Geochronology, Geochemistry and Geological Implications of Early Carboniferous A-Type Granites in Harlik Area from East Tianshan
-
摘要: A型花岗岩对研究天山造山带壳幔相互作用和构造演化具有重要意义.对东天山哈尔里克地区的碱长花岗岩和正长花岗岩进行了详细的岩石学、地球化学和年代学研究,旨在阐明其成因及构造意义.其中碱长花岗岩的LA-ICP-MS锆石U-Pb年龄为350.7±2.0 Ma和351.8±2.0 Ma,表明该花岗岩体形成于早石炭世早期.岩石含大量碱性长石,暗色矿物以黑云母为主,见钠铁闪石等碱性暗色矿物.岩石高硅、富碱、贫钙镁,富集Rb、Th、K等大离子亲石元素和Zr、Hf等高场强元素,而强烈亏损元素Ba、Sr、Eu,具弱右倾“Ⅴ”字型的稀土分配曲线((La/Yb)N=3.23~5.55,δEu=0.19~0.28).这些矿物学和地球化学特征表明哈尔里克早石炭世花岗岩属高钾准铝质-弱过铝质花岗岩,为典型的A型花岗岩.花岗岩正的εNd(t)值(+4.2~+4.8)和新元古代的二阶段Nd模式年龄(tDM2=0.71~0.75 Ga),表明其源区可能为新生年轻地壳,源岩可能是亏损地幔来源的下地壳中基性岩和少量大洋沉积物.结合前人对东天山岩浆活动和构造环境的研究,认为早石炭世哈尔里克与博格达处于同一构造背景下,早石炭世早期A型花岗岩可能形成于博格达弧后裂谷的伸展早期阶段.Abstract: Study of A-type granites is critical for understanding the crust-mantle interaction and tectonic evolution in the Tianshan orogenic belt. Here it reports a detailed petrologic, geochemical and geochronologic data for the alkali-feldspar granite and syenogranite from Harlik in East Tianshan, to constrain their petrogenesis and tectonic setting. LA–ICP–MS zircon U–Pb ages indicate that the granites were emplaced at early Early Carboniferous (350.7±2.0 Ma and 351.8±2.0 Ma). The rocks contain abundant alkali feldspar and biotite with little sodium amphibole. The granites are characterized by high silicon and alkali, low CaO and MgO contents, and enriched in Rb, Th, K (LILE), and Zr, Hf (HFSE), but depleted in Ba, Sr, and Eu. The chondrite-normalized REE patterns show slight enrichment in LREE with (La/Yb)N from 3.23 to 5.55, and great negative Eu anomalies (δEu=0.19-0.28). These feactures indicate the geochemical characteristics of high-K meta- to per-aluminous A-type granite. They have positive εNd(t) (+4.2 to +4.8) values, and the Neoproterozoic two stage Nd model ages (tDM2=0.71-0.75 Ga), suggesting that the A-type granitic magma was probably generated from partial melting of a juvenile crustal source produced by depleted mantle-derived basaltic magmas and a few marine sediments. Combining with the previous works in this region, our study reveals that Harlik and Bogda are constrained by the same tectonic setting in Early Carboniferous, and the A-type granites from Harlik were genetically linked to the initial extensional stage of the Bogda back-arc rift.
-
Key words:
- East Tianshan /
- Harlik /
- Early Carboniferous /
- A-type granite /
- zricon U-Pb dating /
- geochemistry
-
图 1 哈尔里克口门子地区地质简图(a)和东天山构造简图(b)
a.中国地质大学(武汉)地质调查研究院,2017. 新疆1∶5万口门子幅(K46E005015)地质图; b.据Xiao et al.(2008)
Fig. 1. Geological sketch of the Harlik (a), and teconic sketch of East Tianshan (b)
图 2 东天山哈尔里克地区早石炭世花岗岩野外及岩相学特征
a.碱长花岗岩侵入早志留世凝灰岩;b.晚石炭世二长花岗岩岩体侵入早石炭世碱长花岗岩岩体;c.正长花岗岩被晚期辉绿岩脉侵入;d.碱长花岗岩野外照片;e.碱长花岗岩与正长花岗岩脉动接触,接触界面清晰但无烘烤边冷凝边;f.碎裂化正长花岗岩;g.碱长花岗岩正交光镜下照片,发育文象结构;h.钠铁闪石单偏光镜下照片;i.正长花岗岩正交光镜下照片;Q.石英;Pl.斜长石;Af.碱性长石;Rie.钠铁闪石;Bi.黑云母
Fig. 2. Field and petrological features of the granites from the Harlik in East Tianshan
图 5 东天山哈尔里克地区早石炭世早期花岗岩主量元素图解
a. R1-R2图解(据De la Roche et al., 1980);b.SiO2-K2O图解(据Le Maitre et al., 1989);c.A/CNK-A/NK图解(据Maniar and Piccoli, 1989);d.SiO2-(Na2O+K2O-CaO)图解(据Frost and Frost, 2011)
Fig. 5. R1-R2 diagram (a), SiO2-K2O diagram (b), A/CNK-A/NK diagram (c), and SiO2-(Na2O+K2O-CaO) diagram (d) of the granites from the Harlik in East Tianshan
图 6 东天山哈尔里克地区早石炭世早期花岗岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化数据引自Sun and Mcdonough, 1989)
Fig. 6. Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element spidergrams(b) of the granites from the Harlik in East Tianshan (normalization values after Sun and McDonough, 1989)
图 7 东天山哈尔里克地区早石炭世早期花岗岩成因类别判别图
a~c.底图据Whalen et al.(1987);d.高分异花岗岩判别图(底图据Sylvester,1989);I、S、M和A分别代表Ⅰ型、S型、M型和A型花岗岩,OGT代表未分异的I、S和M型花岗岩区,FG代表分异Ⅰ型花岗岩区
Fig. 7. Various chemical discrimination diagrams of the early Early Carboniferous granites from the Harlik in East Tianshan
图 8 东天山哈尔里克地区早石炭世花岗岩εNd(t)-年龄图解(a)和Nb-Y-3 Ga判别图解(b)
a.据Han et al.(1997);b.据Eby(1992)
Fig. 8. εNd(t)-age diagram (a) and Nb-Y-3 Ga diagram (b) of the granites from the Harlik in East Tianshan
图 9 东天山哈尔里克地区早石炭世花岗岩构造环境判别图
a.Rb-Y+Nb图解;b.Rb-Yb+Ta图解;图例见图 7;灰色阴影部分为东准噶尔卡拉麦里地区早石炭世早期花岗岩范围(田健等,2015);VAG.火山弧花岗岩,ORG.洋脊花岗岩,WPG.板内花岗岩,syn-COLG.同碰撞花岗岩;据Pearce et al.(1984);Eby(1992)
Fig. 9. Tectonic setting discrimination diagrams of the granites from the Harlik in East Tianshan
表 1 东天山哈尔里克地区早石炭世花岗岩锆石LA-ICP-MS U-Pb年代学测试结果
Table 1. Zircon LA-ICP-MS U-Pb age results of the granites from the Harlik in East Tianshan
样品分析号 Pb Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ 谐和度(%) (10-6) Ratio Ratio Ratio Age (Ma) 碱长花岗岩PM41-16-2 1 38 109 155 0.7 0.058 0 0.003 4 0.454 8 0.026 4 0.057 0 0.000 8 357 5.1 93 2 32 95 128 0.7 0.055 9 0.003 6 0.421 1 0.025 5 0.056 3 0.000 9 353 5.3 99 3 36 105 167 0.6 0.056 6 0.002 8 0.441 3 0.021 5 0.056 2 0.000 7 352 4.5 94 4 33 104 163 0.6 0.050 3 0.003 2 0.377 1 0.023 3 0.055 1 0.000 8 346 4.8 93 5 45 126 255 0.5 0.051 4 0.002 4 0.394 8 0.018 8 0.055 5 0.000 6 348 3.9 96 7 37 105 193 0.5 0.057 7 0.003 2 0.439 0 0.024 3 0.055 4 0.000 7 348 4.3 93 8 73 204 324 0.6 0.055 0 0.002 2 0.435 5 0.017 0 0.057 1 0.000 6 358 3.6 97 9 42 125 168 0.7 0.058 7 0.003 1 0.446 4 0.023 7 0.055 4 0.000 7 347 4.5 92 11 31 97 110 0.9 0.063 4 0.004 1 0.470 3 0.030 1 0.054 5 0.000 9 342 5.4 86 12 42 116 215 0.5 0.057 4 0.002 7 0.444 0 0.020 7 0.056 2 0.000 8 352 4.6 94 13 49 144 236 0.6 0.055 2 0.002 8 0.419 1 0.021 4 0.055 0 0.000 7 345 4.1 97 14 32 83 187 0.4 0.054 7 0.002 9 0.420 4 0.021 8 0.055 5 0.000 7 348 4.2 97 15 39 118 161 0.7 0.054 0 0.003 2 0.416 7 0.024 6 0.055 5 0.000 8 348 4.7 98 16 36 99 169 0.6 0.061 4 0.003 3 0.474 8 0.024 9 0.056 2 0.000 9 353 5.3 88 17 47 133 222 0.6 0.055 8 0.002 8 0.436 4 0.021 7 0.056 2 0.000 7 353 4.6 95 18 35 103 162 0.6 0.056 3 0.002 8 0.438 0 0.022 9 0.056 0 0.000 7 351 4.5 95 19 43 116 211 0.5 0.056 9 0.002 8 0.433 3 0.021 7 0.055 7 0.000 7 349 4.1 95 21 48 131 256 0.5 0.054 2 0.002 9 0.421 9 0.022 6 0.056 6 0.000 6 355 3.9 99 碱长花岗岩PM41-20-3 1 36 101 165 0.6 0.055 4 0.002 6 0.431 6 0.020 3 0.056 6 0.000 8 355 4.8 97 2 68 198 331 0.6 0.052 6 0.001 8 0.399 7 0.013 7 0.055 1 0.000 7 346 4.0 98 3 34 97 148 0.7 0.055 9 0.002 6 0.430 0 0.020 4 0.055 8 0.000 8 350 4.8 96 4 151 488 447 1.1 0.053 6 0.001 7 0.414 9 0.013 6 0.056 0 0.000 6 351 3.5 99 5 42 112 196 0.6 0.053 3 0.002 2 0.400 6 0.016 2 0.055 1 0.000 7 346 4.1 98 6 58 166 254 0.7 0.060 0 0.002 2 0.451 0 0.015 9 0.054 6 0.000 6 343 3.6 90 7 23 74 74 1.0 0.055 5 0.003 8 0.411 3 0.025 1 0.055 8 0.001 2 350 7.2 99 8 49 128 211 0.6 0.053 8 0.002 1 0.413 8 0.016 3 0.056 1 0.000 7 352 4.3 99 9 29 82 123 0.7 0.054 4 0.002 5 0.414 3 0.018 8 0.055 7 0.000 7 349 4.4 99 10 38 111 194 0.6 0.053 4 0.002 3 0.406 8 0.017 3 0.055 2 0.000 6 346 3.7 99 11 51 139 227 0.6 0.056 1 0.002 1 0.434 0 0.015 3 0.056 5 0.000 6 354 3.9 96 12 38 111 113 1.0 0.056 4 0.003 0 0.432 5 0.022 4 0.056 9 0.001 0 357 6.1 97 15 46 131 203 0.6 0.053 4 0.002 3 0.416 8 0.018 1 0.057 0 0.000 8 357 4.7 99 16 45 132 178 0.7 0.056 7 0.002 5 0.434 0 0.018 4 0.055 9 0.000 7 351 4.5 95 17 79 249 246 1.0 0.057 9 0.002 0 0.442 9 0.015 2 0.055 5 0.000 6 348 3.5 93 18 44 119 213 0.6 0.055 1 0.002 2 0.428 0 0.016 5 0.056 6 0.000 6 355 3.7 98 19 43 115 214 0.5 0.051 4 0.002 1 0.398 4 0.015 6 0.056 8 0.000 7 356 4.4 95 20 26 77 79 1.0 0.057 9 0.003 5 0.453 9 0.026 3 0.057 0 0.000 9 357 5.6 93 表 2 东天山哈尔里克地区早石炭世花岗岩的主量元素(%)和微量、稀土元素(10-6)数据
Table 2. Major element (%) and trace element (10-6) compositions of the granites from the Harlik in East Tianshan
岩性 41-13-2 41-9-1 41-5-2 41-8-2 41-16-1 41-18-1 41-22-1 41-24-1 41-25-1 D2382-1 D2383-1 ZT005-1 碱长花岗岩 正长花岗岩 SiO2 75.50 76.30 77.90 77.20 75.60 76.50 75.10 76.10 75.80 75.12 76.94 77.49 TiO2 0.17 0.18 0.17 0.20 0.22 0.18 0.22 0.16 0.22 0.24 0.17 0.23 Al2O3 12.65 12.15 10.50 10.65 11.75 11.85 12.45 11.85 12.00 12.48 12.21 11.14 FeOT 1.40 1.34 2.34 2.77 2.24 1.87 1.73 1.55 1.63 2.19 1.62 2.65 MnO 0.00 0.00 0.10 0.00 0.00 0.06 0.05 0.05 0.05 0.06 0.05 0.08 MgO 0.09 0.11 0.10 0.06 0.11 0.13 0.12 0.09 0.13 0.19 0.11 0.09 CaO 0.24 0.14 0.20 0.18 0.20 0.41 0.27 0.30 0.40 0.27 0.24 0.15 Na2O 4.20 3.33 3.22 2.98 3.76 3.76 4.13 3.94 3.77 4.23 3.84 3.58 K2O 4.86 4.87 4.13 4.38 4.75 4.85 4.62 4.55 4.99 4.66 4.90 4.43 P2O5 < 0.01 < 0.01 < 0.01 < 0.01 0.01 0.01 0.01 < 0.01 0.01 0.02 0.01 0.01 LOI 0.28 0.57 0.39 0.57 0.48 0.33 0.31 0.42 0.31 0.54 0.09 0.15 TOTAL 99.43 99.01 99.00 99.03 99.16 99.95 99.01 99.01 99.31 99.46 100.09 99.85 Fe2O3T 1.56 1.49 2.60 3.08 2.49 2.08 1.92 1.72 1.81 2.43 1.80 2.94 Mg# 11.88 14.69 8.22 4.35 9.34 12.72 12.70 10.85 14.33 15.39 12.46 6.65 A/CNK 1.00 1.10 1.04 1.07 1.01 0.97 1.01 0.99 0.97 1.00 1.01 1.02 A/NK 1.04 1.13 1.08 1.10 1.04 1.04 1.06 1.04 1.03 1.04 1.05 1.04 V 7 21 < 5 13 13 22 < 5 14 6 13 13 9 Ga 18.6 18.3 24.7 26.6 22.0 22.6 21.4 22.1 21.5 21.0 21.8 25.6 Rb 178 209 183 235 178 179 154 184 197 147 183 177 Sr 23.0 35.1 36.4 11.7 18.2 40.0 25.5 15.2 22.6 27.3 24.2 12.2 Y 62.1 54.3 80.5 124 62.5 66.0 63.4 63.5 76.0 70.6 59.9 97.0 Zr 289 233 687 1200 502 525 388 286 297 364 291 1 070 Nb 27.4 22.3 24.0 44.8 25.5 28.3 26.1 25.1 26.5 23.0 24.3 40.8 Cs 1.5 2.7 2.3 6.2 1.7 1.3 2.5 2.2 2.5 1.0 1.3 1.3 Ba 42.4 149 33.0 26.7 110 105 129 63.9 104 143 95.3 31.5 Hf 9.3 7.7 16.5 29.5 13.7 15.4 11.5 9.9 9.4 10.4 9.6 24.7 Ta 2.2 1.9 2.1 3.7 2.2 2.3 2.2 2.2 2.3 1.8 2.0 3.4 Th 19.5 17.3 22.3 57.3 20.2 22.6 19.1 21.0 16.4 14.3 17.9 22.9 U 5.4 4.3 4.8 8.6 5.2 5.4 4.5 4.5 3.9 3.7 5.5 7.1 La 43.8 45.0 47.8 72.0 46.0 37.0 46.3 33.9 34.3 44.9 35.0 59.4 Ce 102 97.7 113 165 109 91.2 104 75.4 84.8 107 79.6 139 Pr 11.3 11.3 12.8 19.8 12.1 9.8 11.8 8.1 10.2 12.6 9.1 16.6 Nd 38.1 39.0 44.5 71.7 42.5 33.6 40.1 27.4 36.1 49.4 33.2 66.0 Sm 9.3 8.4 10.8 18.3 9.5 7.9 8.7 7.1 9.5 11.4 7.5 15.2 Eu 0.6 0.7 0.8 1.3 0.8 0.8 0.8 0.6 0.8 1.0 0.6 1.0 Gd 8.6 7.7 11.3 18.6 9.2 8.3 9.0 7.6 10.1 11.3 7.7 15.3 Tb 1.6 1.3 1.9 3.2 1.6 1.5 1.6 1.4 1.9 1.9 1.4 2.5 Dy 10.1 9.0 12.9 20.3 10.3 10.5 10.3 9.6 12.4 12.5 9.4 16.1 Ho 2.2 1.9 2.8 4.3 2.2 2.4 2.2 2.1 2.6 2.6 2.0 3.5 Er 6.4 5.5 8.2 13.6 6.6 7.3 6.7 6.6 7.6 7.3 6.1 10.7 Tm 1.1 0.9 1.3 2.1 1.0 1.1 1.1 1.1 1.2 1.1 1.0 1.7 Yb 6.9 5.8 8.5 13.7 7.3 8.2 7.0 7.2 7.3 6.7 6.5 11.5 Lu 1.1 0.9 1.3 2.1 1.1 1.3 1.0 1.1 1.0 1.0 1.0 1.8 ΣREE 242 235 277 426 259 221 251 189 220 270 200 360 δEu 0.19 0.27 0.22 0.21 0.26 0.28 0.28 0.23 0.24 0.25 0.24 0.20 (La/Yb)N 4.59 5.55 4.02 3.77 4.55 3.23 4.76 3.39 3.36 4.83 3.87 3.71 TZr(℃) 823 814 921 988 878 876 853 822 819 845 825 968 注:TZr(℃)=12 900/[lnD+0.85M+2.95]-273.15,D指锆石中Zr浓度(49 600×10-6)与熔体中Zr浓度的比值,M=(2Ca+K+Na)/(Si×Al),令Si+Al+Fe+Mg+Ca+K+Na+P=1,Ca、K、Na、Si、Al为阳离子所占百分比. 表 3 东天山哈尔里克地区早石炭世花岗岩Sr-Nd同位素数据
Table 3. Sr-Nd isotopic compositions of the granites from the Harlik in East Tianshan
样品 岩性 Rb Sr 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i Sm Nd 147Sm/144Nd 143Nd/144Nd εNd(t) tDM2(Ga) 41-18-1 碱长花岗岩 179 40 12.92 0.759 6 0.723 1 7.9 33.6 0.142 4 0.512 759 4.8 0.71 41-24-1 184 15 35.05 0.853 4 0.816 9 7.1 27.4 0.156 9 0.512 764 4.2 0.76 注:87Rb/86Sr、147Sm/144Nd通过全岩Rb、Sr、Sm、Nd (10-6)含量计算;t采用岩体锆石年龄(351 Ma);(87Sr/86Sr)i=(87Sr/86Sr)样品+(87Sr/86Sr)(eλt-1),λRb=1.42×10-11 a-1;εNd(t)=[(143Nd/144Nd)样品/(143Nd/144Nd)CHUR(t)-1]×104,(143Nd/144Nd)CHUR(t)=(143Nd/144Nd)CHUR-(147Sm/144Nd)CHUR(eλt-1),λSm=6.54×10-12 a-1; 亏损地幔的Sm-Nd同位素组成采用(143Nd/144Nd)CHUR=0.512 638, (147Sm/144Nd)CHUR=0.196 7. -
[1] Boehnke, P., Watson, E. B., Trail, D., et al., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351: 324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028 [2] Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042 [3] Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007 [4] Buslov, M. M., Saphonova, I. Y., Watanabe, T., et al., 2001. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and Collision of Possible Gondwana-Derived Terranes with the Southern Marginal Part of the Siberian Continent. Geosciences Journal, 5(3): 203-224. https://doi.org/10.1007/bf02910304 [5] Campbell, I. H., Griffiths, R. W., 1990. Implications of Mantle Plume Structure for the Evolution of Flood Basalts. Earth and Planetary Science Letters, 99(1-2): 79-93. https://doi.org/10.1016/0012-821x(90)90072-6 [6] Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/s0263593300007720 [7] Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691-703. https://doi.org/10.1016/s1367-9120(03)00118-4 [8] Chen, X. J., Shu, L. S., 2010. Features of the Post-Clolisional Tectono-Magmatism and Geochronological Evidence in the Harlik MT., Xinjiang. Acta Petrologica Sinica, 26(10): 3057-3064(in Chinese with English abstract). [9] Chen, X. J., Shu, L. S., Santosh, M., 2011. Late Paleozoic Post-Collisional Magmatism in the Eastern Tianshan Belt, Northwest China: New Insights from Geochemistry, Geochronology and Petrology of Bimodal Volcanic Rocks. Lithos, 127(3-4): 581-598. https://doi.org/10.1016/j.lithos.2011.06.008 [10] Chen, X. J., Shu, L. S., Santosh, M., et al., 2013. Island Arc-Type Bimodal Magmatism in the Eastern Tianshan Belt, Northwest China: Geochemistry, Zircon U-Pb Geochronology and Implications for the Paleozoic Crustal Evolution in Central Asia. Lithos, 168-169: 48-66. https://doi.org/10.1016/j.lithos.2012.10.006 [11] Clemens, J. D., Holloway, J. R., White, A. J. R., 1986. Origin of an A-Type Granite: Experimental Constraints. American Mineralogists, 71: 317-324. [12] De la Roche, H., Leterrier, J., Grandclaude, P., et al., 1980. A Classification of Volcanic and Plutonic Rocks Using R1R2-Diagram and Major-Element Analyses: Its Relationships with Current Nomenclature. Chemical Geology, 29(1-4): 183-210. https://doi.org/10.1016/0009-2541(80)90020-0 [13] Dobretsov, N. L., Berzin, N. A., Buslov, M. M., 1995. Opening and Tectonic Evolution of the Paleo-Asian Ocean. International Geology Review, 37(4): 335-360. https://doi.org/10.1080/00206819509465407 [14] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 [15] Frost, C. D., Frost, B. R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52(1): 39-53. https://doi.org/10.1093/petrology/egq070 [16] Gao, J. G., Li, W. Y., Liu, J. C., et al., 2014. Geochemistry, Zircon U-Pb Age and Hf Isotopes of Late Carboniferous Rift Volcanic in the Sepikou Region, Eastern Bogda, Xinjiang. Acta Petrologica Sinica, 30(12): 3539-3552(in Chinese with English abstract). [17] Gu, L. X., Hu, S. X., Yu, C. S., et al., 2001. Intrusive Activities during Compression-Extension Tectonic Conversion in the Bogda Intracontinental Orogen. Acta Petrologica Sinica, 17(2): 187-198(in Chinese with English abstract). [18] Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432: 892-897. https://doi.org/10.1038/nature03162 [19] Gervasoni, F., Klemme, S., Rocha-Júnior, E. R. V., et al., 2016. Zircon Saturation in Silicate Melts: A New and Improved Model for Aluminous and Alkaline Melts. Contributions to Mineralogy and Petrology, 171(3): 1-12. https://doi.org/10.1007/s00410-016-1227-y [20] Han, B. F., He, G. Q., Wang, S. G., et al., 1998. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xinjiang. Geological Review, 44(4): 396-406(in Chinese with English abstract). [21] Han, B. F., Wang, S. G., Jahn, B. M., et al., 1997. Depleted-Mantle Source for the Ulungur River A-Type Granites from North Xinjiang, China: Geochemistry and Nd-Sr Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Chemical Geology, 138(3-4): 135-159. https://doi.org/10.1016/s0009-2541(97)00003-x [22] Han, Y. G., Zhao, G. C., 2018. Final Amalgamation of the Tianshan and Junggar Orogenic Collage in the Southwestern Central Asian Orogenic Belt: Constraints on the Closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129-152. https://doi.org/10.1016/j.earscirev.2017.09.012 [23] Huang, B., Fu, D., Kusky, T., et al., 2018. Sedimentary Provenance in Response to Carboniferous Arc-Basin Evolution of East Junggar and North Tianshan Belts in the Southwestern Central Asian Orogenic Belt. Tectonophysics, 722: 324-341. https://doi.org/10.1016/j.tecto.2017.11.015 [24] Huang, W., 2014. Geochoronology, Geochemistry and Origin of Carboniferous-Permian Alkali Granites in Eastern Tianshan, Hami, NW China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [25] Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73-100. https://doi.org/10.1144/gsl.sp.2004.226.01.05 [26] Jahn, B. M., Wu, F. Y., Hong, D. W., 2000. Important Crustal Growth in the Phanerozoic: Isotopic Evidence of Granitoids from East-Central Asia. Journal of Earth System Science, 109(1): 5-20. https://doi.org/10.1007/bf02719146 [27] Jian, P., Kröner, A., Windley, B. F., et al., 2010. Zircon Ages of the Bayankhongor Ophiolite Mélange and Associated Rocks: Time Constraints on Neoproterozoic to Cambrian Accretionary and Collisional Orogenesis in Central Mongolia. Precambrian Research, 177(1-2): 162-180. https://doi.org/10.1016/j.precamres.2009.11.009 [28] Kerr, A., Fryer, B. J., 1993. Nd Isotope Evidence for Crust-Mantle Interaction in the Generation of A-Type Granitoid Suites in Labrador, Canada. Chemical Geology, 104(1-4): 39-60. https://doi.org/10.1016/0009-2541(93)90141-5 [29] King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371 [30] Konopelko, D., Biske, G., Seltmann, R., et al., 2007. Hercynian Post-Collisional A-Type Granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan. Lithos, 97(1-2): 140-160. https://doi.org/10.1016/j.lithos.2006.12.005 [31] Le Maitre, R. W. B., Dudek, P., Keller, A., et al., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences. Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific, Oxford. [32] Li, H. O., Jiang, M., Wang, Y. J., et al., 2006. Image of Crust and Upper Mantle Structure along the Array from Fuyun to Kuerle by P-to-S Converted Waves. Acta Geologica Sinica, 80(1): 135-141(in Chinese with English abstract). [33] Li, J. F., Fu, J. M., Ma, C. Q., et al., 2021. Zircon U-Pb Ages, Geochemical Characteristics and Geological Significance of Jinjiling Pluton in Nanling. Earth Science, 46(4): 1231-1247(in Chinese with English abstract). [34] Li, J. Y., Wang, K. Z., Sun, G. H., et al., 2006. Paleozoic Active Margin Slices in the Southern Turfan-Hami Basin: Geological Records of Subduction of the Paleo-Asian Ocean Plate in Central Asian Regions. Acta Petrologica Sinica, 22(5): 1087-1102(in Chinese with English abstract). [35] Li, J. Y., Yang, T. N., Li, Y. P., et al., 2009. Geological Features of the Karamaili Faulting Belt, Eastern Junggar Region, Xinjiang, China and Its Constraints on the Reconstruction of Late Paleozoic Ocean-Continental Framework of the Central Asian Region. Geological Bulletin of China, 28(12): 1817-1826(in Chinese with English abstract). [36] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [37] Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs, 11: 468. [38] Ludwig, K. R., 2003. User's Manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, Berkeley. [39] Luo, T., Liao, Q. A., Zhang, X. H., et al., 2016. Geochronology and Geochemistry of Carboniferous Metabasalts in Eastern Tianshan, Central Asia: Evidence of a Back-Arc Basin. International Geology Review, 58(6): 756-772. https://doi.org/10.1080/00206814.2015.1114433 [40] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 [41] Mao, Q. G., Yu, M. J., Xiao, W. J., et al., 2018. Skarn-Mineralized Porphyry Adakites in the Harlik Arc at Kalatage, E. Tianshan (NW China): Slab Melting in the Devonian-Early Carboniferous in the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 365-378. https://doi.org/10.1016/j.jseaes.2017.03.021 [42] Mao, Q. G., Xiao, W. J., Fang, T. H., et al., 2014. Geochronology, Geochemistry and Petrogenesis of Early Permian Alkaline Magmatism in the Eastern Tianshan: Implications for Tectonics of the Southern Altaids. Lithos, 190-191: 37-51. https://doi.org/10.1016/j.lithos.2013.11.011 [43] Mao, Q. G., Xiao, W. J., Han, C. M., et al., 2008. Late Paleozoic South-ward Accretionary Polarity of the Eastern Junggar Orogenic Belt: Insight from the Dajiashan and Other A-Type Granites. Acta Petrologica Sinica, 24(4): 733-742(in Chinese with English abstract). [44] Martin, R. F., 2006. A-Type Granites of Crustal Origin Ultimately Result from Open-System Fenitization-Type Reactions in an Extensional Environment. Lithos, 91(1-4): 125-136. https://doi.org/10.1016/j.lithos.2006.03.012 [45] Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2 doi: 10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2 [46] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [47] Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891 [48] Şengör, A. M. C., Natal'In, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364: 299-307. https://doi.org/10.1038/364299a0 [49] Skjerlie, K. P., Johnston, A. D., 1992. Vapor-Absent Melting at 10 kbar of A Biotite- and Amphibole-Bearing Tonalitic Gneiss: Implications for the Generation of A-Type Granites. Geology, 20(3): 263-266. https://doi.org/10.1130/0091-7613(1992)0200263:vamako>2.3.co;2 doi: 10.1130/0091-7613(1992)0200263:vamako>2.3.co;2 [50] Song, P., Tong, Y., Wang, T., et al., 2018. Zircon U-Pb Ages, Genetic Evolution and Geological Significance of Carboniferous Granites in the Harlik Mountain, East Tianshan, Xinjiang. Geological Bulletin of China, 37(5): 790-804(in Chinese with English abstract). [51] Su, Y. P., Tang, H. F., 2005. Trace Element Geochemistry of A-Type Granites. Bulletin of Mineralogy, Petrology and Geochemistry, 24(3): 245-251(in Chinese with English abstract). [52] Su, Y. P., Tang, H. F., Sylvester, P. J., et al., 2007. Petrogenesis of Karamaili Alkaline A-Type Granites from East Junggar, Xinjiang (NW China) and Their Relationship with Tin Mineralization. Geochemical Journal, 41(5): 341-357. https://doi.org/10.2343/geochemj.41.341 [53] Sun, G. H., 2007. Structural Deformation and Tectonic Evolution of Harlik Mountain, in Xinjiang since the Paleozoic(Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [54] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [55] Sylvester, P. J., 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261-280. https://doi.org/10.1086/629302 [56] Tian, J., Liao, Q. A., Fan, G. M., et al., 2015. The Discovery and Tectonic Implication of Early Carboniferous Post-Collisional I-Type Granites from the South of Karamaili in Eastern Junngar. Acta Petrologica Sinica, 31(5): 1471-1484(in Chinese with English abstract). [57] Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. https://doi.org/10.1016/0024-4937(92)90029-x [58] Wang, G. C., Zhang, M., Feng, J. L., et al., 2019. New Understanding of the Tectonic Framework and Evolution during the Neoproterozoic-Paleozoic Era in the East Tianshan Mountains. Journal of Geomechanics, 25(5): 798-819(in Chinese with English abstract). [59] Wang, C. S., Gu, L. X., Zhang, Z. Z., et al., 2009. Petrogenesis and Geological Implications of the Permian High-K Calc-Alkaline Granites in Harlik Mountains of Eastern Tianshan, NW China. Acta Petrologica Sinica, 25(6): 1499-1511(in Chinese with English abstract). [60] Wang, F. M., Liao, Q. A., Fan, G. M., et al., 2014. Geological Implications of Unconformity between Upper and Middle Devonian, and 346.8 Ma Post-Collision Volcanic Rocks in Karamaili, Xinjiang. Earth Science, 39(9): 1243-1257(in Chinese with English abstract). [61] Wang, L. Y., Liao, Q. A., Xiao, D., et al., 2016. Petrogenesis and Tectonic Significance of Early Carboniferous A-Type Grainte in Harlik, Xinjiang. Journal of Geomechanics, 22(4): 1032-1048(in Chinese with English abstract). [62] Wang, T., Jahn, B. M., Kovach, V. P., et al., 2009. Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt. Lithos, 110(1-4): 359-372. https://doi.org/10.1016/j.lithos.2009.02.001 [63] Wang, Z. X., Li, T., Zhang, J., et al., 2008. The Uplifting Process of the Bogda Mountain during the Cenozoic and Its Tectonic Implication. Science in China: Earth Sciences, 51(4): 579-593. https://doi.org/10.1007/s11430-008-0038-z [64] Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x [65] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 [66] Windley, B. F., Allen, M. B., Zhang, C., et al., 1990. Paleozoic Accretion and Cenozoic Redeformation of the Chinese Tien Shan Range, Central Asia. Geology, 18(2): 128-131. https://doi.org/10.1130/0091-7613(1990)0180128:paacro>2.3.co;2 doi: 10.1130/0091-7613(1990)0180128:paacro>2.3.co;2 [67] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 [68] Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth: U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 328(1-2): 89-113. https://doi.org/10.1016/s0040-1951(00)00179-7 [69] Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238(in Chinese with English abstract). [70] Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. doi: 10.1016/S0009-2541(02)00018-9 [71] Xia, L. Q., Li, X. M., 2020. Revisiting the Tectonic Setting of the Carboniferous Volcanic Rocks in the Chinese Tianshan and Its Neighboring Areas. Gondwana Research, 84: 1-19. https://doi.org/10.1016/j.gr.2019.10.009 [72] Xia, L. Q., Xia, Z. C., Xu, X. Y., et al., 2004. Carboniferous Tianshan Igneous Megaprovince and Mantle Plume. Regional Geology of China, 23(9): 903-910(in Chinese with English abstract). [73] Xiao, B., Chen, H. Y., Hollings, P., et al., 2017. Magmatic Evolution of the Tuwu-Yandong Porphyry Cu Belt, NW China: Constraints from Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Gondwana Research, 43: 74-91. https://doi.org/10.1016/j.gr.2015.09.003 [74] Xiao, D., Zhao, X. Y., Liao, Q. A., et al., 2020. Early Palaeozoic Arc-Related Gabbro-Diorite Suite in East Junggar, Southern Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications. International Geology Review, 62(9): 1205-1223. https://doi.org/10.1080/00206814.2019.1641852 [75] Xiao, W. J., Han, C. M., Yuan, C., et al., 2008. Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117. https://doi.org/10.1016/j.jseaes.2007.10.008 [76] Xiao, W. J., Windley, B. F., Badarch, G., et al., 2004. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 161(3): 339-342. https://doi.org/10.1144/0016-764903-165 [77] Xu, Q. Q., Zhao, L., Niu, B. G., et al., 2020. Early Paleozoic Arc Magmatism in the Kalamaili Orogenic Belt, Northern Xinjiang, NW China: Implications for the Tectonic Evolution of the East Junggar Terrane. Journal of Asian Earth Sciences, 194: 104072. https://doi.org/10.1016/j.jseaes.2019.104072 [78] Xu, X. W., Jiang, N., Li, X. H., et al., 2013. Tectonic Evolution of the East Junggar Terrane: Evidence from the Taheir Tectonic Window, Xinjiang, China. Gondwana Research, 24(2): 578-600. https://doi.org/10.1016/j.gr.2012.11.007 [79] Yuan, C., Sun, M., Wilde, S., et al., 2010. Post-Collisional Plutons in the Balikun Area, East Chinese Tianshan: Evolving Magmatism in Response to Extension and Slab Break-Off. Lithos, 119(3-4): 269-288. https://doi.org/10.1016/j.lithos.2010.07.004 [80] Zhang, C. L., Xu, Y. G., Li, Z. X., et al., 2010. Diverse Permian Magmatism in the Tarim Block, NW China: Genetically Linked to the Permian Tarim Mantle Plume? Lithos, 119(3-4): 537-552. https://doi.org/10.1016/j.lithos.2010.08.007 [81] Zhang, H. F., Gao, S., Zhong, Z. Q., et al., 2002. Geochemical and Sr-Nd-Pb Isotopic Compositions of Cretaceous Granitoids: Constraints on Tectonic Framework and Crustal Structure of the Dabieshan Ultrahigh-Pressure Metamorphic Belt, China. Chemical Geology, 186(3-4): 281-299. https://doi.org/10.1016/s0009-2541(02)00006-2 [82] Zhang, Y. Y., Yuan, C., Long, X. P., et al., 2017. Carboniferous Bimodal Volcanic Rocks in the Eastern Tianshan, NW China: Evidence for Arc Rifting. Gondwana Research, 43: 92-106. https://doi.org/10.1016/j.gr.2016.02.004 [83] Zhang, Y. Y., Sun, M., Yuan, C., et al., 2018. Alternating Trench Advance and Retreat: Insights from Paleozoic Magmatism in the Eastern Tianshan, Central Asian Orogenic Belt. Tectonics, 37(7): 2142-2164. https://doi.org/10.1029/2018tc005051 [84] Zhao, H., Liao, Q. A., Li, S. Z., et al., 2020. Early Paleozoic Tectonic Evolution and Magmatism in the Eastern Tianshan, NW China: Evidence from Geochronology and Geochemistry of Volcanic Rocks. Gondwana Research. https://doi.org/10.1016/j.gr.2019.12.016 [85] Zhao, H., Liao, Q. A., Luo, T., et al., 2018. Geochemistry and Geological Implications of Two Sets of Devonian Volcanic Rocks in South Margin of East Junggar. Earth Science, 43(2): 371-388(in Chinese with English abstract). [86] Zhao, Y., Zhang, P., Bi, Z. W., et al., 2020. Geochronology and Geochemistry of Two Types of Paleoproterozoic Granites and Their Geological Implications in the Xiuyan Area, Liaodong Peninsula. Earth Science, 45(11): 4072-4090(in Chinese with English abstract). [87] 陈希节, 舒良树, 2010. 新疆哈尔里克山后碰撞期构造-岩浆活动特征及年代学证据. 岩石学报, 26(10): 3057-3064. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010017.htm [88] 高景刚, 李文渊, 刘建朝, 等, 2014. 新疆博格达东缘色皮口地区晚石炭世裂谷火山岩地球化学、锆石U-Pb年代学及Hf同位素研究. 岩石学报, 30(12): 3539-3552. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412006.htm [89] 顾连兴, 胡受奚, 于春水, 等, 2001. 博格达陆内碰撞造山带挤压-拉张构造转折期的侵入活动. 岩石学报, 17(2): 187-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102001.htm [90] 韩宝福, 何国琦, 王式洸, 等, 1998. 新疆北部后碰撞幔源岩浆活动与陆壳纵向生长. 地质论评, 44(4): 396-406. doi: 10.3321/j.issn:0371-5736.1998.04.009 [91] 黄伟, 2014. 东天山哈密地区石炭-二叠纪碱性花岗岩年代学、地球化学及成因(博士学位论文). 北京: 中国地质大学. [92] 李海鸥, 姜枚, 王亚军, 等, 2006. 新疆富蕴-库尔勒剖面接收函数方法获得的地壳上地幔结构成像. 地质学报, 80(1): 135-141. doi: 10.3321/j.issn:0001-5717.2006.01.015 [93] 李剑锋, 付建明, 马昌前, 等, 2021. 南岭金鸡岭岩体锆石U-Pb年龄、地球化学特征及地质意义. 地球科学, 46(4): 1231-1247. doi: 10.3799/dqkx.2020.170 [94] 李锦轶, 王克卓, 孙桂华, 等, 2006. 东天山吐哈盆地南缘古生代活动陆缘残片: 中亚地区古亚洲洋板块俯冲的地质记录. 岩石学报, 22(5): 1087-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605004.htm [95] 李锦轶, 杨天南, 李亚萍, 等, 2009. 东准噶尔卡拉麦里断裂带的地质特征及其对中亚地区晚古生代洋陆格局重建的约束. 地质通报, 28(12): 1817-1826. doi: 10.3969/j.issn.1671-2552.2009.12.014 [96] 毛启贵, 肖文交, 韩春明, 等, 2008. 东准噶尔地区晚古生代向南增生: 来自A型花岗岩的启示. 岩石学报, 24(4): 733-742. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804013.htm [97] 宋鹏, 童英, 王涛, 等, 2018. 新疆东天山哈尔里克山石炭纪花岗岩锆石U-Pb年龄、成因演化及地质意义. 地质通报, 37(5): 790-804. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201805004.htm [98] 苏玉平, 唐红峰, 2005. A型花岗岩的微量元素地球化学. 矿物岩石地球化学通报, 24(3): 245-251. doi: 10.3969/j.issn.1007-2802.2005.03.012 [99] 孙桂华, 2007. 新疆哈尔里克山古生代以来构造变形及构造演化(博士学位论文). 北京: 中国地质科学院. [100] 田健, 廖群安, 樊光明, 等, 2015. 东准噶尔卡拉麦里断裂以南早石炭世后碰撞花岗岩的发现及其地质意义. 岩石学报, 31(5): 1471-1484. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505021.htm [101] 王国灿, 张孟, 冯家龙, 等, 2019. 东天山新元古代—古生代大地构造格架与演化新认识. 地质力学学报, 25(5): 798-819. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905011.htm [102] 汪传胜, 顾连兴, 张遵忠, 等, 2009. 东天山哈尔里克山区二叠纪高钾钙碱性花岗岩成因及地质意义. 岩石学报, 25(6): 1499-1511. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906021.htm [103] 王富明, 廖群安, 樊光明, 等, 2014. 新疆卡拉麦里上-中泥盆统间角度不整合和346.8 Ma后碰撞火山岩的意义. 地球科学, 39(9): 1243-1257. doi: 10.3799/dqkx.2014.107 [104] 王良玉, 廖群安, 肖典, 等, 2016. 新疆哈尔里克早石炭世A型花岗岩的岩石成因及构造意义. 地质力学学报, 22(4): 1032-1048. doi: 10.3969/j.issn.1006-6616.2016.04.020 [105] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [106] 夏林圻, 夏祖春, 徐学义, 等, 2004. 天山石炭纪大火成岩省与地幔柱. 地质通报, 23(9): 903-910. doi: 10.3969/j.issn.1671-2552.2004.09.012 [107] 赵浩, 廖群安, 罗婷, 等, 2018. 东准噶尔南缘两套泥盆纪火山岩地球化学特征对比及其地质意义. 地球科学, 43(2): 371-388. doi: 10.3799/dqkx.2018.021 [108] 赵岩, 张朋, 毕中伟, 等, 2020. 辽东岫岩地区两类古元古代花岗岩年代学、地球化学及地质意义. 地球科学, 45(11): 4072-4090. doi: 10.3799/dqkx.2020.218