Progress of Silver Isotopes Studies in Planetary and Earth Sciences
-
摘要: 系统梳理了放射性Pd-Ag体系银同位素在行星科学中的发展概况以及稳定银同位素在环境科学示踪和金银矿床中的研究进展.在太阳星云以及行星核的形成过程中,由于107Ag可由107Pd经β衰变产生,而挥发性元素的耗散又会造成早期Pd/Ag的分异,使得Pd-Ag同位素体系可以用于早期太阳系的活动历史研究,例如定义行星核的形成、限定行星形成时代.在稳定银同位素体系中,已探明银同位素组成(δ109Ag)变化范围为-1.0‰~+2.3‰.稳定银同位素组成在不同环境的样品中具有类似于“指纹”特性,可用于确定污染物来源,追溯污染物环境过程,还原真实的环境系统.在金银矿床研究中,具有显著变化的银同位素组成使其在贵金属矿床的形成及演化机制上具有直接的应用意义.目前银同位素在解答行星科学及地球科学等诸多领域问题上仍存在一些尚未解决的难题,例如放射性Pd-Ag体系中太阳系初期107Pd/108Pd比值的精确限定、环境及矿床中银迁移沉积的物理化学过程的复杂耦合同位素分馏机制的确定等.
-
关键词:
- 银同位素 /
- 放射性Pd-Ag体系 /
- 环境污染物示踪 /
- 金银矿床 /
- 地球化学
Abstract: The progresses of the radioactive Pd-Ag system in planetary sciences and the stable silver isotope in environmental sciences and ore-deposits are systematically reviewed in this paper. In the formation of solar nebula and planetary nucleus, 107Ag can be produced by 107Pd through β decay, and the dissipation of volatile elements will cause the early Pd/Ag differentiation, which makes the Pd-Ag system applicable to investigate various activities of the early solar system, such as defining the formation of planetary nucleus and the age of planetary formation. In the stable silver isotope system, it has been proved that the wide variation range of δ109Ag is -1.0‰ to +2.3‰ in terrestrial materials. Stable silver isotope has characteristics similar to "fingerprint" in environmental materials, which makes it possible to effectively determine pollutants sources and to track migration paths of pollutants. Much wider variations of δ109Ag in metallic ore-deposits have been observed, showing a great potential of silver isotope in studying the genesis and evolution mode of Au-Ag deposits. However, there are still many concerns remained to be resolved, such as the precise definition of 107Pd/108Pd ratio in the early solar system of radioactive Pd-Ag system, and the quantification of silver isotope fractionation in physiochemical processes (e.g., boiling/phase separation, multistage ore paragenesis, precipitation, redox, adsorption and remobilization etc.) involved in silver migration and deposition in environmental and ore-forming processes. -
图 1 地球-火星吸积过程银同位素组成的演化(据Righter et al., 2020修改)
Fig. 1. Evolution of silver isotope during accretion process of Earth and Mars (modified after Righter et al., 2020)
图 2 地球岩石、环境样品、矿床以及地质标样中稳定银同位素组成(δ109Ag)分布
数据引自Argapadmi et al.(2018);Arribas et al.(2020);Desaulty and Albarede(2013);Guo et al.(2017);Luo et al.(2010);Mathur et al.(2018);Schönbächler et al.(2007);Voisey et al.(2019);Woodland et al.(2005);Yang et al.(2009)
Fig. 2. Distribution of stable silver isotopic composition (δ109Ag) in rocks, environmental materials, metallic ore-deposits and standard reference materials in Earth
图 3 稳定银同位素示踪纳米银粒子(AgNPs)污染物在环境中迁移转化示意图(据Zhang et al., 2017修改)
Fig. 3. Schematic diagram for tracking migration-conversion path of silver nano-particles in environment using silver isotopes (modified after Zhang et al., 2017)
-
[1] Araújo, D.F., Boaventura, G.R., Machado, W., et al., 2017. Tracing of Anthropogenic Zinc Sources in Coastal Environments Using Stable Isotope Composition. Chemical Geology, 449: 226-235. https://doi.org/10.1016/j.chemgeo.2016.12.004 [2] Argapadmi, W., Toth, E.R., Fehr, M.A., et al., 2018. Silver Isotopes as a Source and Transport Tracer for Gold: A Reconnaissance Study at the Sheba and New Consort Gold Mines in the Barberton Greenstone Belt, Kaapvaal Craton, South Africa. Economic Geology, 113(7): 1553-1570. https://doi.org/10.5382/econgeo.2018.4602 [3] Arribas, A., Mathur, R., Megaw, P., et al., 2020. The Isotopic Composition of Silver in Ore Minerals. Geochemistry, Geophysics, Geosystems, 21(8): e2020GC009097. https://doi.org/10.1029/2020gc009097 [4] Benedix, G.K., McCoy, T.J., Keil, K., et al., 2000. A Petrologic Study of the IAB Iron Meteorites: Constraints on the Formation of the IAB-Winonaite Parent Body. Meteoritics & Planetary Science, 35(6): 1127-1141. https://doi.org/10.1111/j.1945-5100.2000.tb01502.x [5] Bianchini, A., Bowles, K.C., Brauner, C.J., et al., 2002. Evaluation of the Effect of Reactive Sulfide on the Acute Toxicity of Silver (Ⅰ) to Daphnia Magna. Part 2: Toxicity Results. Environmental Toxicology and Chemistry, 21(6): 1294-1300. https://doi.org/10.1002/etc.5620210626 [6] Carlson, R.W., Hauri, E.H., 2001. Extending the 107Pd-107Ag Chronometer to Low Pd/Ag Meteorites with Multicollector Plasma-Ionization Mass Spectrometry. Geochimica et Cosmochimica Acta, 65(11): 1839-1848. https://doi.org/10.1016/s0016-7037(01)00559-2 doi: 10.1016/S0016-7037(01)00559-2 [7] Carlson, R.W., Lugmair, G.W., 2000. Timescales of Planetesimal Formation and Differentiation Based on Extinct and Extant Radioisotopes. Origin of the Earth and Moon. University of Arizona Press, Arizona, 25-44. https://doi.org/10.2307/j.ctv1v7zdrp.6 [8] Chabot, N.L., Drake, M.J., 1997. An Experimental Study of Silver and Palladium Partitioning between Solid and Liquid Metal, with Applications to Iron Meteorites. Meteoritics & Planetary Science, 32(5): 637-645. https://doi.org/10.1111/j.1945-5100.1997.tb01549.x [9] Chabot, N.L., Haack, H., 2006. Evolution of Asteroidal Cores. Meteorites and the Early Solar System Ⅱ. University of Arizona Press, Arizona, 747-772. [10] Chen, J.H., Wasserburg, G.J., 1983. The Isotopic Composition of Silver and Lead in Two Iron Meteorites: Cape York and Grant. Geochimica et Cosmochimica Acta, 47(10): 1725-1737. https://doi.org/10.1016/0016-7037(83)90022-4 [11] Chen, J.H., Wasserburg, G.J., 1990. The Isotopic Composition of Ag in Meteorites and the Presence of 107Pd in Protoplanets. Geochimica et Cosmochimica Acta, 54(6): 1729-1743. https://doi.org/10.1016/0016-7037(90)90404-9 [12] Chen, J.H., Wasserburg, G.J., 1996. Live 107Pd in the Early Solar System and Implications for Planetary Evolution. Earth Processes: Reading the Isotopic Code. American Geophysical Union, Washington, D. C., 95: 1-20. https://doi.org/10.1029/gm095p0001 [13] Chugaev, A.V., Chernyshev, I.V., 2012. High-Noble Measurement of 107Ag/109Ag in Native Silver and Gold by Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). Geochemistry International, 50(11): 899-910. https://doi.org/10.1134/s0016702912110055 doi: 10.1134/S0016702912110055 [14] Desaulty, A.M., Albarede, F., 2013. Copper, Lead, and Silver Isotopes Solve a Major Economic Conundrum of Tudor and Early Stuart Europe. Geology, 41(2): 135-138. https://doi.org/10.1130/g33555.1 doi: 10.1130/G33555.1 [15] Fabrega, J., Luoma, S.N., Tyler, C.R., et al., 2011. Silver Nanoparticles: Behaviour and Effects in the Aquatic Environment. Environment International, 37(2): 517-531. https://doi.org/10.1016/j.envint.2010.10.012 [16] Flynn, K.F., Glendenin, L.E., 1969. Half-Life of 107Pd. Physical Review, 185(4): 1591-1593. https://doi.org/10.1103/physrev.185.1591 doi: 10.1103/PhysRev.185.1591 [17] Fujii, T., Albarede, F., 2018. 109Ag-107Ag Fractionation in Fluids with Applications to Ore Deposits, Archeometry, and Cosmochemistry. Geochimica et Cosmochimica Acta, 234: 37-49. https://doi.org/10.1016/j.gca.2018.05.013 [18] Fukuyama, M., Lee, D., 2010. Silver Isotope Variation in Ore Deposits by MC-ICP-MS. American Geophysical Union (AGU) Fall Meeting Abstracts, San Francisco. [19] Gammons, C.H., Williams-Jones, A.E., 1995. Hydrothermal Geochemistry of Electrum; Thermodynamic Constraints. Economic Geology, 90(2): 420-432. https://doi.org/10.2113/gsecongeo.90.2.420 [20] Guo, Q., 2018. Accurate Determination of Stable Silver Isotopes and Its Application in Polymetallic Deposits in China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). [21] Guo, Q., Wei, H.Z., Jiang, S.Y., et al., 2017. Matrix Effects Originating from Coexisting Minerals and Accurate Determination of Stable Silver Isotopes in Silver Deposits. Analytical Chemistry, 89(24): 13634-13641. https://doi.org/10.1021/acs.analchem.7b04212 [22] Hauri, E.H., Carlson, R.W., Bauer, J., 2000. The Timing of Core Formation and Volatile Depletion in Solar System Objects from High-Precision 107Pd-107Ag Isotope Systematics. Lunar and Planetary Science Conference Abstracts, Houston, Texas. [23] Heinrich, C.A., Günther, D., Audétat, A., et al., 1999. Metal Fractionation between Magmatic Brine and Vapor, Determined by Microanalysis of Fluid Inclusions. Geology, 27(8): 755. https://doi.org/10.1130/0091-7613(1999)0270755:mfbmba>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2 [24] Horan, M.F., Carlson, R.W., Blichert-Toft, J., 2012. Pd-Ag Chronology of Volatile Depletion, Crystallization and Shock in the Muonionalusta IVA Iron Meteorite and Implications for Its Parent Body. Earth and Planetary Science Letters, 351-352: 215-222. https://doi.org/10.1016/j.epsl.2012.07.028 [25] Kaiser, T., Kelly, W.R., Wasserburg, G.J., 1980. Isotopically Anomalous Silver in the Santa Clara and Piñon Iron Meteorites. Geophysical Research Letters, 7(4): 271-274. https://doi.org/10.1029/gl007i004p00271 doi: 10.1029/GL007i004p00271 [26] Kelly, W.R., Wasserburg, G.J., 1978. Evidence for the Existence of 107Pd in the Early Solar System. Geophysical Research Letters, 5(12): 1079-1082. https://doi.org/10.1029/gl005i012p01079 doi: 10.1029/GL005i012p01079 [27] Kruijer, T.S., Fischer-Gödde, M., Kleine, T., et al., 2013. Neutron Capture on Pt Isotopes in Iron Meteorites and the Hf-W Chronology of Core Formation in Planetesimals. Earth and Planetary Science Letters, 361: 162-172. https://doi.org/10.1016/j.epsl.2012.10.014 [28] Leeman, W.P., Vocke, R.D., McKibben, M.A., 1992. Boron Isotopic Fractionation between Coexisting Vapor and Liquid in Natural Geothermal Systems. International Association of GeoChemistry, 7th International Symposium on Water-Rock Interaction, Park City, Utah, 1007-1010. [29] Leya, I., Masarik, J., 2013. Thermal Neutron Capture Effects in Radioactive and Stable Nuclide Systems. Meteoritics & Planetary Science, 48(4): 665-685. https://doi.org/10.1111/maps.12090 [30] Li, W., Gou, W.X., Li, W.Q., et al., 2019. Environmental Applications of Metal Stable Isotopes: Silver, Mercury and Zinc. Environmental Pollution, 252: 1344-1356. https://doi.org/10.1016/j.envpol.2019.06.037 [31] Lodders, K., 2003. Solar System Abundances and Condensation Temperatures of the Elements. The Astrophysical Journal Letters, 591(2): 1220-1247. https://doi.org/10.1086/375492 [32] Lu, D.W., Liu, Q., Zhang, T.Y., et al., 2016. Stable Silver Isotope Fractionation in the Natural Transformation Process of Silver Nanoparticles. Nature Nanotechnology, 11(8): 682-686. https://doi.org/10.1038/nnano.2016.93 [33] Lugmair, G.W., Shimamura, T., Lewis, R.S., et al., 1983. Samarium-146 in the Early Solar System: Evidence from Neodymium in the Allende Meteorite. Science, 222(4627): 1015-1018. https://doi.org/10.1126/science.222.4627.1015 [34] Lugmair, G.W., Shukolyukov, A., 1998. Early Solar System Timescales according to 53Mn-53Cr Systematics. Geochimica et Cosmochimica Acta, 62(16): 2863-2886. https://doi.org/10.1016/s0016-7037(98)00189-6 doi: 10.1016/S0016-7037(98)00189-6 [35] Luo, Y., Dabek-Zlotorzynska, E., Celo, V., et al., 2010. Accurate and Precise Determination of Silver Isotope Fractionation in Environmental Samples by Multicollector-ICPMS. Analytical Chemistry, 82(9): 3922-3928. https://doi.org/10.1021/ac100532r [36] Mathur, R., Arribas, A., Megaw, P., et al., 2018. Fractionation of Silver Isotopes in Native Silver Explained by Redox Reactions. Geochimica et Cosmochimica Acta, 224: 313-326. https://doi.org/10.1016/j.gca.2018.01.011 [37] Matthes, M., Fischer-Gödde, M., Kruijer, T.S., et al., 2015. Pd-Ag Chronometry of Iron Meteorites: Correction of Neutron Capture-Effects and Application to the Cooling History of Differentiated Protoplanets. Geochimica et Cosmochimica Acta, 169: 45-62. https://doi.org/10.1016/j.gca.2015.07.027 [38] Matthes, M., van Orman, J.A., Kleine, T., 2020. Closure Temperature of the Pd-Ag System and the Crystallization and Cooling History of ⅢAB Iron Meteorites. Geochimica et Cosmochimica Acta, 285: 193-206. https://doi.org/10.1016/j.gca.2020.07.009 [39] McCoy, T.J., Walker, R.J., Goldstein, J.I., et al., 2011. Group IVA Irons: New Constraints on the Crystallization and Cooling History of an Asteroidal Core with a Complex History. Geochimica et Cosmochimica Acta, 75(22): 6821-6843. https://doi.org/10.1016/j.gca.2011.09.006 [40] Migdisov, A.A., Williams-Jones, A.E., 2013. A Predictive Model for Metal Transport of Silver Chloride by Aqueous Vapor in Ore-Forming Magmatic-Hydrothermal Systems. Geochimica et Cosmochimica Acta, 104: 123-135. https://doi.org/10.1016/j.gca.2012.11.020 [41] Moynier, F., Yin, Q.Z., Jacobsen, B., 2007. Dating the First Stage of Planet Formation. The Astrophysical Journal Letters, 671(2): L181-L183. https://doi.org/10.1086/525527 [42] Podosek, F.A., Cassen, P., 1994. Theoretical, Observational, and Isotopic Estimates of the Lifetime of the Solar Nebula. Meteoritics, 29(1): 6-25. https://doi.org/10.1111/j.1945-5100.1994.tb00649.x [43] Powell, L.J., Murphy, T.J., Gramlich, J.W., 1982. The Absolute Isotopic Abundance and Atomic Weight of a Reference Sample of Silver. Journal of Research of the National Bureau of Standards, 87(1): 9. https://doi.org/10.6028/jres.087.002 [44] Rasmussen, K.L., 1989. Cooling Rates of ⅢAB Iron Meteorites. Icarus, 80(2): 315-325. https://doi.org/10.1016/0019-1035(89)90142-5 [45] Rasmussen, K.L., Ulff-Møller, F., Haack, H., 1995. The Thermal Evolution of IVA Iron Meteorites: Evidence from Metallographic Cooling Rates. Geochimica et Cosmochimica Acta, 59(14): 3049-3059. https://doi.org/10.1016/0016-7037(95)00194-8 [46] Righter, K., Schönbächler, M., Pando, K., et al., 2020. Ag Isotopic and Chalcophile Element Evolution of the Terrestrial and Martian Mantles during Accretion: New Constraints from Bi and Ag Metal-Silicate Partitioning. Earth and Planetary Science Letters, 552: 116590. https://doi.org/10.1016/j.epsl.2020.116590 [47] Schauble, E.A., 2007. Role of Nuclear Volume in Driving Equilibrium Stable Isotope Fractionation of Mercury, Thallium, and Other very Heavy Elements. Geochimica et Cosmochimica Acta, 71(9): 2170-2189. https://doi.org/10.1016/j.gca.2007.02.004 [48] Schönbächler, M., Carlson, R.W., Horan, M.F., et al., 2007. High Precision Ag Isotope Measurements in Geologic Materials by Multiple-Collector ICPMS: An Evaluation of Dry versus Wet Plasma. International Journal of Mass Spectrometry, 261(2-3): 183-191. https://doi.org/10.1016/j.ijms.2006.09.016 [49] Schönbächler, M., Carlson, R.W., Horan, M.F., et al., 2008. Silver Isotope Variations in Chondrites: Volatile Depletion and the Initial 107Pd Abundance of the Solar System. Geochimica et Cosmochimica Acta, 72(21): 5330-5341. https://doi.org/10.1016/j.gca.2008.07.032 [50] Schulz, T., Münker, C., Palme, H., et al., 2009. Hf-W Chronometry of the IAB Iron Meteorite Parent Body. Earth and Planetary Science Letters, 280(1-4): 185-193. https://doi.org/10.1016/j.epsl.2009.01.033 [51] Scott, E.R.D., Haack, H., McCoy, T.J., 1996. Core Crystallization and Silicate-Metal Mixing in the Parent Body of the IVA Iron and Stony-Iron Meteorites. Geochimica et Cosmochimica Acta, 60(9): 1615-1631. https://doi.org/10.1016/0016-7037(96)00031-2 [52] Seward, T.M., 1976. The Stability of Chloride Complexes of Silver in Hydrothermal Solutions up to 350℃. Geochimica et Cosmochimica Acta, 40(11): 1329-1341. https://doi.org/10.1016/0016-7037(76)90122-8 [53] Seward, T.M., Williams-Jones, A.E., Migdisov, A.A., 2014. The Chemistry of Metal Transport and Deposition by Ore-Forming Hydrothermal Fluids. Treatise on Geochemistry, 13: 29-57. https://doi.org/10.1016/b978-0-08-095975-7.01102-5 [54] Stefánsson, A., Seward, T.M., 2003. Experimental Determination of the Stability and Stoichiometry of Sulphide Complexes of Silver (Ⅰ) in Hydrothermal Solutions to 400℃. Geochimica et Cosmochimica Acta, 67(7): 1395-1413. https://doi.org/10.1016/s0016-7037(02)01093-1 doi: 10.1016/S0016-7037(02)01093-1 [55] Sugiura, N., Hoshino, H., 2003. Mn-Cr Chronology of Five ⅢAB Iron Meteorites. Meteoritics & Planetary Science, 38(1): 117-143. https://doi.org/10.1111/j.1945-5100.2003.tb01050.x [56] Tessalina, S.G., Rankenburg, K., Naumo, V.E., et al., 2015. The Ag Isotope Systematics in Native Silver from Some Hydrothermal Deposits: Toward a New Tool for Mineral Deposits Studies. Mineral Resources in a Sustainable World, 13th Society for Geology Applied to Mineral Deposits (SGA) Biennial Meeting, Nancy, France, 647-650. [57] Theis, K.J., Schönbächler, M., Benedix, G.K., et al., 2010. Chronology of IAB Iron Meteorites Using the Pd-Ag Decay System. Meteoritics & Planetary Science, 73(7): 433-436. https://doi.org/10.1111/j.1945-5100.2010.01084.x [58] Theis, K.J., Schönbächler, M., Benedix, G.K., et al., 2013. Palladium-Silver Chronology of IAB Iron Meteorites. Earth and Planetary Science Letters, 361: 402-411. https://doi.org/10.1016/j.epsl.2012.11.004 [59] Tolaymat, T.M., El Badawy, A.M., Genaidy, A., et al., 2010. An Evidence-Based Environmental Perspective of Manufactured Silver Nanoparticle in Syntheses and Applications: A Systematic Review and Critical Appraisal of Peer-Reviewed Scientific Papers. The Science of the Total Environment, 408(5): 999-1006. https://doi.org/10.1016/j.scitotenv.2009.11.003 [60] Truesdell, A.H., Rye, R.O., Pearson, F.J.J., et al., 1979. Preliminary Isotopic Studies of Fluids from the Cerro Prieto Geothermal Field. Geothermics, 8(3-4): 223-229. https://doi.org/10.1016/0375-6505(79)90044-0 [61] Voisey, C.R., Maas, R., Tomkins, A.G., et al., 2019. Extreme Silver Isotope Variation in Orogenic Gold Systems Implies Multistaged Metal Remobilization during Ore Genesis. Economic Geology, 114(2): 233-242. https://doi.org/10.5382/econgeo.2019.4629 [62] Wasserburg, G.J., 1985. Short-Lived Nuclei in the Early Solar System. University of Arizona Press, Arizona, 703-737. [63] Wasson, J.T., Richardson, J.W., 2001. Fractionation Trends among IVA Iron Meteorites: Contrasts with ⅢAB Trends. Geochimica et Cosmochimica Acta, 65(6): 951-970. https://doi.org/10.1016/S0016-7037(00)00597-4 [64] Wiederhold, J.G., Cramer, C.J., Daniel, K., et al., 2010. Equilibrium Mercury Isotope Fractionation between Dissolved Hg(Ⅱ) Species and Thiol-Bound Hg. Environmental Science & Technology, 44(11): 4191-4197. https://doi.org/10.1021/es100205t [65] Windeati, A., Eniko, R.T., Manuela, A.F., et al., 2018. Silver Isotopes as a Source and Transport Tracer for Gold: A Reconnaissance Study at the Sheba and New Consort Gold Mines in the Barberton Greenstone Belt, Kaapvaal Craton, South Africa. Economic Geology, 113(7): 1553-1570. https://doi.org/10.5382/econgeo.2018.4602 [66] Wittig, N., Humayun, M., Brandon, A.D., et al., 2013. Coupled W-Os-Pt Isotope Systematics in IVB Iron Meteorites: In Situ Neutron Dosimetry for W Isotope Chronology. Earth and Planetary Science Letters, 361: 152-161. https://doi.org/10.1016/j.epsl.2012.10.013 [67] Woodland, S.J., Rehkämper, M., Halliday, A.N., 2004. Further Analysis of the Pd-Ag Systematics of Sulphides from the Group Ia Iron Meteorite Canyon Diablo. American Journal of Bioethics Ajob, 16(1): 53-56. [68] Woodland, S.J., Rehkämper, M., Halliday, A.N., et al., 2005. Accurate Measurement of Silver Isotopic Compositions in Geological Materials Including Low Pd/Ag Meteorites. Geochimica et Cosmochimica Acta, 69(8): 2153-2163. https://doi.org/10.1016/j.gca.2004.10.012 [69] Woodrow Wilson Database, 2009. Consumer Products Inventory Project on Emerging Nanotechnologies. A Project of the Woodrow Wilson International Center for Scholars. [70] Yang, L., Dabek-Zlotorzynska, E., Celo, V., 2009.High Precision Determination of Silver Isotope Ratios in Commercial Products by MC-ICP-MS.Journal of Analytical Atomic Spectrometry, 24(11): 1564-1569. https://doi.org/10.1039/b911554d [71] Zhang, T., Lu, D., Zeng, L., et al., 2017.Role of Secondary Particle Formation in the Persistence of Silver Nanoparticles in Humic Acid Containing Water under Light Irradiation.Environmental Science & Technology, 51(24): 14164-14172. https://doi.org/10.1021/acs.est.7b04115 [72] 郭琦, 2018. 银同位素分析方法及在多金属矿床中的应用(硕士论文). 南京: 南京大学.