Statistics Analysis of Illite 40Ar-39Ar Ages and Petroleum Accumulation Period
-
摘要: 为了确定鄂尔多斯盆地苏里格气田的成藏年代,通过提取砂岩储层中的黏土质填隙物,分离分级成 < 0.5、0.5~1.0、1.0~2.0μm的分样品,进行伊利石激光阶段加热40Ar-39Ar定年.等时线年龄是自生伊利石与碎屑伊利石的混合年龄.通过趋势分析和回归分析分别获得极小的趋势年龄和极小的回归年龄,该年龄比较接近自生伊利石年龄.测试结果表明,伊利石的等时线年龄介于160.9~232.0 Ma之间,为自生伊利石与碎屑伊利石的混合年龄.采用数理统计方法获得极小趋势年龄和极小回归年龄分别为151.7 Ma和152.4 Ma,该年龄比较接近自生伊利石年龄,代表了热流体活动和油气成藏时间.Abstract: For determining the hydrocarbon accumulation ages of Sulige gas field in the Ordos basin, pore-filling clay materials were extracted from reservoir sandstones and separated into frictions of < 0.5, 0.5-1.0 and 1.0-2.0 μm, then 40Ar-39Ar dating of illite was dealt with laser step-heating. The isochron age is a mixed age of authigenic illite and detrital illite. Through trend analysis and regression analysis, minimum trend age and minimum regression age are obtained, which are more close to authigenic illite ages. The result shows that the isochron ages of illite minerals range from 163.1 Ma to 224.3 Ma, which are the mixed ages of authigenic illite and detrital illite. Based on mathematical statistics method, the minimum trend age and the minimum regression age are extrapolated to be 151.7 Ma and 152.4 Ma, respectively, which are supposed to be more close to authigenic illite ages, representing the time of thermal fluid activity and hydrocarbon accumulation.
-
Key words:
- 40Ar-39Ar method /
- illite /
- hydrocarbon accumulation process /
- isochron age /
- age spectrum /
- petroleum geology
-
图 1 鄂尔多斯盆地和苏里格气田中二叠统下石盒子组储集层特征
a. 鄂尔多斯盆地大地构造背景(Yang et al.,2005);b. 鄂尔多斯盆地中二叠统下石盒子组沉积相平面图及含砂率图(据陈全红,2007修改);c. 过采样井剖面图及苏里格气田局部砂体厚度图(位置见b图蓝虚线方框);据刘锐娥(2004)、杨华等(2006)修改
Fig. 1. Reservoir characteristics of Lower Shihezi Formation of the Middle Permian in the Ordos basin and Sulige gas field
表 1 等时线年龄统计表(Ma)
Table 1. Statistics of isochron ages(Ma)
样品 1~2 μm 0.5~1.0 μm < 0.5 μm S4-2 161.3 166.7 160.9 S6-1 165.1 172.5 169.8 S6-3 191.4 176.7 182.9 S18-1 229.4 216.5 193.0 S18-2 232.0 229.7 218.7 -
[1] Bai, X. J., Qiu, H. N., Liu, W. G., et al., 2018. Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS Ⅵ Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus. Journal of Earth Science, 29(2): 408-415. https://doi.org/10.1007/s12583-017-0948-9 [2] Chen, Q. H., 2007. Research on Sedimentary Systems and Hydrocarbon Enrichment of the Upper Paleozoic of the Ordos Basin(Dissertation). Northwest University, Xi'an(in Chinese with English abstract). [3] Clauer, N., Zwingmann, H., Liewig, N., Wendling, R., 2012. Comparative 40Ar/39Ar and K-Ar Dating of Illite-Type Clay Minerals: A Tentative Explanation for Age Identities and Differences. Earth-Science Reviews, 115: 76-96. https://doi.org/10.1016/j.earscirev.2012.07.003 [4] Dong, H. L., Hall, C. M., Peacor, D. R., et al., 1995. Mechanisms of Argon Retention in Clays Revealed by Laser 40Ar-39Ar Dating. Science, 267 (5196): 355-359. https://doi.org/10.1126/science.267.5196.355 [5] Fitz-Díaz, E., Hall, C. M., van der Pluijm, B. A., 2016. XRD-Based 40Ar/39Ar Age Correction for Fine-Grained Illite, with Application to Folded Carbonates in the Monterrey Salient (Northern Mexico). Geochimica et Cosmochimica Acta, 181: 201-216. https://doi.org/10.1016/j.gca.2016.02.004 [6] Gorokhov, I.M., Zaitseva, T.S., Kuznetsov, A.B., et al., 2019. Isotope Systematics and Age of Authigenic Minerals in Shales of the Upper Riphean Inzer Formation, South Urals. Stratigraphy and Geological Correlation, 27(2): 133-158. https://doi.org/10.1134/S0869593819020035 [7] Hamilton, P. J., Giles, M. R., Ainsworth, P., 1992. K-Ar Dating of Illites in Brent Group Reservoir: a Regional Perspective. In: Morton, A. C., Hazeldine, R. S., Giles, M. R., eds., Geology of the Brent Group. London, Special Publication of Geological Society, 61.377-400. https://doi.org/10.1144/gsl.sp.1992.061.01.19 [8] Hamilton, P. J., Kelly, S., Fallick, A. E., 1989. K-Ar Dating of Illite in Hydrocarbon Reservoirs. Clay Minerals, 24: 215-231. https://doi.org/10.1180/claymin.1989.024.2.08 [9] Hüpers, A., Grathoff, G., Warr, L. N., et al., 2019. Spatiotemporal Characterization of Smectite-to-Illite Diagenesis in the Nankai Trough Accretionary Prism Revealed by Samples from 3 km below Seafloor. Geochemistry, Geophysics, Geosystems, 20: 933-951. https://doi.org/10.1029/2018GC008015 [10] Kelley, S., 2002. K-Ar and Ar-Ar Dating. Reviews in Mineralogy and Geochemistry, 47(1): 785-818. https://doi.org/10.2138/rmg.2002.47.17 [11] Koppers, A. A. P., 2002. ArArCALC-Software for 40Ar/39Ar Age Calculations. Computers and Geosciences, 28(5): 605-619. https://doi.org/10.1016/S0098-3004(01)00095-4 [12] Kula, J., Spell, T.L., Zanetti, K.A., 2010. 40Ar/39Ar Analyses of Artificially Mixed Micas and the Treatment of Complex Age Spectra from Samples with Multiple Mica Populations. Chemical Geology, 275(1-2): 67-77. https://doi.org/10.1016/j.chemgeo.2010.04.015 [13] Lee, M., Aronson, J. L., Savin, S. M., 1985. K/Ar Dating of Time of Gas Emplacement in Rotliegendes Sandstone, Netherlands. AAPG Bulletin, 69(9): 1381-1385. https://doi.org/10.1306/ad462c68-16f7-11d7-8645000102c1865d [14] Li, W. H., Wei, H. H., Zhao, H., et al., 2002. Prediction of Oil-Bearing Facies Belts and Reservoir Characteristics of Permian System in Suligemiao Region. Journal of North west University (Natural Science Edition), (4): 335-340(in Chinese with English abstract). [15] Li, Z. D., Li, X. G., Cui, Y. R., et al., 2019. Yanshanian Mineralization of Zhaojinggou Nb-Ta Deposit, Inner Mongolia: Evidences from the Monazite and Zircon LA-MC-ICP-MS U-Pb and Biotite 40Ar-39Ar Geochronology. Earth Science, 44(1): 234-247(in Chinese with English abstract). [16] Liu, R. E., 2004. Forming Mechanism and Dominated Factors of the Reservoir of the Clastic Rock of the Upper Paleozoic in Northern Ordos Basin(Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [17] Liu, X. S., Zhou, L. F., Hou, Y. D., 2007. Study of Gas Charging in the Upper Paleozoic of Ordos Basin using Fluid Inclusion. Acta Petrolei Sinica, 28(6): 37-42(in Chinese with English abstract). [18] Liu, X., Ding, X. Q., Hersi, O. S., et al., 2020. Sedimentary Facies and Reservoir Characteristics of the Western Sulige Field Permian He 8 Tight Sandstones, Ordos Basin, China. Geological Journal, 55: 7818-7836. https://doi.org/10.1002/gj.3911 [19] Middleton, A. W., Uysal, I. T., Bryan, S. E., et al., 2014. Integrating 40Ar-39Ar, 87Rb-87Sr and 147Sm-143Nd Geochronology of Authigenic Illite to Evaluate Tectonic Reactivation in an Intraplate Setting, Central Australia. Geochimica et Cosmochimica Acta, 134: 155-174. https://doi.org/10.1016/j.gca.2014.02.048 [20] Onstott T.C., Miller M., and Ewing R. C., 1994. Recoil Refinements: Implications for the 40Ar/39Ar Dating Technique. Geochimica et Cosmochimica Acta, 59: 1821-1834. https://doi.org/10.1016/0016-7037(95)00085-E [21] Pevear, D. R., 1999. Illite and Hydrocarbon Exploration. Proceedings from the National Academy of Sciences, USA, 96(7): 3440-3446. https://doi.org/10.1073/pnas.96.7.3440 [22] Qiu, H. N., Bai, X. J., 2019. Fluid Inclusion 40Ar/39Ar Dating Technique and Its Applications. Earth Science, 44(3): 685-697. (in Chinese with English abstract). [23] Qiu, H. N., Bai, X. J., Liu, W. G., et al., 2015. Automatic 40Ar/39Ar Dating Technique Using Multicollector Argus Ⅵ MS with Homea-Made Apparatus. Geochimica, 44(5): 477-484. (in Chinese with English abstract). [24] Turner, G., and Cadogan, P.H., 1974. Possible Effects of 39Ar Recoil in 40Ar-39Ar Dating, in Proceedings, Lunar and Planetary Science Conference, 5th. Geochimica et Cosmochimica Acta, (S5): 1601-1615. [25] Van Laningham, S., Mark, D. F., 2011. Step Heating of 40Ar/39Ar Standard Mineral Mixtures: Investigation of a Fine-Grained Bulk Sediment Provenance Tool. Geochimica et Cosmochimica Acta 75: 2324-2335. https://doi.org/10.1016/j.gca.2011.01.038 [26] Villa I. M., 1997. Direct Determination of 39Ar Recoil Distance. Geochimica et Cosmochimica Acta, 61(3): 689-691. https://doi.org/10.1016/S0016-7037(97)00002-1 [27] Wang, L. Z., Dai, T. M., Peng, P. A., 2004. Experiment of the 40Ar/39Ar Dating of Diagenetic Illite in Gas Reservoirs. Chinese Science Bulletin, 49(S1): 89-93. https://doi.org/10.1007/bf02890459 [28] Wang, L. Z., Dai, T. M., Peng, P. A., 2005. 40Ar/39Ar Dating of Diagenetic Illites and Its Application in Timing Gas Emplacement in Gas Reservoirs. Earth Science, 30(1): 78-82 (in Chinese with English abstract). [29] Wang, L. Z., Wang L. Y., Peng, P. A., et al., 2018. A Thermal Event in the Ordos Basin: Insights from Illite 40Ar-39Ar Dating with Regression Analysis. Journal of Earth Science, 29(3): 629-638. https://doi.org/10.1007/s12583-017-0903-7 [30] Wang, S. F., Chen, M. N., Zhao, J. Z., 2021. Fluid Inclusion Characteristics and Paleo-Pressure Recovery of the He-8 Member in the Sulige Gas Field, Ordos Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 48(1): 94-99+120 (in Chinese with English abstract). [31] Xu, W., Duan, Z. Q., Zhao, Z. J., 2020. Quantitative Characterization of Paleochannel Sandbody Evolution in Dense Well Net Area of He 8th Layer of Su 6 Block in the Sulige Gasfield, Ordos Basin. China Science Paper, 15(1): 50-59 (in Chinese with English abstract). [32] Yang, H., Fu, J. H., Liu, X. S., 2012. Formation Conditions and Exploration Technology of Large-Scale Tight Sandstone Gas Reservoir in Sulige. Acta Petrolei Sinica, 33(S1): 27-36(in Chinese with English abstract). [33] Yang, H., Liu, X. S., Yan, X. X., 2015. The Relationship between Tectonic-Sedimentary Evolution and Tight Sandstone Gas Reservoir since the Late Paleozoic in Ordos Basin. Earth Science Frontiers, 22(3): 174-183(in Chinese with English abstract). [34] Yang, H., Xi, S. L., Wei, X. S., et al., 2006. Analysis on Gas Exploration Potential in Sulige Area of the Ordos Basin. Natural Gas Industry, (12): 45-48+195(in Chinese with English abstract). [35] Yang, Y. T., Li, W., Ma, L., 2005. Tectonic and Stratigraphic Controls of Hydrocarbon Systems in the Ordos Basin: A Multicycle Cratonic Basin in Central China. AAPG Bulletin, 89(2): 255-269. https://doi.org/10.1306/10070404027 [36] Yun, J. B., Shi, H. S., Zhu, J. Z., et al., 2010. Dating Petroleum Emplacement by Illite 40Ar/39Ar Laser Stepwise Heating. AAPG Bulletin, 94: 759-771. https://doi.org/10.1306/10210909102 [37] Zhang, W. Z., Guo, Y. R., Tang, D. Z., et al., 2009. Characteristics of Fluid Inclusions and Determination of Gas Accumulation Period in the Upper Paleozoic Reservoirs of Sulige Gas Field. Acta Petrolei Sinica, 30(5): 685-691(in Chinese with English abstract). [38] Zhang, Y. Y., Liu, K. Y., Luo, X. Q., 2016. Evaluation of 40Ar/39Ar Geochronology of Authigenic Illites in Determining Hydrocarbon Charge Timing: A Case Study from the Silurian Bituminous Sandstone Reservoirs, Tarim Basin, China. Acta Geologica Sinica (English Edition), 90(2): 684-703. https://doi.org/10.1111/1755-6724.12698 [39] Zhang, Y. Y., Luo, X. Q., Song, J., 2002. Discussions on K-Ar Isotopic Geochronological Studies of Authigenic Illites in Hydrocarbon Reservoirs. Geoscience, (4): 403-407(in Chinese with English abstract). [40] Zhang, Y. Y., Zwingmann, H., Liu, K. Y., et al., 2014. Perspective on the K/Ar and Ar/Ar Geochronology of Authigenic Illites: A Case Study from the Sulige Gas Field, Ordos Basin, China. Acta Petrolei. Sinica, 35(3): 407-416(in Chinese with English abstract). [41] Zhao, M. W., Ahrendt, H., Wemmer, K., et al., 1996. Silurian-Devonian and Jurassic Thermal Events in the Ordos Basin, China: Evidence from K-Ar Dating on Illites. Acta Geologica Sinica, (2): 186-194(in Chinese with English abstract). [42] Zhou, B., Dong, Y. P., Yang, Z., et al., 2020. Laser Fusion 40Ar-39Ar Dating Method Using Multi-Collector Noble Gas Mass Spectrometer Argus Ⅵ and Its Geological Application. Earth Science, 45(3): 804-814(in Chinese with English abstract). [43] 陈全红, 2007. 鄂尔多斯盆地上古生界沉积体系及油气富集规律研究(博士学位论文). 西安: 西北大学. [44] 李文厚, 魏红红, 赵虹, 等, 2002. 苏里格庙地区二叠系储层特征及有利相带预测. 西北大学学报(自然科学版), (4): 335-340. doi: 10.3321/j.issn:1000-274X.2002.04.003 [45] 李志丹, 李效广, 崔玉荣, 等, 2019. 内蒙古赵井沟锯钮矿床燕山期成矿: 来自LA-MC-ICP-MS独居石、锆石U-Pb和黑云母40Ar-39Ar年龄的证据. 地球科学, 44(1): 234-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201901018.htm [46] 刘锐娥, 2004. 鄂尔多斯盆地北部上古生界碎屑岩储层形成机理及主控因素研究(博士学位论文). 西安: 西北大学. [47] 刘新社, 周立发, 侯云东, 2007. 运用流体包裹体研究鄂尔多斯盆地上古生界天然气成藏. 石油学报, 28(6): 37-42. doi: 10.3321/j.issn:0253-2697.2007.06.008 [48] 邱华宁, 白秀娟, 2019. 流体包裹体40Ar/39Ar定年技术与应用. 地球科学, 44(3): 685-697. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903001.htm [49] 邱华宁, 白秀娟, 刘文贵, 等, 2015. 自动化40Ar/39Ar定年设备研制. 地球化学, 44(5): 477-484. doi: 10.3969/j.issn.0379-1726.2015.05.007 [50] 王龙樟, 戴橦谟, 彭平安, 2005. 自生伊利石40Ar/39Ar法定年技术及气藏成藏期的确定. 地球科学, 30(1): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501010.htm [51] 王少飞, 陈梦娜, 赵靖舟, 等, 2021. 苏里格气区盒8段流体包裹体特征及古压力恢复. 成都理工大学学报(自然科学版), 48(1): 94-99+120. doi: 10.3969/j.issn.1671-9727.2021.01.10 [52] 徐文, 段志强, 赵忠军, 等, 2020. 鄂尔多斯盆地苏里格气田苏6区块盒8段密集井网区古河道砂体定量化表征. 中国科技论文, 15(1): 50-59. doi: 10.3969/j.issn.2095-2783.2020.01.008 [53] 杨华, 付金华, 刘新社, 等, 2012. 苏里格大型致密砂岩气藏形成条件及勘探技术. 石油学报, 33(S1): 27-36. doi: 10.7623/syxb2012S1005 [54] 杨华, 刘新社, 闫小雄, 2015. 鄂尔多斯盆地晚古生代以来构造-沉积演化与致密砂岩气成藏. 地学前缘, 22(3): 174-183. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503017.htm [55] 杨华, 席胜利, 魏新善, 等, 2006. 苏里格地区天然气勘探潜力分析. 天然气工业, (12): 45-48+195. doi: 10.3321/j.issn:1000-0976.2006.12.010 [56] 张文忠, 郭彦如, 汤达祯, 等, 2009. 苏里格气田上古生界储层流体包裹体特征及成藏期次划分. 石油学报, 30(5): 685-691. doi: 10.3321/j.issn:0253-2697.2009.05.009 [57] 张有瑜, Zwingmann, H., 刘可禹, 2014. 自生伊利石K-Ar、Ar-Ar测年技术对比与应用前景展望——以苏里格气田为例. 石油学报, 35(3): 407-416. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201403003.htm [58] 张有瑜, 罗修泉, 宋健, 2002. 油气储层中自生伊利石K-Ar同位素年代学研究若干问题的初步探讨. 现代地质, (4): 403-407. doi: 10.3969/j.issn.1000-8527.2002.04.011 [59] 赵孟为, Ahrendt, H., Wemmer, K., 等, 1996. 鄂尔多斯盆地志留-泥盆纪和侏罗纪热事件——伊利石K-Ar年龄证据. 地质学报, (2): 186-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199602008.htm [60] 周波, 董云鹏, 杨钊, 等, 2020. 基于多接收稀有气体质谱Argus Ⅵ的激光40Ar-39Ar测年方法及其地质应用. 地球科学, 45(3): 804-814. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003009.htm