091-1097. https://doi.org/10.1126/science.1206375
      [57] Fan, H.F., Nielsen, S.G., Owens, J.D., et al., 2020. Constraining Oceanic Oxygenation during the Shuram Excursion in South China Using Thallium Isotopes. Geobiology, 18(3): 348-365. https://doi.org/10.1111/gbi.12379
      [58] Farquhar, J., Bao, H.M., Thiemens, M., 2000. Atmospheric Influence of Earth's Earliest Sulfur Cycle. Science, 289(5480): 756-758. https://doi.org/10.1126/science.289.5480.756
      [59] Fendorf, S.E., Fendorf, M., Sparks, D.L., et al., 1992. Inhibitory Mechanisms of Cr(Ⅲ) Oxidation by δ-MnO2. Journal of Colloid and Interface Science, 153(1): 37-54. https://doi.org/10.1016/0021-9797(92)90296-x doi: 10.1016/0021-9797(92)90296-X
      [60] Fike, D.A., Bradley, A.S., Rose, C.V., 2015. Rethinking the Ancient Sulfur Cycle. Annual Review of Earth and Planetary Sciences, 43(1): 593-622. https://doi.org/10.1146/annurev-earth-060313-054802
      [61] Fike, D.A., Grotzinger, J.P., 2008. A Paired Sulfate-Pyrite δ34S Approach to Understanding the Evolution of the Ediacaran-Cambrian Sulfur Cycle. Geochimica et Cosmochimica Acta, 72(11): 2636-2648. https://doi.org/10.1016/j.gca.2008.03.021
      [62] Fischer, W.W., Hemp, J., Johnson, J.E., 2016. Evolution of Oxygenic Photosynthesis. Annual Review of Earth and Planetary Sciences, 44(1): 647-683. https://doi.org/10.1146/annurev-earth-060313-054810
      [63] Frei, R., Gaucher, C., Døssing, L.N., et al., 2011. Chromium Isotopes in Carbonates: A Tracer for Climate Change and for Reconstructing the Redox State of Ancient Seawater. Earth and Planetary Science Letters, 312(1-2): 114-125. https://doi.org/10.1016/j.epsl.2011.10.009
      [64] Frei, R., Gaucher, C., Poulton, S.W., et al., 2009. Fluctuations in Precambrian Atmospheric Oxygenation Recorded by Chromium Isotopes. Nature, 461: 250-253. https://doi.org/10.1038/nature08266
      [65] Frei, R., Gaucher, C., Stolper, D., et al., 2013. Fluctuations in Late Neoproterozoic Atmospheric Oxidation-Cr Isotope Chemostratigraphy and Iron Speciation of the Late Ediacaran Lower Arroyo Del Soldado Group (Uruguay). Gondwana Research, 23(2): 797-811. https://doi.org/10.1016/j.gr.2012.06.004
      [66] Gilleaudeau, G.J., Frei, R., Kaufman, A.J., et al., 2016. Oxygenation of the Mid-Proterozoic Atmosphere: Clues from Chromium Isotopes in Carbonates. Geochemical Perspectives Letters, 178-187. https://doi.org/10.7185/geochemlet.1618
      [67] Gilleaudeau, G.J., Romaniello, S.J., Luo, G.M., et al., 2019. Uranium Isotope Evidence for Limited Euxinia in Mid-Proterozoic Oceans. Earth and Planetary Science Letters, 521: 150-157. https://doi.org/10.1016/j.epsl.2019.06.012
      [68] Gilleaudeau, G.J., Sahoo, S.K., Ostrander, C.M., et al., 2020. Molybdenum Isotope and Trace Metal Signals in an Iron-Rich Mesoproterozoic Ocean: A Snapshot from the Vindhyan Basin, India. Precambrian Research, 343: 105718. https://doi.org/10.1016/j.precamres.2020.105718
      [69] Gilleaudeau, G.J., Voegelin, A.R., Thibault, N., et al., 2018. Stable Isotope Records across the Cretaceous-Paleogene Transition, Stevns Klint, Denmark: New Insights from the Chromium Isotope System. Geochimica et Cosmochimica Acta, 235: 305-332. https://doi.org/10.1016/j.gca.2018.04.028
      [70] Goldberg, T., Archer, C., Vance, D., et al., 2012. Controls on Mo Isotope Fractionations in a Mn-Rich Anoxic Marine Sediment, Gullmar Fjord, Sweden. Chemical Geology, 296-297: 73-82. https://doi.org/10.1016/j.chemgeo.2011.12.020
      [71] Gordon, G.W., Lyons, T.W., Arnold, G.L., et al., 2009. When do Black Shales Tell Molybdenum Isotope Tales? Geology, 37(6): 535-538. https://doi.org/10.1130/g25186a.1 doi: 10.1130/G25186A.1
      [72] Goring-Harford, H.J., Klar, J.K., Pearce, C.R., et al., 2018. Behaviour of Chromium Isotopes in the Eastern Sub-Tropical Atlantic Oxygen Minimum Zone. Geochimica et Cosmochimica Acta, 236: 41-59. https://doi.org/10.1016/j.gca.2018.03.004
      [73] Greaney, A.T., Rudnick, R.L., Romaniello, S.J., et al., 2020. Molybdenum Isotope Fractionation in Glacial Diamictites Tracks the Onset of Oxidative Weathering of the Continental Crust. Earth and Planetary Science Letters, 534: 116083. https://doi.org/10.1016/j.epsl.2020.116083
      [74] Gueguen, B., Reinhard, C.T., Algeo, T.J., et al., 2016. The Chromium Isotope Composition of Reducing and Oxic Marine Sediments. Geochimica et Cosmochimica Acta, 184: 1-19. https://doi.org/10.1016/j.gca.2016.04.004
      [75] Herrmann, A.D., Kendall, B., Algeo, T.J., et al., 2012. Anomalous Molybdenum Isotope Trends in Upper Pennsylvanian Euxinic Facies: Significance for Use of δ98Mo as a Global Marine Redox Proxy. Chemical Geology, 324-325: 87-98. https://doi.org/10.1016/j.chemgeo.2012.05.013
      [76] Hinojosa, J.L., Stirling, C.H., Reid, M.R., et al., 2016. Trace Metal Cycling and 238U/235U in New Zealand's Fjords: Implications for Reconstructing Global Paleoredox Conditions in Organic-Rich Sediments. Geochimica et Cosmochimica Acta, 179: 89-109. https://doi.org/10.1016/j.gca.2016.02.006
      [77] Holland, H.D., 2006. The Oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 361(1470): 903-915. https://doi.org/10.1098/rstb.2006.1838
      [78] Holland, H.D., 2007. The Geologic History of Seawater. Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b0-08-043751-6/06122-3
      [79] Holmden, C., Amini, M., Francois, R., 2015. Uranium Isotope Fractionation in Saanich Inlet: A Modern Analog Study of a Paleoredox Tracer. Geochimica et Cosmochimica Acta, 153: 202-215. https://doi.org/10.1016/j.gca.2014.11.012
      [80] Hood, A.V.S., Planavsky, N.J., Wallace, M.W., et al., 2016. Integrated Geochemical-Petrographic Insights from Component-Selective δ238U of Cryogenian Marine Carbonates. Geology, 44(11): 935-938. https://doi.org/10.1130/g38533.1 doi: 10.1130/G38533.1
      [81] Hoshino, Y., Poshibaeva, A., Meredith, W., et al., 2017. Cryogenian Evolution of Stigmasteroid Biosynthesis. Science Advances, 3(9): e1700887. https://doi.org/10.1126/sciadv.1700887
      [82] Huang, J., Liu, J., Zhang, Y.N., et al., 2018. Cr Isotopic Composition of the Laobao Cherts during the Ediacaran-Cambrian Transition in South China. Chemical Geology, 482: 121-130. https://doi.org/10.1016/j.chemgeo.2018.02.011
      [83] Huang, J.P., Liu, X.Y., He, Y.S., et al., 2021. The Oxygen Cycle and a Habitable Earth. Science China: Earth Sciences, 54(4): 478-506 (in Chinese).
      [84] Jeandel, C., Minster, J.F., 1987. Chromium Behavior in the Ocean: Global versus Regional Processes. Global Biogeochemical Cycles, 1(2): 131-154. https://doi.org/10.1029/gb001i002p00131 doi: 10.1029/GB001i002p00131
      [85] Johnson, C.M., Beard, B.L., 2006. Fe Isotopes: An Emerging Technique for Understanding Modern and Ancient Biogeochemical Cycles. GSA Today, 16(11): 4. https://doi.org/10.1130/gsat01611a.1 doi: 10.1130/GSAT01611A.1
      [86] Jost, A.B., Bachan, A., van de Schootbrugge, B., et al., 2017. Uranium Isotope Evidence for an Expansion of Marine Anoxia during the End-Triassic Extinction. Geochemistry, Geophysics, Geosystems, 18(8): 3093-3108. https://doi.org/10.1002/2017gc006941 doi: 10.1002/2017GC006941
      [87] Kadoya, S., Catling, D.C., Nicklas, R.W., et al., 2020. Mantle Data Imply a Decline of Oxidizable Volcanic Gases could have Triggered the Great Oxidation. Nature Communications, 11: 2774. https://doi.org/10.1038/s41467-020-16493-1
      [88] Kendall, B., 2021. Recent Advances in Geochemical Paleo-Oxybarometers. Annual Review of Earth and Planetary Sciences, 49: 399-433. https://doi.org/10.1146/annurev-earth-071520-051637
      [89] Kendall, B., Brennecka, G.A., Weyer, S., et al., 2013. Uranium Isotope Fractionation Suggests Oxidative Uranium Mobilization at 2.50 Ga. Chemical Geology, 362: 105-114. https://doi.org/10.1016/j.chemgeo.2013.08.010
      [90] Kendall, B., Creaser, R.A., Gordon, G.W., et al., 2009. Re-Os and Mo Isotope Systematics of Black Shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, Northern Australia. Geochimica et Cosmochimica Acta, 73(9): 2534-2558. https://doi.org/10.1016/j.gca.2009.02.013
      [91] Kendall, B., Dahl, T.W., Anbar, A.D., 2017. The Stable Isotope Geochemistry of Molybdenum. Reviews in Mineralogy and Geochemistry, 82(1): 683-732. https://doi.org/10.2138/rmg.2017.82.16
      [92] Kendall, B., Gordon, G.W., Poulton, S.W., et al., 2011. Molybdenum Isotope Constraints on the Extent of Late Paleoproterozoic Ocean Euxinia. Earth and Planetary Science Letters, 307(3-4): 450-460. https://doi.org/10.1016/j.epsl.2011.05.019
      [93] Kendall, B., Komiya, T., Lyons, T.W., et al., 2015. Uranium and Molybdenum Isotope Evidence for an Episode of Widespread Ocean Oxygenation during the Late Ediacaran Period. Geochimica et Cosmochimica Acta, 156: 173-193. https://doi.org/10.1016/j.gca.2015.02.025
      [94] Kendall, B., Wang, J.Y., Zheng, W., et al., 2020. Inverse Correlation between the Molybdenum and Uranium Isotope Compositions of Upper Devonian Black Shales Caused by Changes in Local Depositional Conditions rather than Global Ocean Redox Variations. Geochimica et Cosmochimica Acta, 287: 141-164. https://doi.org/10.1016/j.gca.2020.01.026
      [95] Kirschvink, J.L., Kopp, R.E., 2008. Palaeoproterozoic Ice Houses and the Evolution of Oxygen-Mediating Enzymes: The Case for a Late Origin of Photosystem Ⅱ. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1504): 2755-2765. https://doi.org/10.1098/rstb.2008.0024
      [96] Knoll, A.H., Bergmann, K.D., Strauss, J.V., 2016. Life: The First Two Billion Years. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1707). https://doi.org/10.1098/rstb.2015.0493
      [97] Kotaś, J., Stasicka, Z., 2000. Chromium Occurrence in the Environment and Methods of Its Speciation. Environmental Pollution, 107(3): 263-283. https://doi.org/10.1016/s0269-7491(99)00168-2 doi: 10.1016/S0269-7491(99)00168-2
      [98] Kurzweil, F., Drost, K., Pašava, J., et al., 2015a. Coupled Sulfur, Iron and Molybdenum Isotope Data from Black Shales of the Teplá-Barrandian Unit Argue against Deep Ocean Oxygenation during the Ediacaran. Geochimica et Cosmochimica Acta, 171: 121-142. https://doi.org/10.1016/j.gca.2015.08.022
      [99] Kurzweil, F., Wille, M., Schoenberg, R., et al., 2015b. Continuously Increasing δ98Mo Values in Neoarchean Black Shales and Iron Formations from the Hamersley Basin. Geochimica et Cosmochimica Acta, 164: 523-542. https://doi.org/10.1016/j.gca.2015.05.009
      [100] Kurzweil, F., Wille, M., Gantert, N., et al., 2016. Manganese Oxide Shuttling in Pre-GOE Oceans: Evidence from Molybdenum and Iron Isotopes. Earth and Planetary Science Letters, 452: 69-78. https://doi.org/10.1016/j.epsl.2016.07.013
      [101] Lalonde, S.V., Konhauser, K.O., 2015. Benthic Perspective on Earth's Oldest Evidence for Oxygenic Photosynthesis. Proceeding of the National Academy of Sciences, 112(4): 995-1000. https://doi.org/10.1073/pnas.1415718112
      [102] Large, R., 2014. The Boring Billion. Australasian Science, 35(4): 22-25. https://doi.org/10.3316/ielapa.520236687944675
      [103] Lau, K.V., MacDonald, F.A., Maher, K., et al., 2017. Uranium Isotope Evidence for Temporary Ocean Oxygenation in the Aftermath of the Sturtian Snowball Earth. Earth and Planetary Science Letters, 458: 282-292. https://doi.org/10.1016/j.epsl.2016.10.043
      [104] Lau, K.V., Romaniello, S.J., Zhang, F.F., 2019. The Uranium Isotope Paleoredox Proxy. In: Lyons, T.W., Turchyn, A.V., Reinhard, C.T., eds., Elements in Geochemical Tracers in Earth System Science. Cambridge University Press, Cambridge.
      [105] Lau, K.V., Lyons, T.W., Maher, K., 2020. Uranium Reduction and Isotopic Fractionation in Reducing Sediments: Insights from Reactive Transport Modeling. Geochimica et Cosmochimica Acta, 287: 65-92. https://doi.org/10.1016/j.gca.2020.01.021
      [106] Lee, C.T.A., Yeung, L.Y., McKenzie, N.R., et al., 2016. Two-Step Rise of Atmospheric Oxygen Linked to the Growth of Continents. Nature Geoscience, 9(6): 417-424. https://doi.org/10.1038/ngeo2707
      [107] Lehmann, B., Nägler, T.F., Holland, H.D., et al., 2007. Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater. Geology, 35(5): 403-406. https://doi.org/10.1130/g23543a.1 doi: 10.1130/G23543A.1
      [108] Li, C., Cheng, M., Zhu, M.Y., et al., 2018. Heterogeneous and Dynamic Marine Shelf Oxygenation and Coupled Early Animal Evolution. Emerging Topics in Life Sciences, 2(2): 279-288. https://doi.org/10.1042/etls20170157 doi: 10.1042/ETLS20170157
      [109] Li, C., Love, G.D., Lyons, T.W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83. https://doi.org/10.1126/science.1182369
      [110] Li, Z.H., Cao, M.C., Loyd, S.J., et al., 2020. Transient and Stepwise Ocean Oxygenation during the Late Ediacaran Shuram Excursion: Insights from Carbonate δ238U of Northwestern Mexico. Precambrian Research, 344: 105741. https://doi.org/10.1016/j.precamres.2020.105741
      [111] Love, G.D., Grosjean, E., Stalvies, C., et al., 2009. Fossil Steroids Record the Appearance of Demospongiae during the Cryogenian Period. Nature, 457: 718-721. https://doi.org/10.1038/nature07673
      [112] Lu, X.Z., Kendall, B., Stein, H.J., et al., 2017. Marine Redox Conditions during Deposition of Late Ordovician and Early Silurian Organic-Rich Mudrocks in the Siljan Ring District, Central Sweden. Chemical Geology, 457: 75-94. https://doi.org/10.1016/j.chemgeo.2017.03.015
      [113] Luo, J., Long, X.P., Bowyer, F.T., et al., 2021. Pulsed Oxygenation Events Drove Progressive Oxygenation of the Early Mesoproterozoic Ocean. Earth and Planetary Science Letters, 559: 116754. https://doi.org/10.1016/j.epsl.2021.116754
      [114] Lyons, T.W., Reinhard, C.T., Planavsky, N.J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506: 307-315. https://doi.org/10.1038/nature13068
      [115] Mänd, K., Lalonde, S.V., Robbins, L.J., et al., 2020. Palaeoproterozoic Oxygenated Oceans Following the Lomagundi-Jatuli Event. Nature Geoscience, 13(4): 302-306. https://doi.org/10.1038/s41561-020-0558-5
      [116] Miller, C.A., Peucker-Ehrenbrink, B., Walker, B.D., et al., 2011. Re-Assessing the Surface Cycling of Molybdenum and Rhenium. Geochimica et Cosmochimica Acta, 75(22): 7146-7179. https://doi.org/10.1016/j.gca.2011.09.005
      [117] Montoya-Pino, C., Weyer, S., Anbar, A.D., et al., 2010. Global Enhancement of Ocean Anoxia during Oceanic Anoxic Event 2: A Quantitative Approach Using U Isotopes. Geology, 38(4): 315-318. https://doi.org/10.1130/g30652.1 doi: 10.1130/G30652.1
      [118] Mukherjee, I., Large, R.R., Corkrey, R., et al., 2018. The Boring Billion, a Slingshot for Complex Life on Earth. Scientific Reports, 8(1): 1-7. https://doi.org/10.1038/s41598-018-22695-x
      [119] Nägler, T.F., Neubert, N., Böttcher, M.E., et al., 2011. Molybdenum Isotope Fractionation in Pelagic Euxinia: Evidence from the Modern Black and Baltic Seas. Chemical Geology, 289(1-2): 1-11. https://doi.org/10.1016/j.chemgeo.2011.07.001
      [120] Nakagawa, Y., Takano, S., Firdaus, M.L., et al., 2012. The Molybdenum Isotopic Composition of the Modern Ocean. Geochemical Journal, 46(2): 131-141. https://doi.org/10.2343/geochemj.1.0158
      [121] Neely, R.A., Gislason, S.R., Ólafsson, M., et al., 2018. Molybdenum Isotope Behaviour in Groundwaters and Terrestrial Hydrothermal Systems, Iceland. Earth and Planetary Science Letters, 486: 108-118. https://doi.org/10.1016/j.epsl.2017.11.053
      [122] Neubert, N., Heri, A.R., Voegelin, A.R., et al., 2011. The Molybdenum Isotopic Composition in River Water: Constraints from Small Catchments. Earth and Planetary Science Letters, 304(1-2): 180-190. https://doi.org/10.1016/j.epsl.2011.02.001
      [123] Neubert, N., Nägler, T.F., Böttcher, M.E., 2008. Sulfidity Controls Molybdenum Isotope Fractionation into Euxinic Sediments: Evidence from the Modern Black Sea. Geology, 36(10): 775-778. https://doi.org/10.1130/g24959a.1 doi: 10.1130/G24959A.1
      [124] Nielsen, S.G., Goff, M., Hesselbo, S.P., et al., 2011. Thallium Isotopes in Early Diagenetic Pyrite: A Paleoredox Proxy? Geochimica et Cosmochimica Acta, 75(21): 6690-6704. https://doi.org/10.1016/j.gca.2011.07.047
      [125] Nielsen, S.G., Rehkämper, M., Norman, M.D., et al., 2006a. Thallium Isotopic Evidence for Ferromanganese Sediments in the Mantle Source of Hawaiian Basalts. Nature, 439: 314-317. https://doi.org/10.1038/nature04450
      [126] Nielsen, S.G., Rehkämper, M., Teagle, D.A.H., et al., 2006b. Hydrothermal Fluid Fluxes Calculated from the Isotopic Mass Balance of Thallium in the Ocean Crust. Earth and Planetary Science Letters, 251(1-2): 120-133. https://doi.org/10.1016/j.epsl.2006.09.002
      [127] Nielsen, S.G., Rehkämper, M., Porcelli, D., et al., 2005. Thallium Isotope Composition of the Upper Continental Crust and Rivers: An Investigation of the Continental Sources of Dissolved Marine Thallium. Geochimica et Cosmochimica Acta, 69(8): 2007-2019. https://doi.org/10.1016/j.gca.2004.10.025
      [128] Nielsen, S.G., Rehkämper, M., Prytulak, J., 2017. Investigation and Application of Thallium Isotope Fractionation. Reviews in Mineralogy and Geochemistry, 82(1): 759-798. https://doi.org/10.2138/rmg.2017.82.18
      [129] Nielsen, S.G., Wasylenki, L.E., Rehkämper, M., et al., 2013. Towards an Understanding of Thallium Isotope Fractionation during Adsorption to Manganese Oxides. Geochimica et Cosmochimica Acta, 117: 252-265. https://doi.org/10.1016/j.gca.2013.05.004
      [130] Noordmann, J., Weyer, S., Montoya-Pino, C., et al., 2015. Uranium and Molybdenum Isotope Systematics in Modern Euxinic Basins: Case Studies from the Central Baltic Sea and the Kyllaren Fjord (Norway). Chemical Geology, 396: 182-195. https://doi.org/10.1016/j.chemgeo.2014.12.012
      [131] Ossa Ossa, F., Eickmann, B., Hofmann, A., et al., 2018a. Two-Step Deoxygenation at the End of the Paleoproterozoic Lomagundi Event. Earth and Planetary Science Letters, 486: 70-83. https://doi.org/10.1016/j.epsl.2018.01.009
      [132] Ossa Ossa, F., Hofmann, A., Wille, M., et al., 2018b. Aerobic Iron and Manganese Cycling in a Redox-Stratified Mesoarchean Epicontinental Sea. Earth and Planetary Science Letters, 500: 28-40. https://doi.org/10.1016/j.epsl.2018.07.044
      [133] Ostrander, C.M., Johnson, A.C., Anbar, A.D., 2021. Earth's First Redox Revolution. Annual Review of Earth and Planetary Sciences, 49: 337-366. https://doi.org/10.1146/annurev-earth-072020-055249
      [134] Ostrander, C.M., Nielsen, S.G., Owens, J.D., et al., 2019a. Fully Oxygenated Water Columns over Continental Shelves before the Great Oxidation Event. Nature Geoscience, 12(3): 186-191. https://doi.org/10.1038/s41561-019-0309-7
      [135] Ostrander, C.M., Sahoo, S.K., Kendall, B., et al., 2019b. Multiple Negative Molybdenum Isotope Excursions in the Doushantuo Formation (South China) Fingerprint Complex Redox-Related Processes in the Ediacaran Nanhua Basin. Geochimica et Cosmochimica Acta, 261: 191-209. https://doi.org/10.1016/j.gca.2019.07.016
      [136] Ostrander, C.M., Owens, J.D., Nielsen, S.G., 2017. Constraining the Rate of Oceanic Deoxygenation Leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma). Science Advances, 3(8): e1701020. https://doi.org/10.1126/sciadv.1701020
      [137] Ostrander, C.M., Owens, J.D., Nielsen, S.G., et al., 2020. Thallium Isotope Ratios in Shales from South China and Northwestern Canada Suggest Widespread O2 Accumulation in Marine Bottom Waters was an Uncommon Occurrence during the Ediacaran Period. Chemical Geology, 557: 119856. https://doi.org/10.1016/j.chemgeo.2020.119856
      [138] Owens, J.D., 2019. Application of Thallium Isotopes: Tracking Marine Oxygenation through Manganese Oxide Burial. In: Lyons, T.W., Turchyn, A.V., Reinhard, C.T., eds., Elements in Geochemical Tracers in Earth System Science. Cambridge University Press, Cambridge.
      [139] Owens, J.D., Nielsen, S.G., Horner, T.J., et al., 2017. Thallium-Isotopic Compositions of Euxinic Sediments as a Proxy for Global Manganese-Oxide Burial. Geochimica et Cosmochimica Acta, 213: 291-307. https://doi.org/10.1016/j.gca.2017.06.041
      [140] Partin, C.A., Bekker, A., Planavsky, N.J., et al., 2013. Large-Scale Fluctuations in Precambrian Atmospheric and Oceanic Oxygen Levels from the Record of U in Shales. Earth and Planetary Science Letters, 369-370: 284-293. https://doi.org/10.1016/j.epsl.2013.03.031
      [141] Paulukat, C., Gilleaudeau, G.J., Chernyavskiy, P., et al., 2016. The Cr-Isotope Signature of Surface Seawater: A Global Perspective. Chemical Geology, 444: 101-109. https://doi.org/10.1016/j.chemgeo.2016.10.004
      [142] Peacock, C.L., Moon, E.M., 2012. Oxidative Scavenging of Thallium by Birnessite: Explanation for Thallium Enrichment and Stable Isotope Fractionation in Marine Ferromanganese Precipitates. Geochimica et Cosmochimica Acta, 84: 297-313. https://doi.org/10.1016/j.gca.2012.01.036
      [143] Pearce, C.R., Burton, K.W., von Strandmann, P.A.E.P., et al., 2010. Molybdenum Isotope Behaviour Accompanying Weathering and Riverine Transport in a Basaltic Terrain. Earth and Planetary Science Letters, 295(1-2): 104-114. https://doi.org/10.1016/j.epsl.2010.03.032
      [144] Phan, T.T., Gardiner, J.B., Capo, R.C., et al., 2018. Geochemical and Multi-Isotopic (87Sr/86Sr, 143Nd/144Nd, 238U/235U) Perspectives of Sediment Sources, Depositional Conditions, and Diagenesis of the Marcellus Shale, Appalachian Basin, USA. Geochimica et Cosmochimica Acta, 222: 187-211. https://doi.org/10.1016/j.gca.2017.10.021
      [145] Planavsky, N.J., Asael, D., Hofmann, A., et al., 2014a. Evidence for Oxygenic Photosynthesis Half a Billion Years before the Great Oxidation Event. Nature Geoscience, 7(4): 283-286. https://doi.org/10.1038/ngeo2122
      [146] Planavsky, N.J., Reinhard, C.T., Wang, X., et al., 2014b. Low Mid-Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 346(6209): 635-638. https://doi.org/10.1126/science.1258410
      [147] Planavsky, N.J., Slack, J.F., Cannon, W.F., et al., 2018. Evidence for Episodic Oxygenation in a Weakly Redox-Buffered Deep Mid-Proterozoic Ocean. Chemical Geology, 483: 581-594. https://doi.org/10.1016/j.chemgeo.2018.03.028
      [148] Poulson Brucker, R.L., McManus, J., Poulton, S.W., 2012. Molybdenum Isotope Fractionations Observed under Anoxic Experimental Conditions. Geochemical Journal, 46(3): 201-209. https://doi.org/10.2343/geochemj.1.0167
      [149] Poulson Brucker, R.L., McManus, J., Severmann, S., et al., 2009. Molybdenum Behavior during Early Diagenesis: Insights from Mo Isotopes. Geochemistry, Geophysics, Geosystems, 10(6): Q06010. https://doi.org/10.1029/2008gc002180
      [150] Poulton, S.W., 2017. Early Phosphorus Redigested. Nature Geoscience, 10(2): 75-76. https://doi.org/10.1038/ngeo2884
      [151] Poulton, S.W., Bekker, A., Cumming, V.M., et al., 2021. A 200-Million-Year Delay in Permanent Atmospheric Oxygenation. Nature, 592: 232-236. https://doi.org/10.1038/s41586-021-03393-7
      [152] Poulton, S.W., Fralick, P.W., Canfield, D.E., 2010. Spatial Variability in Oceanic Redox Structure 1.8 Billion Years Ago. Nature Geoscience, 3(7): 486-490. https://doi.org/10.1038/ngeo889
      [153] Qin, L.P., Wang, X.L., 2017. Chromium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 379-414. https://doi.org/10.2138/rmg.2017.82.10
      [154] Reinhard, C.T., Lalonde, S.V., Lyons, T.W., 2013. Oxidative Sulfide Dissolution on the Early Earth. Chemical Geology, 362: 44-55. https://doi.org/10.1016/j.chemgeo.2013.10.006
      [155] Reinhard, C.T., Planavsky, N.J., Wang, X.L., et al., 2014. The Isotopic Composition of Authigenic Chromium in Anoxic Marine Sediments: A Case Study from the Cariaco Basin. Earth and Planetary Science Letters, 407: 9-18. https://doi.org/10.1016/j.epsl.2014.09.024
      [156] Reinhard, C.T., Raiswell, R., Scott, C., et al., 2009. A Late Archean Sulfidic Sea Stimulated by Early Oxidative Weathering of the Continents. Science, 326(5953): 713-716. https://doi.org/10.1126/science.1176711
      [157] Rimstidt, J.D., Vaughan, D.J., 2003. Pyrite Oxidation: A State-of-the-Art Assessment of the Reaction Mechanism. Geochimica et Cosmochimica Acta, 67(5): 873-880. https://doi.org/10.1016/s0016-7037(02)01165-1 doi: 10.1016/S0016-7037(02)01165-1
      [158] Robbins, L.J., Lalonde, S.V., Planavsky, N.J., et al., 2016. Trace Elements at the Intersection of Marine Biological and Geochemical Evolution. Earth-Science Reviews, 163: 323-348. https://doi.org/10.1016/j.earscirev.2016.10.013
      [159] Rodler, A.S., Frei, R., Gaucher, C., et al., 2016. Chromium Isotope, REE and Redox-Sensitive Trace Element Chemostratigraphy across the Late Neoproterozoic Ghaub Glaciation, Otavi Group, Namibia. Precambrian Research, 286: 234-249. https://doi.org/10.1016/j.precamres.2016.10.007
      [160] Rolison, J.M., Stirling, C.H., Middag, R., et al., 2017. Uranium Stable Isotope Fractionation in the Black Sea: Modern Calibration of the 238U/235U Paleo-Redox Proxy. Geochimica et Cosmochimica Acta, 203: 69-88. https://doi.org/10.1016/j.gca.2016.12.014
      [161] Romaniello, S.J., Herrmann, A.D., Anbar, A.D., 2013. Uranium Concentrations and 238U/235U Isotope Ratios in Modern Carbonates from the Bahamas: Assessing a Novel Paleoredox Proxy. Chemical Geology, 362: 305-316. https://doi.org/10.1016/j.chemgeo.2013.10.002
      [162] Romaniello, S.J., Herrmann, A.D., Anbar, A.D., 2016. Syndepositional Diagenetic Control of Molybdenum Isotope Variations in Carbonate Sediments from the Bahamas. Chemical Geology, 438: 84-90. https://doi.org/10.1016/j.chemgeo.2016.05.019
      [163] Rooney, A.D., Cantine, M.D., Bergmann, K.D., et al., 2020. Calibrating the Coevolution of Ediacaran Life and Environment. Proceedings of the National Academy of Sciences of the United States of America, 117(29): 16824-16830. https://doi.org/10.1073/pnas.2002918117
      [164] Rosing, M.T., Frei, R., 2004. U-Rich Archaean Sea-Floor Sediments from Greenland-Indications of > 3 700 Ma Oxygenic Photosynthesis. Earth and Planetary Science Letters, 217(3-4): 237-244. https://doi.org/10.1016/s0012-821x(03)00609-5 doi: 10.1016/S0012-821X(03)00609-5
      [165] Sahoo, S.K., Planavsky, N.J., Jiang, G., et al., 2016. Oceanic Oxygenation Events in the Anoxic Ediacaran Ocean. Geobiology, 14(5): 457-468. https://doi.org/10.1111/gbi.12182
      [166] Sahoo, S.K., Planavsky, N.J., Kendall, B., et al., 2012. Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature, 489: 546-549. https://doi.org/10.1038/nature11445
      [167] Sarmiento, J.L., Gruber, N., 2006. Ocean Biogeochemical Dynamics. Princeton University Press, Princeton.
      [168] Schauble, E.A., 2007. Role of Nuclear Volume in Driving Equilibrium Stable Isotope Fractionation of Mercury, Thallium, and Other Very Heavy Elements. Geochimica et Cosmochimica Acta, 71(9): 2170-2189. https://doi.org/10.1016/j.gca.2007.02.004
      [169] Scheiderich, K., Zerkle, A.L., Helz, G.R., et al., 2010. Molybdenum Isotope, Multiple Sulfur Isotope, and Redox-Sensitive Element Behavior in Early Pleistocene Mediterranean Sapropels. Chemical Geology, 279(3-4): 134-144. https://doi.org/10.1016/j.chemgeo.2010.10.015
      [170] Schoenberg, R., Zink, S., Staubwasser, M., et al., 2008. The Stable Cr Isotope Inventory of Solid Earth Reservoirs Determined by Double Spike MC-ICP-MS. Chemical Geology, 249(3-4): 294-306. https://doi.org/10.1016/j.chemgeo.2008.01.009
      [171] Scholz, F., Baum, M., Siebert, C., et al., 2018. Sedimentary Molybdenum Cycling in the Aftermath of Seawater Inflow to the Intermittently Euxinic Gotland Deep, Central Baltic Sea. Chemical Geology, 491: 27-38. https://doi.org/10.1016/j.chemgeo.2018.04.031
      [172] Scott, C., Lyons, T.W., Bekker, A., et al., 2008. Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 452(7186): 456-459. https://doi.org/10.1038/nature06811
      [173] Shi, W., Li, C., Luo, G.M., et al., 2018. Sulfur Isotope Evidence for Transient Marine-Shelf Oxidation during the Ediacaran Shuram Excursion. Geology, 46(3): 267-270. https://doi.org/10.1130/g39663.1 doi: 10.1130/G39663.1
      [174] Shields-Zhou, G., Och, L., 2011. The Case for a Neoproterozoic Oxygenation Event: Geochemical Evidence and Biological Consequences. GSA Today, 21(3): 4-11. https://doi.org/10.1130/gsatg102a.1 doi: 10.1130/GSATG102A.1
      [175] Siebert, C., Kramers, J.D., Meisel, T., et al., 2005. PGE, Re-Os, and Mo Isotope Systematics in Archean and Early Proterozoic Sedimentary Systems as Proxies for Redox Conditions of the Early Earth. Geochimica et Cosmochimica Acta, 69(7): 1787-1801. https://doi.org/10.1016/j.gca.2004.10.006
      [176] Siebert, C., McManus, J., Bice, A., et al., 2006. Molybdenum Isotope Signatures in Continental Margin Marine Sediments. Earth and Planetary Science Letters, 241(3-4): 723-733. https://doi.org/10.1016/j.epsl.2005.11.010
      [177] Siebert, C., Nägler, T.F., von Blanckenburg, F., et al., 2003. Molybdenum Isotope Records as a Potential New Proxy for Paleoceanography. Earth and Planetary Science Letters, 211(1/2): 159-171. https://doi.org/10.1016/s0012-821x(03)00189-4
      [178] Song, H.Y., Song, H.J., Algeo, T.J., et al., 2017. Uranium and Carbon Isotopes Document Global-Ocean Redox-Productivity Relationships Linked to Cooling during the Frasnian-Famennian Mass Extinction. Geology, 45(10): 887-890. https://doi.org/10.1130/g39393.1 doi: 10.1130/G39393.1
      [179] Sperling, E.A., Wolock, C.J., Morgan, A.S., et al., 2015. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 523: 451-454. https://doi.org/10.1038/nature14589
      [180] Stockey, R.G., Cole, D.B., Planavsky, N.J., et al., 2020. Persistent Global Marine Euxinia in the Early Silurian. Nature Communications, 11(1): 1-10. https://doi.org/10.1038/s41467-020-15400-y doi: 10.1038/s41467-019-13993-7
      [181] Stüeken, E.E., Buick, R., Guy, B.M., et al., 2015. Isotopic Evidence for Biological Nitrogen Fixation by Molybdenum-Nitrogenase from 3.2 Gyr. Nature, 520: 666-669. https://doi.org/10.1038/nature14180
      [182] Stüeken, E.E., Kipp, M.A., Koehler, M.C., et al., 2016. The Evolution of Earth's Biogeochemical Nitrogen Cycle. Earth-Science Reviews, 160: 220-239. https://doi.org/10.1016/j.earscirev.2016.07.007
      [183] Stylo, M., Neubert, N., Wang, Y., et al., 2015. Uranium Isotopes Fingerprint Biotic Reduction. Proceedings of the National Academy of Sciences of the United States of America, 112(18): 5619-5624. https://doi.org/10.1073/pnas.1421841112
      [184] Tan, Z.Z., Jia, W.L., Li, J., et al., 2021. Geochemistry and Molybdenum Isotopes of the Basal Datangpo Formation: Implications for Ocean-Redox Conditions and Organic Matter Accumulation during the Cryogenian Interglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 563: 110169. https://doi.org/10.1016/j.palaeo.2020.110169
      [185] Them, T.R., Gill, B.C., Caruthers, A.H., et al., 2018. Thallium Isotopes Reveal Protracted Anoxia during the Toarcian (Early Jurassic) Associated with Volcanism, Carbon Burial, and Mass Extinction. Proceedings of the National Academy of Science, 115(26): 6596-6601. https://doi.org/10.1073/pnas.1803478115
      [186] Thoby, M., Konhauser, K.O., Fralick, P.W., et al., 2019. Global Importance of Oxic Molybdenum Sinks Prior to 2.6 Ga Revealed by the Mo Isotope Composition of Precambrian Carbonates. Geology, 47(6): 559-562. https://doi.org/10.1130/g45706.1 doi: 10.1130/G45706.1
      [187] Tissot, F.L.H., Chen, C., Go, B.M., et al., 2018. Controls of Eustasy and Diagenesis on the 238U/235U of Carbonates and Evolution of the Seawater (234U/238U) during the Last 1.4 Myr. Geochimica et Cosmochimica Acta, 242: 233-265. https://doi.org/10.1016/j.gca.2018.08.022
      [188] Tissot, F.L.H., Dauphas, N., 2015. Uranium Isotopic Compositions of the Crust and Ocean: Age Corrections, U Budget and Global Extent of Modern Anoxia. Geochimica et Cosmochimica Acta, 167: 113-143. https://doi.org/10.1016/j.gca.2015.06.034
      [189] Toma, J., Holmden, C., Shakotko, P., et al., 2019. Cr Isotopic Insights into ca. 1.9 Ga Oxidative Weathering of the Continents Using the Beaverlodge Lake Paleosol, Northwest Territories, Canada. Geobiology, 17(5): 467-489. https://doi.org/10.1111/gbi.12342
      [190] Tossell, J.A., 2005. Calculating the Partitioning of the Isotopes of Mo between Oxidic and Sulfidic Species in Aqueous Solution. Geochimica et Cosmochimica Acta, 69(12): 2981-2993. https://doi.org/10.1016/j.gca.2005.01.016
      [191] Tostevin, R., Clarkson, M.O., Gangl, S., et al., 2019. Uranium Isotope Evidence for an Expansion of Anoxia in Terminal Ediacaran Oceans. Earth and Planetary Science Letters, 506: 104-112. https://doi.org/10.1016/j.epsl.2018.10.045
      [192] Voegelin, A.R., Nägler, T.F., Beukes, N.J., et al., 2010. Molybdenum Isotopes in Late Archean Carbonate Rocks: Implications for Early Earth Oxygenation. Precambrian Research, 182(1-2): 70-82. https://doi.org/10.1016/j.precamres.2010.07.001
      [193] Voegelin, A.R., Nägler, T.F., Samankassou, E., et al., 2009. Molybdenum Isotopic Composition of Modern and Carboniferous Carbonates. Chemical Geology, 265(3-4): 488-498. https://doi.org/10.1016/j.chemgeo.2009.05.015
      [194] Wang, X.L., Ossa Ossa, F., Hofmann, A., et al., 2020. Uranium Isotope Evidence for Mesoarchean Biological Oxygen Production in Shallow Marine and Continental Settings. Earth and Planetary Science Letters, 551: 116583. https://doi.org/10.1016/j.epsl.2020.116583
      [195] Wang, X.L., Planavsky, N.J., Hofmann, A., et al., 2018. A Mesoarchean Shift in Uranium Isotope Systematics. Geochimica et Cosmochimica Acta, 238: 438-452. https://doi.org/10.1016/j.gca.2018.07.024
      [196] Wang, X.L., Planavsky, N.J., Reinhard, C.T., et al., 2016. A Cenozoic Seawater Redox Record Derived from 238U/235U in Ferromanganese Crusts. American Journal of Science, 316(1): 64-83. https://doi.org/10.2475/01.2016.02
      [197] Wang, X.L., Wei, W., 2020. Stable Chromium Isotope Geochemistry. Earth Science Frontiers, 27(3): 78-103(in Chinese with English abstract).
      [198] Wang, X.Q., Jiang, G.Q., Shi, X.Y., et al., 2018. Nitrogen Isotope Constraints on the Early Ediacaran Ocean Redox Structure. Geochimica et Cosmochimica Acta, 240: 220-235. https://doi.org/10.1016/j.gca.2018.08.034
      [199] Wasylenki, L.E., Rolfe, B.A., Weeks, C.L., et al., 2008. Experimental Investigation of the Effects of Temperature and Ionic Strength on Mo Isotope Fractionation during Adsorption to Manganese Oxides. Geochimica et Cosmochimica Acta, 72(24): 5997-6005. https://doi.org/10.1016/j.gca.2008.08.027
      [200] Wei, G.Y., Planavsky, N.J., He, T.C., et al., 2021a. Global Marine Redox Evolution from the Late Neoproterozoic to the Early Paleozoic Constrained by the Integration of Mo and U Isotope Records. Earth-Science Reviews, 214: 103506. https://doi.org/10.1016/j.earscirev.2021.103506
      [201] Wei, G.Y., Planavsky, N.J., Tarhan, L.G., et al., 2018a. Marine Redox Fluctuation as a Potential Trigger for the Cambrian Explosion. Geology, 46(7): 587-590. https://doi.org/10.1130/g40150.1 doi: 10.1130/G40150.1
      [202] Wei, G.Y., Planavsky, N.J., Tarhan, L.G., et al., 2020. Highly Dynamic Marine Redox State through the Cambrian Explosion Highlighted by Authigenic δ238U Records. Earth and Planetary Science Letters, 544: 116361. https://doi.org/10.1016/j.epsl.2020.116361
      [203] Wei, W., Frei, R., Chen, T.Y., et al., 2018b. Marine Ferromanganese Oxide: A Potentially Important Sink of Light Chromium Isotopes? Chemical Geology, 495: 90-103. https://doi.org/10.1016/j.chemgeo.2018.08.006
      [204] Wei, W., Frei, R., Klaebe, R., et al., 2021b. A Transient Swing to Higher Oxygen Levels in the Atmosphere and Oceans at~1.4 Ga. Precambrian Research, 354: 106058. https://doi.org/10.1016/j.precamres.2020.106058
      [205] Wen, H.J., Carignan, J., Zhang, Y.X., et al., 2011. Molybdenum Isotopic Records across the Precambrian-Cambrian Boundary. Geology, 39(8): 775-778. https://doi.org/10.1130/g32055.1 doi: 10.1130/G32055.1
      [206] Wen, H.J., Fan, H.F., Zhang, Y.X., et al., 2015. Reconstruction of Early Cambrian Ocean Chemistry from Mo Isotopes. Geochimica et Cosmochimica Acta, 164: 1-16. https://doi.org/10.1016/j.gca.2015.05.008
      [207] White, D.A., Elrick, M., Romaniello, S., et al., 2018. Global Seawater Redox Trends during the Late Devonian Mass Extinction Detected Using U Isotopes of Marine Limestones. Earth and Planetary Science Letters, 503: 68-77. https://doi.org/10.1016/j.epsl.2018.09.020
      [208] Willbold, M., Elliott, T., 2017. Molybdenum Isotope Variations in Magmatic Rocks. Chemical Geology, 449: 253-268. https://doi.org/10.1016/j.chemgeo.2016.12.011
      [209] Wille, M., Kramers, J.D., Nägler, T.F., et al., 2007. Evidence for a Gradual Rise of Oxygen between 2.6 and 2.5 Ga from Mo Isotopes and Re-PGE Signatures in Shales. Geochimica et Cosmochimica Acta, 71(10): 2417-2435. https://doi.org/10.1016/j.gca.2007.02.019
      [210] Wille, M., Nägler, T.F., Lehmann, B., et al., 2008. Hydrogen Sulphide Release to Surface Waters at the Precambrian/Cambrian Boundary. Nature, 453: 767-769. https://doi.org/10.1038/nature07072
      [211] Wille, M., Nebel, O., van Kranendonk, M.J., et al., 2013. Mo-Cr Isotope Evidence for a Reducing Archean Atmosphere in 3.46-2.76 Ga Black Shales from the Pilbara, Western Australia. Chemical Geology, 340: 68-76. https://doi.org/10.1016/j.chemgeo.2012.12.018
      [212] Xu, L.G., Lehmann, B., Mao, J.W., et al., 2012. Mo Isotope and Trace Element Patterns of Lower Cambrian Black Shales in South China: Multi-Proxy Constraints on the Paleoenvironment. Chemical Geology, 318/319: 45-59. https://doi.org/10.1016/j.chemgeo.2012.05.016
      [213] Yang, S., Kendall, B., Lu, X.Z., et al., 2017. Uranium Isotope Compositions of Mid-Proterozoic Black Shales: Evidence for an Episode of Increased Ocean Oxygenation at 1.36 Ga and Evaluation of the Effect of Post-Depositional Hydrothermal Fluid Flow. Precambrian Research, 298: 187-201. https://doi.org/10.1016/j.precamres.2017.06.016
      [214] Ye, Y.T., Wang, H.J., Wang, X.M., et al., 2020. Tracking the Evolution of Seawater Mo Isotopes through the Ediacaran-Cambrian Transition. Precambrian Research, 350: 105929. https://doi.org/10.1016/j.precamres.2020.105929
      [215] Yin, H.F., Yu, J.X., Luo, G.M., et al., 2018. Biotic Influence on the Formation of Icehouse Climates in Geologic History. Earth Science, 43(11): 3809-3822(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201811002.htm
      [216] Yin, L., Li, J., Tian, H., et al., 2018. Rhenium-Osmium and Molybdenum Isotope Systematics of Black Shales from the Lower Cambrian Niutitang Formation, SW China: Evidence of a Well Oxygenated Ocean at ca. 520 Ma. Chemical Geology, 499: 26-42. https://doi.org/10.1016/j.chemgeo.2018.08.016
      [217] Yusof, A.M., Chia, C.H., Wood, A.K.H., 2007. Speciation of Cr(Ⅲ) and Cr(Ⅵ) in Surface Waters with a Chelex-100 Resin Column and Their Quantitative Determination Using Inductively Coupled Plasma Mass Spectrometry and Instrumental Neutron Activation Analysis. Journal of Radioanalytical and Nuclear Chemistry, 273(3): 533-538. https://doi.org/10.1007/s10967-007-0904-8
      [218] Zhang, F.F., Algeo, T.J., Cui, Y., et al., 2019a. Global-Ocean Redox Variations across the Smithian-Spathian Boundary Linked to Concurrent Climatic and Biotic Changes. Earth-Science Reviews, 195: 147-168. https://doi.org/10.1016/j.earscirev.2018.10.012
      [219] Zhang, F.F., Xiao, S.H., Romaniello, S.J., et al., 2019b. Global Marine Redox Changes Drove the Rise and Fall of the Ediacara Biota. Geobiology, 17(6): 594-610. https://doi.org/10.1111/gbi.12359
      [220] Zhang, S.C., Wang, X.M., Wang, H.J., et al., 2019c. Paleoenvironmental Proxies and What the Xiamaling Formation Tells Us about the Mid-Proterozoic Ocean. Geobiology, 17(3): 225-246. https://doi.org/10.1111/gbi.12337
      [221] Zhang, F.F., Algeo, T.J., Romaniello, S.J., et al., 2018a. Congruent Permian-Triassic δ238U Records at Panthalassic and Tethyan Sites: Confirmation of Global-Oceanic Anoxia and Validation of the U-Isotope Paleoredox Proxy. Geology, 46(4): 327-330. https://doi.org/10.1130/g39695.1 doi: 10.1130/G39695.1
      [222] Zhang, F.F., Romaniello, S.J., Algeo, T.J., et al., 2018b. Multiple Episodes of Extensive Marine Anoxia Linked to Global Warming and Continental Weathering Following the Latest Permian Mass Extinction. Science Advances, 4(4): e1602921. https://doi.org/10.1126/sciadv.1602921
      [223] Zhang, F.F., Xiao, S.H., Kendall, B., et al., 2018c. Extensive Marine Anoxia during the Terminal Ediacaran Period. Science Advances, 4(6): eaan8983. https://doi.org/10.1126/sciadv.aan8983
      [224] Zhang, F.F., Lenton, T.M., del Rey, Á., et al., 2020. Uranium Isotopes in Marine Carbonates as a Global Ocean Paleoredox Proxy: A Critical Review. Geochimica et Cosmochimica Acta, 287: 27-49. https://doi.org/10.1016/j.gca.2020.05.011
      [225] Zhang, K., Zhu, X.K., Wood, R.A., et al., 2018. Oxygenation of the Mesoproterozoic Ocean and the Evolution of Complex Eukaryotes. Nature Geoscience, 11(5): 345-350. https://doi.org/10.1038/s41561-018-0111-y
      [226] Zhang, S.C., Wang, X.M., Wang, H.J., et al., 2016. Sufficient Oxygen for Animal Respiration 1 400 Million Years Ago. Proceedings of the National Academy of Sciences of the United States of America, 113(7): 1731-1736. https://doi.org/10.1073/pnas.1523449113
      [227] Zhao, X.K., Shi, X.Y., Wang, X.Q., et al., 2018. Stepwise Oxygenation of Early Cambrian Ocean Drove Early Metazoan Diversification. Earth Science, 43(11): 3873-3890(in Chinese with English abstract).
      [228] Zhou, L., Su, J., Huang, J.H., et al., 2011. A New Paleoenvironmental Index for Anoxic Events-Mo Isotopes in Black Shales from Upper Yangtze Marine Sediments. Science China Earth Sciences, 54(7): 1024-1033. https://doi.org/10.1007/s11430-011-4188-z
      [229] Zhou, L., Wignall, P.B., Su, J., et al., 2012. U/Mo Ratios and δ98/95Mo as Local and Global Redox Proxies during Mass Extinction Events. Chemical Geology, 324-325: 99-107. https://doi.org/10.1016/j.chemgeo.2012.03.020
      [230] Zhou, X.Q., Chen, D.Z., Liu, M., et al., 2017. The Future of Sedimentology in China: A Review and Perspective of Sedimentary Geochemistry. Acta Sedimentologica Sinica, 35(6): 1293-1316(in Chinese with English abstract).
      [231] Zhu, J.M., Zhu, X.K., Huang, F., 2008. The Systematics of Molybdenum Stable Isotope and Its Application to Earth Science. Acta Petrologica et Mineralogica, 27(4): 353-360(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200804013.htm
      [232] Zhu, M.Y., 2010. The Origin and Cambrian Explosion of Animals: Fossil Evidences from China. Acta Palaeontologica Sinica, 49(3): 269-287(in Chinese with English abstract).
      [233] Zhu, M.Y., Zhao, F.C., Yin, Z.J., et al., 2019. The Cambrian Explosion: Advances and Perspectives from China. Science China Earth Sciences, ,49(10): 1455-1490(in Chinese with English abstract).
      [234] Zhu, X.K., Wang, Y., Yan, B., et al., 2013. Developments of Non-Traditional Stable Isotope Geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651-688(in Chinese with English abstract).
      [235] Zink, S., Schoenberg, R., Staubwasser, M., 2010. Isotopic Fractionation and Reaction Kinetics between Cr(Ⅲ) and Cr(Ⅵ) in Aqueous Media. Geochimica et Cosmochimica Acta, 74(20): 5729-5745. https://doi.org/10.1016/j.gca.2010.07.015
      [236] 程猛, 李超, 周炼, 等, 2015. 钼海洋地球化学与古海洋化学重建. 中国科学: 地球科学, 45(11): 1649-1660.
      [237] 黄建平, 刘晓岳, 何永胜, 等, 2021. 氧循环与宜居地球. 中国科学: 地球科学, 51(4): 487-506.
      [238] 王相力, 卫炜, 2020. 铬稳定同位素地球化学. 地学前缘, 27(3): 78-103.
      [239] 殷鸿福, 喻建新, 罗根明, 等, 2018. 地史时期生物对冰室气候形成的作用. 地球科学, 43(11): 3809-3822. doi: 10.3799/dqkx.2018.117
      [240] 赵相宽, 史晓颖, 王新强, 等, 2018. 武纪早期海洋阶段性氧化驱动早期后生动物多样化进程. 地球科学, 43(11): 3873-3890. doi: 10.3799/dqkx.2018.143
      [241] 周锡强, 陈代钊, 刘牧, 等, 2017. 中国沉积学发展战略: 沉积地球化学研究现状与展望. 沉积学报, 35(6): 1293-1316.
      [242] 朱建明, 朱祥坤, 黄方, 2008. 钼的稳定同位素体系及其地质应用. 岩石矿物学杂志, 27(4): 353-360. doi: 10.3969/j.issn.1000-6524.2008.04.013
      [243] 朱茂炎, 2010. 动物的起源和寒武纪大爆发: 来自中国的化石证据. 古生物学报, 49(3): 269-287.
      [244] 朱茂炎, 赵方臣, 殷宗军, 等, 2019. 中国的寒武纪大爆发研究: 进展与展望. 中国科学: 地球科学, 49(10): 1455-1490.
      [245] 朱祥坤, 王跃, 闫斌, 等, 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651-688.
    • 加载中
    图(4) / 表(1)
    计量
    • 文章访问数:  910
    • HTML全文浏览量:  252
    • PDF下载量:  127
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-04-21
    • 刊出日期:  2021-12-15

    目录

      /

      返回文章
      返回