ources of Ore-Forming Materials of Zimudang Gold Deposit in Southwest Guizhou, China: Constraints from S-C-O-Pb-Sr Isotope Geochemistry
-
摘要: 紫木凼金矿床是黔西南卡林型金矿区一个重要的大型金矿床,其成矿物质来源尚不明确.对紫木凼金矿床不同类型矿石和赋矿围岩进行了S、C、O、Pb和Sr同位素组成对比研究.矿石中硫化物的δ34S值为-13.49‰~17.91‰(主要为-0.99‰~3.58‰),赋矿围岩的δ34S值为-26.23‰~-19.63‰,矿床成矿期硫主要来源于岩浆,部分来源于赋矿地层中成矿前黄铁矿.热液期方解石的δ13C和δ18O分别为-9.10‰~0.59‰和15.65‰~23.82‰,与赋矿围岩、区域地层的碳、氧同位素组成差别较大,成矿流体的碳、氧部分来源于碳酸盐岩溶解,部分可能来源于岩浆.矿石中硫化物的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为18.064~18.973、15.585~15.670和38.219~39.054,赋矿围岩的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为18.136~18.650、15.574~15.656和38.423~38.812,矿石铅的来源较复杂,赋矿地层和岩浆可能都为其提供了部分铅.矿石中石英和方解石(87Sr/86Sr)i比值为0.707 26~0.708 11,赋矿围岩的(87Sr/86Sr)i比值为0.707 28~0.707 31,成矿流体中的锶主要来源于赋矿地层.紫木凼金矿床成矿物质具壳幔混合来源特征,成矿物质主要来自矿床深部隐伏岩浆岩,部分来自二叠系-三叠系赋矿地层.Abstract: The Zimudang gold deposit, part of the Southwest Guizhou Au metallogenic province, is an important large-size Carlin-type Au deposit. However, the sources of ore-forming materials of this deposit are still unclear. In this study, it systematically evaluated the S, C, O, Pb, and Sr isotopic compositions for various orebodies and host rocks of this deposit. δ34S values of sulfides from orebodies range from -13.49‰ to 17.91‰, with peaks ranging from -0.99‰ to 3.58‰, while those of host rocks range from -26.23‰ to -19.63‰, which indicates that the sulfur in the ore-forming period mainly derived from magma and partially from pre-mineralization pyrites in the host-strata. δ13C and δ18O values of hydrothermal calcites range from -9.10‰ to 0.59‰ and 15.65‰ to 23.82‰, respectively, which are different from those of host rocks and regional strata, suggesting that the C and O in ore-forming fluids were partially from carbonate rocks (via dissolution) and might be partially from magma. Pb isotopic ratios of 206Pb/204Pb, 207Pb/204Pb and208Pb/204Pb for sulfide minerals from orebodies are 18.064 to 18.973, 15.585 to 15.670 and 38.219 to 39.054, respectively, and those for host rocks are 18.136 to 18.650, 15.574 to 15.656 and 38.423 to 38.812, respectively. These Pb isotopic ratios show that the Pb in orebodies was not from a single source, but might be a combination source of host-strata and magma. Initial 87Sr/86Sr of quartzes and carbonates from orebodies and the host rocks are in ranges of 0.707 26-0.708 11 and 0.707 28-0.707 31, respectively, which illustrate that the Sr in ore-forming fluids was mainly from host-strata. These S, C, O, Pb, and Sr isotopic studies for the Zimudang Au deposit demonstrate that the ore-forming materials have a mantle-crust mixed origin-a main source of deep concealed mantle magma with a minor input from the Permian-Triassic host-strata.
-
图 1 黔西南区域地质简图(据Tan et al., 2015)
Fig. 1. Regional geological sketch map of Southwest Guizhou Province (modified from Tan et al., 2015)
图 5 紫木凼金矿床矿物镜下照片
a.草莓状黄铁矿和半自形黄铁矿(反射光);b.毒砂和粗、细粒黄铁矿共生(反射光);c.交代生物残骸的黄铁矿(背散射);d.石英中自形-半自形黄铁矿(反射光);e.方解石-石英裂隙内填充自形黄铁矿(透射单偏光);f.含砷黄铁矿(PyⅡ)穿插早阶段黄铁矿(PyⅠ),后被晚阶段雄黄交代(反射光);g.方解石和含砷黄铁矿被雄黄交代(背散射);h.含砷黄铁矿被雄黄交代(背散射);f.由低砷核部(PyⅡ1)和高砷增生边组成(PyⅡ2)的大颗粒黄铁矿(背散射);Apy.毒砂;Rel.雄黄;Py.黄铁矿;Qz.石英;Cal.方解石
Fig. 5. Microscopic photographs of minerals in the Zimudang gold deposit
图 6 紫木凼金矿床硫同位素频数图
除本文外,其他数据郭振春(1988);王泽鹏等(2013);彭义伟等(2014)
Fig. 6. Histogram of the S isotopic compositions of the Zimudang Au deposit
图 7 黔西南区域金矿床矿石硫同位素组成
据Hu et al.(2017);除本文外,部分数据彭义伟等(2014);郑禄林等(2019)
Fig. 7. Range of S isotopic compositions of several Au deposits in Southwest Guizhou region
图 8 紫木凼金矿床δ13CV-PDB-δ18OV-SMOW图解
底图据刘建明和刘家军(1997);刘家军等(2004)
Fig. 8. δ13CV-PDB-δ18OV-SMOW diagram of the Zimudang Au deposit
图 10 紫木凼金矿床铅构造模式图
a.208Pb/204Pb-206Pb/204Pb图;b.207Pb/204Pb-206Pb/204Pb图;底图据Zartman and Doe(1981)
Fig. 10. Tectonic model diagram for Pb isotopic compositions of the Zimudang Au deposits
图 11 紫木凼金矿床铅同位素Δβ-Δγ成因分类图解
底图据朱炳泉(1998);1.地幔源铅;2.上地壳铅;3.上地壳与地幔混合的俯冲带铅(3a.岩浆作用;3b.沉积作用);4.化学沉积型铅;5.海底热水作用铅;6.中深变质作用铅;7.深变质下地壳铅;8.造山带铅;9.古老页岩上地壳铅;10.退变质铅
Fig. 11. Δβ vs. Δγ diagram for Pb isotopic compositions of the Zimudang Au deposit
图 12 紫木凼矿床锶同位素对比
除紫木凼数据外,其他范围引自Burke et al.(1982);黄思静等(2006);Zhou et al.(2018)
Fig. 12. Comparison of 87Sr/86Sr ratios among the Zimudang Au deposit, Permian-Triassic seawater and upper mantle
表 1 黔西南紫木凼金矿床样品采样位置及样品描述
Table 1. Localities and descriptions of the samples from the Zimudang Au deposit, southwestern Guizhou
样品号 采样位置 样品描述 同位素分析 ZMD01 1365中段12线穿脉Ⅰ-2#矿体 方解石-硫化物矿石 S、C、O、Pb ZMD05 1365中段12线穿脉Ⅰ-2#矿体 脉状方解石矿石 S ZMD11 1365中段12线穿脉Ⅰ-2#矿体 脉状方解石矿石 C、O ZMD12 1365中段12线穿脉Ⅰ-2#矿体 脉状方解石矿石 C、O ZMD13 1365中段12线穿脉Ⅰ-2#矿体 脉状方解石矿石 C、O ZMD14 1365中段16线东沿脉Ⅰ-2#矿体 脉状方解石矿石 C、O ZMD15 1365中段16线东沿脉Ⅰ-2#矿体 脉状方解石矿石 C、O ZMD16 1365中段16线东沿脉Ⅰ-2#矿体 含浸染状黄铁矿方解石矿石 S、C、O、Sr ZMD17 1365中段16线东沿脉Ⅰ-2#矿体 含浸染状黄铁矿方解石矿石 C、O、Pb ZMD18 1365中段47线西沿脉Ⅰ#矿体 含粗粒黄铁矿黏土矿石 S ZMD19 1365中段47线西沿脉Ⅰ#矿体 浸染状黄铁矿矿石 S ZMD20 1365中段47线西沿脉Ⅰ#矿体 角砾岩中黄铁矿矿石 S、Pb ZMD21 1365中段47线西沿脉Ⅰ#矿体 角砾岩中黄铁矿矿石 S、Pb ZMD22 1365中段47线西沿脉Ⅰ#矿体 浸染状黄铁矿石,被方解石细脉穿插 S ZMD24 1365中段47线西沿脉Ⅰ#矿体 脉状石英-方解石矿石 C、O ZMD25 1365中段47线西沿脉Ⅰ#矿体 脉状方解石-石英矿石,含细粒黄铁矿 S、C、O ZMD26 1365中段47线西沿脉Ⅰ#矿体 脉状方解石-石英矿石,含细粒黄铁矿 S、C、O、Sr ZMD27 1365中段47线西沿脉Ⅰ#矿体 脉状方解石-石英矿石 C、O、Sr ZMD28 1365中段47线西沿脉Ⅰ#矿体 脉状方解石-石英矿石 C、O、Sr ZMD29 1365中段47线西沿脉Ⅰ#矿体 粗粒黄铁矿石,被方解石脉穿插 S、C、O、Pb ZMD31 1365中段47线西沿脉Ⅰ#矿体 浸染状黄铁矿石 S、Pb ZMD32 1365中段47线西沿脉Ⅰ#矿体 浸染状黄铁矿石 S ZMD33 1365中段47线西沿脉Ⅰ#矿体 浸染状黄铁矿石 S、Pb ZMD34 1365中段47线西沿脉Ⅰ#矿体 团块状硫化物矿石,表面弱氧化 S、Pb ZMD35 选厂矿石堆 脉状方解石矿石 C、O、Sr ZMD36 选厂矿石堆 含稀疏浸染状黄铁矿方解石矿石 S、C、O 18ZMD01 1365中段47线Ⅰ#矿体 脉状方解石矿石 C、O、Sr 18ZMD02 1365中段27线Ⅰ#矿体 脉状方解石矿石 C、O 18ZMD03 1365中段27线Ⅰ#矿体 脉状方解石-石英矿石 C、O、Sr 18ZMD04 1365中段55线Ⅰ#矿体 脉状方解石矿石 C、O、Sr、 18ZMD05 1365中段55线Ⅰ#矿体 脉状方解石矿石 C、O 18ZMD06 1365中段55线Ⅰ#矿体 含稀疏浸染状黄铁矿石英矿石 S、Pb、Sr 18ZMD07 1340中段3线Ⅰ#矿体 脉状方解石矿石 C、O、Sr 赋矿围岩 ZMD03 1365中段12线穿脉Ⅰ-2矿体顶板 泥晶灰岩 S、C、O、Pb、Sr ZMD23 1365中段47线Ⅰ#矿体围岩 含浸染状黄铁矿粉砂质灰岩 S、C、O、Pb、Sr 表 2 紫木凼金矿床矿石、岩石的硫同位素组成
Table 2. Sulfur isotopic compositions of the ores and host rocks from the Zimudang Au deposit.
样品编号 测试对象 δ34SV-CDT 数据来源 样品编号 测试对象 δ34SV-CDT 数据来源 ZMD01Py 黄铁矿 7.47 本文 Z-12 黄铁矿 2.60 郭振春,1988 ZMD01Rar 雄黄 2.11 Z-13-① 黄铁矿 2.02 ZMD05 黄铁矿 -0.24 Z-14-② 黄铁矿 1.58 ZMD16 黄铁矿 -5.27 Z-1 白铁矿 12.66 ZMD18 黄铁矿 -5.02 Z-3 白铁矿 17.91 ZMD19 黄铁矿 3.36 Z-15 雄黄 2.42 ZMD20 黄铁矿 1.82 Z-16 雄黄 2.27 ZMD21 黄铁矿 1.34 Z-17 雄黄 2.73 ZMD22 黄铁矿 -0.99 ZMD-01 雄黄 1.18 王泽鹏等,2013 ZMD25 黄铁矿 -12.31 ZMD-02 雄黄 1.57 ZMD26 黄铁矿 -13.49 ZMD-02-02 雄黄 1.81 ZMD29 黄铁矿 -10.21 ZMD03 雄黄 1.55 ZMD31 黄铁矿 2.58 ZMD13 雄黄 1.09 ZMD32 黄铁矿 0.23 ZMD26 雄黄 1.81 ZMD33 黄铁矿 2.42 ZMD34 雄黄 2.25 ZMD34Py 黄铁矿 2.61 ZMD-5 黄铁矿 -2.4 彭义伟等,2014 ZMD34Apy 毒砂 1.95 ZMD-7 黄铁矿 -1.6 ZMD36 黄铁矿 -5.00 ZMD-11 黄铁矿 1.4 18ZMD06 黄铁矿 0.43 ZMD-12 黄铁矿 2.1 Z-7 黄铁矿 3.58 郭振春,1988 ZMD-13 黄铁矿 1.3 Z-19 黄铁矿 1.64 ZMD-22 黄铁矿 1.8 Z-8 白铁矿 4.26 ZMD-18 雄黄 1.3 Z-9 白铁矿 2.46 ZMD-23 雄黄 2.8 Z-10 白铁矿 2.50 ZMD-26 雄黄 2.6 Z-11 白铁矿 2.83 ZMD-27 雄黄 3.1 Z-5 黄铁矿 2.18 ZMD-PD2-2 雄黄 0.8 Z-6 黄铁矿 0.16 赋矿围岩 ZMD03 黄铁矿 -26.23 本文 ZMD23 黄铁矿 -19.63 本文 表 3 紫木凼金矿床碳、氧同位素组成
Table 3. Carbon and oxygen isotopic compositions of the Zimudang Au deposit
样品编号 测试对象 δ13CV-PDB(‰) δ18OV-PDB(‰) δ18OV-SMOW(‰) 资料来源 ZMD01 方解石 -5.51 -8.77 21.87 本文 ZMD07 方解石 -5.41 -8.40 22.25 ZMD11 方解石 -3.65 -7.73 22.94 ZMD12 方解石 -4.37 -8.40 22.25 ZMD13 方解石 -3.86 -6.88 23.82 ZMD14 方解石 -5.21 -7.29 23.39 ZMD15 方解石 -6.26 -7.59 23.09 ZMD16 方解石 -5.36 -7.28 23.40 ZMD17 方解石 -7.02 -8.86 21.78 ZMD24 方解石 -1.87 -14.80 15.65 ZMD25 方解石 -4.77 -9.71 20.90 ZMD26 方解石 -4.43 -9.88 20.72 ZMD27 方解石 -5.41 -8.33 22.32 ZMD28 方解石 -4.65 -10.07 20.53 ZMD29 方解石 -2.83 -13.07 17.44 ZMD35 方解石 -8.52 -9.66 20.95 ZMD36 方解石 -8.34 -9.47 21.15 18ZMD01 方解石 -0.70 -13.16 17.34 18ZMD02 方解石 -6.19 -8.66 21.98 18ZMD03 方解石 -1.26 -10.64 19.94 18ZMD04 方解石 0.59 -10.04 20.56 18ZMD05 方解石 0.18 -10.50 20.09 18ZMD07 方解石 0.17 -10.73 19.85 Z-21 方解石 -5.67 -8.87 20.94 郭振春,1988 Z-22 方解石 -8.55 -9.76 20.02 Z-23 方解石 -6.39 -7.86 21.98 Z-17-② 方解石 -4.92 -7.33 22.52 ZMD-P1-b 方解石 -7.7 -9.1 21.5 彭义伟等,2014 ZMD-P2-2 方解石 -9.1 -10.4 20.2 ZMD-27 方解石 -2.7 -7.5 23.2 ZMD-2 方解石 -7.8 -9.8 20.8 ZMD-3 方解石 -7.5 -9.4 21.2 ZMD-31-d 方解石 -6.5 -9.2 21.4 赋矿围岩 ZMD03 全岩 -0.66 -9.53 21.09 ZMD23 全岩 -2.17 -9.79 20.82 区域地层 ZMD-9 灰岩 1.7 -8.5 22.1 彭义伟等,2014 表 4 紫木凼金矿床矿石铅同位素组成及相关参数
Table 4. Lead isotopic compositions of the ores from the Zimudang Au deposit
样号 测试对象 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb μ Δα Δβ Δγ 资料来源 ZMD01 黄铁矿 18.577 15.624 38.895 9.49 81.70 19.52 44.47 本文 ZMD17 黄铁矿 18.739 15.607 39.028 9.45 91.13 18.41 48.04 ZMD20 黄铁矿 18.515 15.646 38.930 9.54 78.09 20.96 45.41 ZMD21 黄铁矿 18.315 15.638 38.764 9.55 66.45 20.44 40.95 ZMD29 黄铁矿 18.601 15.652 38.884 9.55 83.1 21.35 44.17 ZMD31 黄铁矿 18.651 15.652 39.015 9.54 86.01 21.35 47.69 ZMD33 黄铁矿 18.428 15.607 38.947 9.48 73.02 18.41 45.86 ZMD34 黄铁矿 18.434 15.602 38.937 9.47 73.37 18.09 45.60 ZMD34 毒砂 18.499 15.614 39.003 9.48 77.16 18.87 47.37 18ZMD06 黄铁矿 18.623 15.669 38.951 9.58 84.38 22.46 45.97 ZMD-01 雄黄 18.973 15.670 39.054 9.55 104.80 22.53 48.74 王泽鹏等,2013 ZMD-02 雄黄 18.967 15.669 39.051 9.55 104.40 22.46 48.66 ZMD-02-02 雄黄 18.961 15.662 39.032 9.53 104.10 22.00 48.15 ZMD-03 雄黄 18.963 15.664 39.038 9.54 104.20 22.13 48.31 ZMD-13 雄黄 18.300 15.585 38.455 9.45 65.57 16.98 32.65 ZMD-26 雄黄 18.534 15.629 38.666 9.51 79.20 19.85 38.32 ZMD-34 雄黄 18.064 15.596 38.219 9.50 51.83 17.70 26.31 注:相关参数μ、Δα、Δβ、Δγ由路远发(2004)研发的Geokit软件计算得到. 表 5 紫木凼金矿床岩石铅同位素组成及相关参数
Table 5. Lead isotopic compositions of the host rocks from the Zimudang Au deposit
样号 测试对象 测定值 U(10-6) Th(10-6) Pb(10-6) 初始比值 μ Δα Δβ Δγ 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb ZMD03 赋矿围岩 18.321 15.583 38.746 1.73 9.23 13.8 18.136 15.574 38.423 9.44 66.79 16.85 40.47 ZMD23 赋矿围岩 18.780 15.662 39.046 1.50 8.22 17.2 18.650 15.656 38.812 9.55 93.52 22.00 48.52 注:U、Th、Pb含量在武汉地质调查中心中南监督检测中心用ICP-MS测定,206Pb/204Pb,207Pb/204Pb和208Pb/204Pb初始比值计算年龄取148 Ma(王泽鹏,2013);相关参数μ、Δα、Δβ、Δγ由路远发(2004)研发的Geokit软件计算得到. 表 6 紫木凼金矿床锶同位素组成
Table 6. Strontium isotopic compositions of the Zimudang Au deposit
样品号 测试对象 Rb(10-6) Sr(10-6) $ \frac{{}^{87}\mathrm{R}\mathrm{b}}{{}^{86}\mathrm{S}\mathrm{r}} $ $ \frac{{}^{87}\mathrm{S}\mathrm{r}}{{}^{86}\mathrm{S}\mathrm{r}}\left(1\sigma \right) $ $ {\left(\frac{{}^{87}\mathrm{S}\mathrm{r}}{{}^{86}\mathrm{S}\mathrm{r}}\right)}_{\mathrm{i}} $ ZMD25 石英 0.074 87 0.953 7 0.226 3 0.708 19 (3) 0.707 71 ZMD26 石英 0.027 56 0.280 7 0.283 1 0.708 71 (1) 0.708 11 ZMD27 石英 0.027 11 0.315 2 0.248 0 0.708 42 (2) 0.707 90 ZMD28 石英 0.012 99 0.212 1 0.176 6 0.708 11 (1) 0.707 74 18ZMD03 石英 0.036 49 0.667 7 0.157 6 0.707 96 (3) 0.707 63 18ZMD06 石英 0.021 12 0.275 4 0.221 0 0.708 21 (1) 0.707 75 ZMD16 方解石 0.707 77 (2) 0.707 77 ZMD26 方解石 0.707 26 (1) 0.707 26 ZMD27 方解石 0.707 59 (2) 0.707 59 ZMD35 方解石 0.708 01 (1) 0.708 01 18ZMD01 方解石 0.707 57 (2) 0.707 57 18ZMD04 方解石 0.707 55 (1) 0.707 55 18ZMD03 方解石 0.707 40 (2) 0.707 40 18ZMD07 方解石 0.707 52 (2) 0.707 52 赋矿围岩 17ZMD03 全岩 80.8 944.3 0.246 7 0.707 83(2) 0.707 31 17ZMD23 全岩 52.4 728.1 0.207 5 0.707 72(1) 0.707 28 注:(87Sr/86Sr)i计算年龄取148 Ma (王泽鹏,2013),由路远发(2004)研发的Geokit软件计算得到. -
[1] Brannon, J.C., Podosek, F.A., Viets, J.G., et al., 1991. Strontium Isotopic Constraints on the Origin of Ore-Forming Fluids of the Viburnum Trend, Southeast Missouri. Geochimica et Cosmochimica Acta, 55(5): 1407-1419. https://doi.org/10.1016/0016-7037(91)90317-x [2] Burke, W.H., Denison, R.E., Hetherington, E.A., et al., 1982. Variation of Seawater 87Sr/86Sr throughout Phanerozoic Time. Geology, 10(10): 516-519. https://doi.org/10.1130/0091-7613(1982)10516:vosstp>2.0.co;2 doi: 10.1130/0091-7613(1982)10516:vosstp>2.0.co;2 [3] Chase, C.G., 1981. Oceanic Island Pb: Two-Stage Histories and Mantle Evolution. Earth and Planetary Science Letters, 52(2): 277-284. https://doi.org/10.1016/0012-821x(81)90182-5 [4] Cline, J.S., Hofstra, A.H., Muntean, J.L., et al., 2005. Carlin-Type Gold Deposits in Nevada Critical Geologic Characteristics and Viable Models. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., et al., eds., Society of Economic Geologists, One Hundredth Anniversary Volume. https://doi.org/10.5382/av100.15 [5] Gao, S.B., Zheng, Y.Y., Jiang, X.J., et al., 2020. Discovery, Genesis and Significances of First Siver-Tin Polymetal Deposit in Western Gangdese Belt. Earth Science, 45(12): 4463-4480(in Chinese with English abstract). [6] Gulson, B.L., 1986. Lead Isotopes in Mineral Exploration, in Developments in Economic Geology. Elsevier, Amsterdam. [7] Guo, Z.C., 1988. The Geological Features and Origin of the Zimudang Gold Deposit in Xingren County, Guizhou Province. Guizhou Geology, 5(3): 201-218, 295(in Chinese with English abstract). [8] Hoefs, J., 1997. Stable Isotope Geochemistry. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03377-7 [9] Hou, L., Peng, H.J., Ding, J., et al., 2016. Textures and In Situ Chemical and Isotopic Analyses of Pyrite, Huijiabao Trend, Youjiang Basin, China: Implications for Paragenesis and Source of Sulfur. Economic Geology, 111(2): 331-353. https://doi.org/10.2113/econgeo.111.2.331 [10] Hu, R.Z., Fu, S.L., Huang, Y., et al., 2017. The Giant South China Mesozoic Low-Temperature Metallogenic Domain: Reviews and a New Geodynamic Model. Journal of Asian Earth Sciences, 137: 9-34. https://doi.org/10.1016/j.jseaes.2016.10.016 [11] Hu, R.Z., Su, W.C., Bi, X.W., et al., 2002. Geology and Geochemistry of Carlin-Type Gold Deposits in China. Mineralium Deposita, 37(3-4): 378-392. https://doi.org/10.1007/s00126-001-0242-7 [12] Huang, S.J., Sun, Z.L., Wu, S.J., et al., 2006. Strontium Isotope Composition and Control Factors of Global Seawater in Triassic. Journal of Mineralogy and Petrology, 26(1): 43-48(in Chinese with English abstract). [13] Jin, X.Y., 2017. Geology, Mineralization and Genesis of the Nibao, Shuiyindong and Yata Gold Deposits in SW Guizhou Province, China (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). [14] Jin, X.Y., Li, J.W., Albert, H., et al., 2016. Relationship between Carlin-Type Gold Deposits and Paleo-Petroleum Reservoirs in SW Guizhou, China: Evidence from Gas Compositions of Fluid Inclusions and Raman Spectroscopic Characteristics of Bitumen. Acta Petrologica Sinica, 32(11): 3295-3311(in Chinese with English abstract). [15] Liu, J.J., He, M.Q., Li, Z.M., et al., 2004. Oxygen and Carbon Isotopic Geochemistry of Baiyangping Silver-Copper Polymetallic Ore Concentration Area in Lanping Basin of Yunnan Province and Its Significance. Mineral Deposits, 23(1): 1-10(in Chinese with English abstract). [16] Liu, J.M., Liu, J.J., 1997. Basin Fluid Genetic Model of Sediment-Hosted Microdisseminated Gold Deposits in the Gold-Triangle Area between Guizhou, Guangxi and Yunnan. Acta Mineralogica Sinica, 17(4): 448-456(in Chinese with English abstract). [17] Lu, Y.F., 2004. GeoKit: A Geochemical Toolkit for Microsoft Excel. Geochimica, 33(5): 459-464(in Chinese with English abstract). [18] Ma, W., Liu, Y.C., Yang, Z.S., et al., 2019. Characteristics of Ore-Forming Fluids of Lietinggang-Leqingla Pb-Zn-Fe-Cu-Mo Polymetallic Deposit in Tibetan: Evidence from Fluid Inclusions and Stable Isotope Compositions. Earth Science, 44(6): 1957-1973(in Chinese with English abstract). [19] Muntean, J.L., Cline, J.S., Simon, A.C., et al., 2011. Magmatic-Hydrothermal Origin of Nevada's Carlin-Type Gold Deposits. Nature Geoscience, 4(2): 122-127. https://doi.org/10.1038/ngeo1064 [20] Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551-578. https://doi.org/10.2113/gsecongeo.67.5.551 [21] Ohmoto, H., 1986. Stable Isotope Geochemistry of Ore Deposits. Reviews in Mineralogy and Geochemistry, 16(1): 491-559. [22] Peng, Y.W., Gu, X.X., Zhang, Y.M., et al., 2014. Source and Evolution of Ore-Forming Fluid of the Huijiabao Gold Field, Southwestern Guizhou: Evidences from Fluid Inclusions and Stable Isotopes. Bulletin of Mineralogy, Petrology and Geochemistry, 33(5): 666-680(in Chinese with English abstract). [23] Qiu, X.P., Meng, F.Q., Yu, B., et al., 2013. Research on Metallogenic Regulation of Gold-Rich Deposits and Features of Metallogenetic Structure in Huijiabao Gold Field, Southwest of Guizhou, China. Mineral Deposits, 32(4): 784-794(in Chinese with English abstract). [24] Rollison, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Harlow, London. https://doi.org/10.1016/0098-3004(95)90001-2 [25] Seal, R.R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. https://doi.org/10.2138/rmg.2006.61.12 [26] Stacey, J.S., Kramers, J.D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207-221. https://doi.org/10.1016/0012-821x(75)90088-6 [27] Tan, Q.P., Xia, Y., Xie, Z.J., et al., 2015. Migration Paths and Precipitation Mechanisms of Ore-Forming Fluids at the Shuiyindong Carlin-Type Gold Deposit, Guizhou, China. Ore Geology Reviews, 69: 140-156. https://doi.org/10.1016/j.oregeorev.2015.02.006 [28] Veizer, J., 1989. Strontium Isotopes in Seawater through Time. Annual Review of Earth and Planetary Sciences, 17(1): 141-167. https://doi.org/10.1146/annurev.ea.17.050189.001041 [29] Wang, Z.C., Liu, J.M., Liu, H.T., et al., 2010. Complexity and Uncertainty of Tracing Fluid Sources by Means of H-O, C, S, N Isotope Systems: A Case Study of Orogenic Lode Gold Deposits. Acta Petrologica et Mineralogica, 29(5): 577-590(in Chinese with English abstract). [30] Wang, Z.C., Wang, C.Y., Wang, X., 2021. Metasomatized Lithospheric Mantle and Gold Mineralization. Earth Science, 46(12): 4197-4229 (in Chinese with English abstract). [31] Wang, Z.P., 2013. Genesis and Dynamic Mechanism of the Epithermal Ore Deposits, SW Guizhou, China: A Case Study of Gold and Antimony Deposits (Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 127-131(in Chinese with English abstract). [32] Wang, Z.P., Xia, Y., Song, X.Y., et al., 2013. Sulfur and Lead Isotopic Composition of the Huijiabao Carlin-Type Gold Field and the Ore-Forming Material Sources in Southwest of Guizhou. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 746-752, 758(in Chinese with English abstract). [33] Wu, S.Y., Hou, L., Ding, J., et al., 2016. Ore-Controlling Structure Types and Characteristics of Ore-Forming Fluid of the Carlin-Type Gold Orefield in Southwestern Guizhou, China. Acta Petrologica Sinica, 32(8): 2407-2424(in Chinese with English abstract). [34] Zartman, R.E., Doe, B.R., 1981. Plumbotectonics: The Model. Tectonophysics, 75(1-2): 135-162. https://doi.org/10.1016/0040-1951(81)90213-4 [35] Zhao, J., Liang, J.L., Li, J., et al., 2018. Genesis and Metallogenic Model of the Shuiyindong Gold Deposit, Guizhou Province: Evidences from High-Resolution Multi-Element Mapping and in Situ Sulfur Isotopes of Au-Carrying Pyrites by NanoSIMS. Earth Science Frontiers, 25(1): 157-167(in Chinese with English abstract). [36] Zhao, J., Liang, J.L., Li, J., et al., 2019. Mineralogical Characteristics and In Situ Sulfur Isotopic Compositions of Au-Bearing Pyrites in the Taipingdong Gold Deposit, Guizhou Province. Geotectonica et Metallogenia, 43(2): 258-270(in Chinese with English abstract). [37] Zeng, Y.F., Liu, W.J., Chen, H.D., et al., 1995. Evolution of Sedimentation and Tectonics of the Youjiang Composite Basin, South China. Acta Geologica Sinica, 69(2): 113-124(in Chinese with English abstract). [38] Zheng, L.L., Yang, R.D., Liu, J.Z., et al., 2019. Geological-Geochemical Characteristics and Genesis of the Large Nibao Gold Deposit in Southwestern Guizhou. Geological Review, 65(6): 1363-1382(in Chinese with English abstract). [39] Zheng, Y.F., Chen, J.F., 2000. Stable Isotope Geochemistry. Science Press, Beijing, 218-232(in Chinese). [40] Zhou, J.X., Xiang, Z.Z., Zhou, M.F., et al., 2018. The Giant Upper Yangtze Pb-Zn Province in SW China: Reviews, New Advances and a New Genetic Model. Journal of Asian Earth Sciences, 154: 280-315. https://doi.org/10.1016/j.jseaes.2017.12.032 [41] Zhu, B.Q., 1998. The Theory and Application of Isotopic System in Earth Sciences: Crustal and Mantle Evolution in China Continent. Science Press, Beijing(in Chinese). [42] Zhu, L.M., Jin, J.F., He, M.Y., et al., 1997. A Discussion about the Genesis of Fine-Grained Disseminated Gold Deposits in Southwestern Guizhou Province. Volcanology & Mineral Resources, 18(2): 117-126(in Chinese with English abstract). [43] Zou, C.Y., Li, Y.G., 2003. Geochemical Exploration Model of the Zimudang Gold Deposit in Xingren County, Guizhou Province. Bulletin Geological of China, 22(10): 803-807(in Chinese with English abstract). [44] 高顺宝, 郑有业, 姜晓佳, 等, 2020. 冈底斯西段首例银锡多金属矿床的发现、成因及意义. 地球科学, 45(12): 4463-4480. doi: 10.3799/dqkx.2020.262 [45] 郭振春, 1988. 贵州兴仁紫木凼金矿床地质特征及成因初探. 贵州地质, 5(3): 201-218, 295. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ198803000.htm [46] 黄思静, 孙治雷, 吴素娟, 等, 2006. 三叠纪全球海水的锶同位素组成及主要控制因素. 矿物岩石, 26(1): 43-48. doi: 10.3969/j.issn.1001-6872.2006.01.009 [47] 靳晓野, 2017. 黔西南泥堡、水银洞和丫他金矿床的成矿作用特征与矿床成因研究(博士学位论文). 武汉: 中国地质大学. [48] 靳晓野, 李建威, Albert, H., 等, 2016. 黔西南卡林型金矿床与区域古油藏的关系: 来自流体包裹体气相组成和沥青拉曼光谱特征的证据. 岩石学报, 32(11): 3295-3311. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611005.htm [49] 刘家军, 何明勤, 李志明, 等, 2004. 云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义. 矿床地质, 23(1): 1-10. doi: 10.3969/j.issn.0258-7106.2004.01.001 [50] 刘建明, 刘家军, 1997. 滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式. 矿物学报, 17(4): 448-456. doi: 10.3321/j.issn:1000-4734.1997.04.012 [51] 路远发, 2004. GeoKit: 一个用VBA构建的地球化学工具软件包. 地球化学, 33(5): 459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004 [52] 马旺, 刘英超, 杨竹森, 等, 2019. 西藏列廷冈-勒青拉铅锌铁铜钼矿床成矿流体特征: 来自流体包裹体及碳氢氧同位素的证据. 地球科学, 44(6): 1957-1973. doi: 10.3799/dqkx.2019.041 [53] 彭义伟, 顾雪祥, 章永梅, 等, 2014. 黔西南灰家堡金矿田成矿流体来源及演化: 流体包裹体和稳定同位素证据. 矿物岩石地球化学通报, 33(5): 666-680. doi: 10.3969/j.issn.1007-2802.2014.05.013 [54] 邱小平, 孟凡强, 于波, 等, 2013. 黔西南灰家堡金矿田成矿构造特征研究. 矿床地质, 32(4): 784-794. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201304013.htm [55] 汪在聪, 刘建明, 刘红涛, 等, 2010. 稳定同位素热液来源示踪的复杂性和多解性评述: 以造山型金矿为例. 岩石矿物学杂志, 29(5): 577-590. doi: 10.3969/j.issn.1000-6524.2010.05.013 [56] 汪在聪, 王焰, 汪翔, 等, 2021. 交代岩石圈地幔与金成矿作用. 地球科学, 46(12): 4197-4229. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202112001.htm [57] 王泽鹏, 2013. 贵州省西南部低温矿床成因及动力学机制研究: 以金、锑矿床为例(博士学位论文). 贵阳: 中国科学院地球化学研究所, 127-131. [58] 王泽鹏, 夏勇, 宋谢炎, 等, 2013. 黔西南灰家堡卡林型金矿田硫铅同位素组成及成矿物质来源研究. 矿物岩石地球化学通报, 32(6): 746-752, 758. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201306011.htm [59] 吴松洋, 侯林, 丁俊, 等, 2016. 黔西南卡林型金矿矿田控矿构造类型及成矿流体特征. 岩石学报, 32(8): 2407-2424. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201608012.htm [60] 赵静, 梁金龙, 李军, 等, 2018. 贵州贞丰水银洞金矿矿床成因与成矿模式: 来自载金黄铁矿NanoSIMS多元素Mapping及原位微区硫同位素的证据. 地学前缘, 25(1): 157-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201801013.htm [61] 赵静, 梁金龙, 李军, 等, 2019. 贵州太平洞金矿床载金黄铁矿的矿物学特征及原位微区硫同位素分析. 大地构造与成矿学, 43(2): 258-270. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201902006.htm [62] 曾允孚, 刘文均, 陈洪德, 等, 1995. 华南右江复合盆地的沉积构造演化. 地质学报, 69(2): 113-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199502001.htm [63] 郑禄林, 杨瑞东, 刘建中, 等, 2019. 黔西南普安县泥堡大型金矿床地质地球化学特征与矿床成因探讨. 地质论评, 65(6): 1363-1382. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906007.htm [64] 郑永飞, 陈江峰, 2000. 稳定同位素地球化学. 北京: 科学出版社, 218-232. [65] 朱炳泉, 1998. 地球科学中同位素体系理论与应用: 兼论中国大陆壳幔演化. 北京: 科学出版社. [66] 朱赖民, 金景福, 何明友, 等, 1997. 黔西南微细浸染型金矿床成因讨论: 矿床时空分布及同位素证据. 火山地质与矿产, 18(2): 117-126. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ199702008.htm [67] 邹长毅, 李应桂, 2003. 贵州省兴仁县紫木凼金矿床地球化学勘查模型. 地质通报, 22(10): 803-807. doi: 10.3969/j.issn.1671-2552.2003.10.009