The Relationship between Fault Displacement and Damage Zone Width of the Paleozoic Strike-Slip Faults in Shunbei Area, Tarim Basin
-
摘要: 学者们对塔里木盆地顺北地区的下古生界走滑断裂带活动期次、发育时间、分段性和内部结构差异展开过一些研究,但尚未达成共识.厘清断距和断层宽度的分段差异.有助于对该地区走滑断裂展开更详细的研究.以200 m水平间距统计下古生界走滑断裂断距和断层宽度,采用线性拟合的方式落实断距与断层宽度之间的定量关系.结果表明:(1)顺北1号走滑断裂上覆志留系中的雁列正断层以T70界面为主要活动界面且以向上发育为主.顺北5号断裂T74界面的压脊活动在加里东中期Ⅰ幕开始并在加里东中期Ⅲ幕之前停止,对应上覆加里东晚期的地堑构造以T70为主要活动界面且主要向下发育.(2)以T74界面为基准,认为走滑断层断距(x)与断层宽度(y)呈良好的正相关关系.顺北1号断裂:y=42.206x+137.74,r2=0.7404;顺北5号断裂:y=0.072 6x2+15.85x+196.95,r2=0.774 9.相关系数受走滑断裂的分段性和晚期活动叠加影响.拉分活动容易产生更宽的破碎带.Abstract: The Lower Paleozoic No.1 and No.5 strike-slip faults in Shunbei area of Tarim Basin are hot spots for oil and gas exploration at present. It is of great significance to characterize the structure of strike-slip fault zone for exploration and development. The vertical fault spacing and fault width of the Lower Paleozoic were calculated with 200 m vertical interval, and the quantitative relationship between the vertical fault spacing and fault width was established. The results showed that: (1) T74 is the main interface and top-down development in middle Caledonian Ⅲ episode of SB1 strike-slip faults; The en-echelon normal faults are mainly developed in T70 with bottom to top development. T74 is the main interface pressure ridge segment development activities during the middle Caledonian Ⅲ episode in SB5 faults, bottom-up inheritance deformation to T63 interface; In the late Caledonian period, the whole pull-apart activity occurred, and from the T70 interface, the main fault surface was connected with the pressure ridge structure in the form of graben structure and inherited. (2)There is a positive correlation between the vertical fault distance (x) and the fault damage zone width (y) of the strike-slip faults in Shunbei area. Shunbei No.1 fault: y=42.206x+137.74, R2=0.740 4;Shunbei No.5 fault: y=0.072 6x2+15.85x+196.95, R2=0.774 9.
-
Key words:
- strike-slip fault /
- fault displacement /
- damage zone width /
- segmented differences /
- Shunbei area /
- Tarim Basin /
- tectonics
-
图 4 SB F5走滑断裂带典型花状构造剖面特征
剖面位置如图 3左所示
Fig. 4. The typical flower structure on seismic profiles of SB F5 strike⁃slip fault
图 5 SB F1断裂带典型花状构造剖面
剖面位置如图 2左所示
Fig. 5. The typical flower structure on seismic profiles of SB F1 fault
图 6 SB F1断裂带走滑断层落差沿走向变化
剖面号位置见图 2
Fig. 6. The vertical displacement of strike⁃slip fault of SB F1 from SW to NE
图 8 SB F5走滑断裂下古生界各界面上升断距
剖面号位置见图 3
Fig. 8. The vertical uplifting displacement of each boundaries of the Lower Paleozoic of SB F5 strike⁃slip fault
图 9 SB F5走滑断裂下古生界各界面下降断距
剖面号位置见图 3
Fig. 9. The vertical declining displacement of each boundaries of the Lower Paleozoic of SB F5 strike⁃slip fault
-
[1] Bao, D., Zhang, H.T., 2017. Description of the Separation in Fault-Karst Carbonate Reservoirs in TAHE Oilfield. Xinjiang Oil & Gas, 13(1): 25-30(in Chinese with English abstract). [2] Bastesen, E., Braathen, A, 2010. Extensional Faults in Fine Grained Carbonates: Analysis of Fault Core Lithology and Thickness-Displacement Relationships. Journal of Structural Geology, 32(11): 1609-1628. https://doi.org/10.1016/j.jsg.2010.09.008 [3] Billi, A., Salvini, F., Storti, F, 2003. The Damage Zone-Fault Core Transition in Carbonate Rocks: Implications for Fault Growth, Structure and Permeability. Journal of Structural Geology, 25(11): 1779-1794. https://doi.org/10.1016/S0191-8141(03)00037-3 [4] Chang, S.Y., Zhuang, X.J., Deng, X.L., et al., 2017. Fault-Karst Carbonate Reservoir Prediction: a Case Study in Ordovician Buried Hills, HLHT Oilfield. Oil Geophysical Prospecting, 52(S1): 199-206, 13(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=SYDQ2017S1033&dbcode=CJFD&year=2017&dflag=pdfdown [5] Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: aReview and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006 [6] Deng, S., Li, H. L., Han, J., et al., 2019. Characteristics of the Central Segment of Shunbei 5 Strike-Slip Fault in Tarim Basin and Its Geological Significance. Oil & Gas Geology, 40(5): 990-998(in Chinese with English abstract). [7] Deng, S., Li, H. L., Zhang, Z. P., et al., 2019. Structural Characterization of Intracratonic Strike-Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354 [8] Deng, S., Li, H.L., Zhang, Z.P., et al., 2018. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5): 878-888(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201805004.htm [9] Han, X. Y., Tang, L. J., Cao, Z. C. et al., 2018. Characteristics and Formation Mechanism of Composite Flower Structures in Northern Slope of Tazhong Uplift, Tarim Basin. Earth Science, 43(2): 525-537(in Chinese with English abstract). [10] Huang, C., 2019. Multi-Stage Activity Characteristics of Small-Scale Strike-Slip Faults in Superimposed Basin and ItsIdentification Method: a Case Study of Shunbei Area, Tarim Basin. Petroleum Geology & Ecperiment, 41(3): 379-389(in Chinese with English abstract). [11] Huang, L., Liu, C. Y., 2019. Genesis and Significance of Hybrid Flower Structure in a Transnational Fault Zone. Acta Petrolei Sinica, 40(12): 1460-1469(in Chinese with English abstract). [12] Jiao, F. Z, 2018. Significance and Prospect of Ultra-Deep Carbonate Fault-Karst Reservoirs in Shunbei Area, Tarim Basin. Oil & Gas Geology, 39(2): 207-216(in Chinese with English abstract). http://www.researchgate.net/publication/325534119_Significance_and_prospect_of_ultra-deep_carbonate_fault-karst_reservoirs_in_Shunbei_area_Tarim_Basin [13] Li, P. J., Chen, H. H., Tang, D. Q., et al., 2017. Coupling Relationship between NE Strike-Slip Faults and Hypogenic Karstification in Middle-Lower Ordovician of Shunnan Area, Tarim Basin, Northwest China. Earth Science, 42(1): 93-104(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201701008.htm [14] Li, P.F., Cui, D.Y., Tian, H. N, 2017. Fault-Karst Carbonate Reservoir Description with GeoEast Interpretation Sub-System in the Tabei Area, Tarim Basin. Oil Geophysical Prospecting, 52(S1): 189-194, 13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ2017S1031.htm [15] Liu, B. Z., Qi, L. X., Li, Z. J., et al., 2020. Spatial Characterization and Quantitative Description Technology for Ultra-Deep Fault-Karst Reservoirs in the Shunbei Area. Acta Petrolei Sinica, 41(4): 412-420(in Chinese with English abstract). [16] Lu, X.B., Hu, W.G., Wang, Y., et al., 2015. Characteristics and Development Practice of Fault-Karst Carbonate Reservoirs in Tahe Area, Tarim Basin. Oil & Gas Geology, 36(3): 347-355(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/syytrqdz201503001 [17] Qi, L. X., 2020. Characteristics and Inspiration of Ultra-Deep Fault-Karst Reservoir in The Shunbei Area of the Tarim Basin. China Petroleum, 25(1): 102-111(in Chinese with English abstract). [18] Wang, X., Wang, G.M., Liu, D.Q., et al., 2012. Analysis of Seismic Volume Attributes and Their Application. Oil Geophysical Prospecting, 47(S1): 45-49, 165, 162(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=SYDQ2012S1010&dbcode=CJFD&year=2012&dflag=pdfdown [19] Wang, Y.W., Chen, H.H., Cao, Z.C., et al., 2019. Forming Mechanism of Ordovician Microbial Carbonate Reservoir in Northern Slope of Tazhong Uplift, Tarim Basin. Earth Science, 44(2): 559-571(in Chinese with English abstract). [20] Wang, Z., Wen, H., Deng, G.X., et al., 2019. Fault-Karst Characterization Technology in the Tahe Oilfield, China. Geophysical Prospectingfor Petroleum, 58(1): 149-154(in Chinese with English abstract). [21] Welbon, A. I., Brockbank, P. J., McCallum, J. E., etal., 1999. Reservoir Damage around Faults; Outcrop Examples from the Suez Rift. Petroleum Geoscience, 5(2): 109-116. https://doi.org/10.1144/petgeo.5.2.109 [22] Wibberley, C. A.J., Yielding, G., diToro, G., 2008. Recent Advances in the Understanding of Fault Zone Internal Structure: a Review. Geological Society, London, Special Publications, 299(1): 5-33. https://doi.org/10.1144/sp299.2 [23] Xu, H.X., Shen, C.G., Li, B., et al., 2017. Fault-Karst Carbonate Reservoir Prediction with Comprehensive Multi-Attribute Analysis. Oil Geophysical Prospecting, 52(S2): 158-163, 8(in Chinese with English abstract). [24] Yuan, Y. X., 2020. Study on the Characteristics of Strike-Slip Faults in the North Section of No. 5 Shunbei and Its Controlling and Storage Effect(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [25] 鲍典, 张慧涛, 2017. 塔河油田碳酸盐岩断溶体油藏分隔性描述方法研究. 新疆石油与天然气, 13(1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201701006.htm [26] 常少英, 庄锡进, 邓兴梁, 等, 2017. 断溶体油藏离效井预测方法与应用效果——以HLHT油田奥陶系潜山区为例. 石油地球物理勘探, 52(S1): 199-206. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2017S1033.htm [27] 邓尚, 李慧莉, 韩俊, 等, 2019. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义. 石油与天然气地质, 40(5): 990-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905004.htm [28] 邓尚, 李慧莉, 张仲培, 等, 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集关系. 石油与天然气地质, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm [29] 韩晓影, 汤良杰, 曹自成, 等, 2018. 塔中北坡"复合花状"构造发育特征及成因机制. 地球科学, 43(2): 525-537. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802014.htm [30] 黄诚, 2019. 叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别-以塔里木盆地顺北地区为例. 石油实验地质, 41(3): 379-389. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201903012.htm [31] 黄雷, 刘池洋, 2019. 张扭断裂带内复合花状构造的成因与意义. 石油学报, 40(12): 1460-1469. doi: 10.7623/syxb201912005 [32] 焦方正, 2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景. 石油与天然气地质, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm [33] 李培军, 陈红汉, 唐大卿, 等, 2017. 塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系. 地球科学, 42(1): 93-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201701008.htm [34] 李鹏飞, 崔德育, 田浩男, 2017. 塔里木盆地塔北地区X区块断溶体刻画方法与效果. 石油地球物理勘探, 52(S1): 189-194. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2017S1031.htm [35] 刘宝增, 漆立新, 李宗杰, 等, 2020. 顺北地区超深层断溶体储层空间雕刻及量化描述技术. 石油学报, 41(4): 412-420. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004006.htm [36] 鲁新便, 胡文革, 汪彦, 等, 2015. 塔河地区碳酸盐岩断溶体油藏特征与开发实践. 石油与天然气地质, 36(3): 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503003.htm [37] 漆立新, 2020. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探, 25(1): 102-111. doi: 10.3969/j.issn.1672-7703.2020.01.010 [38] 王霞, 汪关妹, 刘东琴, 等, 2012. 地震体属性分析技术及应用. 石油地球物理勘探, 47(S1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2012S1010.htm [39] 王玉伟, 陈红汉, 曹自成, 等, 2019. 塔里木盆地塔中北坡奥陶系微生物碳酸盐岩储层形成机制与评价. 地球科学, 44(2): 209-221. doi: 10.3969/j.issn.1672-6561.2019.02.007 [40] 王震, 文欢, 邓光校, 等, 2019. 塔河油田碳酸盐岩断溶体刻画技术研究与应用. 石油物探, 58(1): 149-154. doi: 10.3969/j.issn.1000-1441.2019.01.017 [41] 徐红霞, 沈春光, 李斌, 等, 2017. 多属性分析技术在碳酸盐岩断溶体预测中的应用. 石油地球物理勘探, 52(S2): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2017S2027.htm [42] 苑雅轩, 2020. 顺北5号北段走滑断裂特征及其控储作用研究(博士毕业论文). 北京: 中国地质大学.