• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    幕阜山复式花岗岩体锆石年代与微量元素对伟晶岩矿床成因的限定

    李安邦 黄勤 冯超 杨细华 闫刚刚 赵子娟 董湘杰 祝明明 张金阳

    李安邦, 黄勤, 冯超, 杨细华, 闫刚刚, 赵子娟, 董湘杰, 祝明明, 张金阳, 2021. 幕阜山复式花岗岩体锆石年代与微量元素对伟晶岩矿床成因的限定. 地球科学, 46(12): 4517-4532. doi: 10.3799/dqkx.2021.065
    引用本文: 李安邦, 黄勤, 冯超, 杨细华, 闫刚刚, 赵子娟, 董湘杰, 祝明明, 张金阳, 2021. 幕阜山复式花岗岩体锆石年代与微量元素对伟晶岩矿床成因的限定. 地球科学, 46(12): 4517-4532. doi: 10.3799/dqkx.2021.065
    Li Anbang, Huang Qin, Feng Chao, Yang Xihua, Yan Ganggang, Zhao Zijuan, Dong Xiangjie, Zhu Mingming, Zhang Jinyang, 2021. Genesis of Mufushan Pegmatite Deposits Constrained by U-Pb Ages and Trace Elements of Zircon from Complex Granitic Batholith. Earth Science, 46(12): 4517-4532. doi: 10.3799/dqkx.2021.065
    Citation: Li Anbang, Huang Qin, Feng Chao, Yang Xihua, Yan Ganggang, Zhao Zijuan, Dong Xiangjie, Zhu Mingming, Zhang Jinyang, 2021. Genesis of Mufushan Pegmatite Deposits Constrained by U-Pb Ages and Trace Elements of Zircon from Complex Granitic Batholith. Earth Science, 46(12): 4517-4532. doi: 10.3799/dqkx.2021.065

    幕阜山复式花岗岩体锆石年代与微量元素对伟晶岩矿床成因的限定

    doi: 10.3799/dqkx.2021.065
    基金项目: 

    湖北省自然资源厅项目 ZRZR2019KY05

    详细信息
      作者简介:

      李安邦(1984-), 男, 工程师, 主要从事地矿勘查工作.ORCID: 0000-0002-1282-9313.E-mail: 709086621@qq.com

      通讯作者:

      张金阳, E-mail: zhangjinyang@cug.edu.cn

    • 中图分类号: P611.1

    Genesis of Mufushan Pegmatite Deposits Constrained by U-Pb Ages and Trace Elements of Zircon from Complex Granitic Batholith

    • 摘要: 江南成矿带晚侏罗世-早白垩世幕阜山复式花岗岩体内部及周缘发育多个早白垩世伟晶岩稀有金属矿床,成矿伟晶岩是否源自幕阜山复式岩体演化花岗岩浆高度分异还存在争议.幕阜山麦市等地发育含电气石、石榴石及白云母二长花岗岩,LA-ICP-MS锆石U-Pb年龄介于130~135 Ma,在误差范围内与区内大规模成矿伟晶岩年龄相当.与早期斑状黑云母二长花岗岩和白云母二长花岗岩(151~143 Ma)相比,晚期含电气石、石榴石及白云母二长花岗岩锆石具有较高的Hf、Ta、Nb、Th、U含量和较低的Th/U和Eu/Eu*比值,体现较高的演化程度,与岩石矿物组合及锆石结晶温度相一致.锆石年代与微量元素说明,幕阜山地区成矿伟晶岩可能是幕阜山复式岩体中早白垩世演化花岗岩浆进一步分异的产物.

       

    • 图  1  幕阜山区域位置示意图(a)、复式花岗岩体地质简图(b)及麦市周边岩体地质简图(c)

      b据李鹏等(2017);c据湖北省地质调查院,2013.1∶5万通城县幅、月田幅、陈家坝幅区域地质调查报告,武汉

      Fig.  1.  Location of Mufushan (a), geological map of the Mufushan composite granite pluton (b) and geological map near Maishi (c)

      图  2  幕阜山斑状黑云母二长花岗岩与电气石白云母二长花岗岩接触关系(a);电气石白云母二长花岗岩中呈线状分布的电气石(b);电气石白云母二长花岗岩与伟晶岩接触关系(c)

      a.a1为斑状黑云母二长花岗岩,a2为电气石白云母二长花岗岩;c.c1为电气石白云母二长花岗岩,c2为伟晶岩;图a中电气石呈团块状,图b中电气石呈线状;Tur.电气石

      Fig.  2.  The contacts between the porphyritic biotite monzogranite and tourmaline muscovite monzogranite at Mufushan (a); tourmaline line in the tourmaline muscovite monzogranite (b); the contacts between the tourmaline muscovite monzogranite and pegmatite (c)

      图  3  幕阜山麦市(a~d)、小坪(e)及李家段(f)二长花岗岩镜下显微照片

      Q.石英;Pl.斜长石;Kfs.钾长石;Bt.黑云母;Ms.白云母;Tur.电气石;Grt.石榴石

      Fig.  3.  Microphotographs of monzogranites at Maishi (a-d), Xiaoping (e) and Lijiaduan (f) from the Mufushan batholith

      图  4  斑状黑云母二长花岗岩(20M7⁃2)锆石CL图及U⁃Pb定年结果

      Fig.  4.  Cathodoluminescence images and U⁃Pb dating results of zircon grains from the porphyritic biotite monzogranite (20M7⁃2)

      图  5  二云母二长花岗岩(20X6⁃1)锆石CL图及U⁃Pb定年结果

      Fig.  5.  Cathodoluminescence images and U⁃Pb dating results of zircon grains from the two⁃mica monzogranite (20X6⁃1)

      图  6  石榴石白云母二长花岗岩(20M2⁃1)锆石CL图及U⁃Pb定年结果

      Fig.  6.  Cathodoluminescence images and U⁃Pb dating results of zircon grains from the garnet muscovite monzogranite (20M2⁃1)

      图  7  电气石白云母二长花岗岩(20M1)锆石CL图及U⁃Pb定年结果

      Fig.  7.  Cathodoluminescence images and U⁃Pb dating results of zircon grains from the tourmaline muscovite monzogranite (20M1)

      图  8  白云母二长花岗岩(20L2⁃1)锆石CL图及U⁃Pb定年结果

      Fig.  8.  Cathodoluminescence images and U⁃Pb dating results of zircon grains from the muscovite monzogranite (20L2⁃1)

      图  9  幕阜山花岗岩锆石稀土元素球粒陨石标准化配分图

      Fig.  9.  Chondrite-normalized REE patterns for zircon from the granites at Mufushan

      图  10  锆石微量元素与T关系图解

      Fig.  10.  Diagrams between trace elements and zircon crystallization temperatures

      图  11  锆石中不相容微量元素变化

      1.二云母二长花岗岩(132 Ma); 2.二云母二长花岗岩(142 Ma); 3.二云母二长花岗岩(151 Ma); 4.黑云母二长花岗岩; 5.石榴子石白云母二长花岗岩; 6.电气石白云母二长花岗岩; 7.白云母二长花岗岩

      Fig.  11.  Diagrams of incompatible trace elements in zircon

      图  12  锆石中微量元素比值变化

      1.二云母二长花岗岩(132 Ma); 2.二云母二长花岗岩(142 Ma); 3.二云母二长花岗岩(151 Ma); 4.黑云母二长花岗岩; 5.石榴子石白云母二长花岗岩; 6.电气石白云母二长花岗岩; 7.白云母二长花岗岩

      Fig.  12.  Diagrams of variation of trace element ratios in zircon

      表  1  幕阜山花岗岩与伟晶岩年龄统计

      Table  1.   Ages for granite and pegmatite at Mufushan

      岩体/脉体/矿体 年龄(Ma) 测试矿物 测试方法 位置 资料来源
      微斜长石-钠长石伟晶岩 133.0±2.6 铌铁矿 U-Pb 仁里矿床 Li et al., 2020
      微斜长石-钠长石伟晶岩 131.2±2.4 锆石 U-Pb 仁里矿床 Li et al., 2020
      黑云母二长花岗岩 140.7±0.7 锆石 U-Pb 仁里矿床 Li et al., 2020
      黑云母二长花岗岩 140.3±0.7 锆石 U-Pb 仁里矿床 Li et al., 2020
      二云母二长花岗岩 138.3±0.3 锆石 U-Pb 仁里矿床 Li et al., 2020
      含铌钽铁矿白云母钠长石伟晶岩 127.7±0.9 白云母 40Ar/39Ar 断峰山 李鹏等, 2017
      含绿柱石白云母钠长石伟晶岩 130.5±0.9 白云母 40Ar/39Ar 复式岩体中部 李鹏等, 2017
      黑云母二长花岗岩 151.2±1.1 锆石 U-Pb 复式岩体北部 Ji et al., 2017
      黑云母二长花岗岩 151.4±1.1 锆石 U-Pb 复式岩体南部 Ji et al., 2017
      黑云母花岗闪长岩 149.0±1.0 锆石 U-Pb 复式岩体东北部 Ji et al., 2017
      二云母二长花岗岩 131.8±1.5 锆石 U-Pb 复式岩体西北部 Ji et al., 2017
      二云母二长花岗岩 143.5±1.8 锆石 U-Pb 复式岩体中部 Ji et al., 2017
      二云母二长花岗岩脉 127.0±1.4 锆石 U-Pb 复式岩体西北部 Ji et al., 2017
      花岗闪长岩 151.5±1.3 锆石 U-Pb 复式岩体东部 Wang et al., 2014
      含黑云母二长花岗岩 148.3±1.4 锆石 U-Pb 复式岩体北部 Wang et al., 2014
      二云母淡色花岗岩 145.8±0.9 锆石 U-Pb 复式岩体中部 Wang et al., 2014
      斑状黑云母二长花岗岩 142.9±0.9 锆石 U-Pb 复式岩体南部 许畅等, 2019
      含铌钽矿伟晶岩 140.2±2.3 铌钽铁矿 U-Pb 仁里矿床 Xiong et al., 2020
      黑云母二长花岗岩 154.1±2.5 锆石 U-Pb 仁里矿床 Xiong et al., 2020
      白云母二长花岗岩 141.0±2.4 锆石 U-Pb 仁里矿床 Xiong et al., 2020
      白云母二长花岗岩 140.7±2.2 独居石 Th-Pb 仁里矿床 Xiong et al., 2020
      下载: 导出CSV
    • [1] Ballard, J.R., Palin, M.J., Campbell, I.H., 2002. Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. https://doi.org/10.1007/s00410-002-0402-5
      [2] Burnham, A.D., Berry, A.J., 2012. An Experimental Study of Trace Element Partitioning between Zircon and Melt as a Function of Oxygen Fugacity. Geochimica et Cosmochimica Acta, 95: 196-212. https://doi.org/10.1016/j.gca.2012.07.034
      [3] Cameron, E.N., Jahns, R.H., McNair, A.H., et al., 1949. Internal Structure of Granitic Pegmatites. Society of Economic Geologists. https://doi.org/10.1080/11035895009451857
      [4] Chelle-Michou, C., Chiaradia, M., Ovtcharova, M., et al., 2014. Zircon Petrochronology Reveals the Temporal Link between Porphyry Systems and the Magmatic Evolution of Their Hidden Plutonic Roots (the Eocene Coroccohuayco Deposit, Peru). Lithos, 198-199: 129-140. https://doi.org/10.1016/j.lithos.2014.03.017
      [5] Claiborne, L., Miller, C.F., Walker, B.A., et al., 2006. Tracking Magmatic Processes through Zr/Hf Ratios in Rocks and Hf and Ti Zoning in Zircons: An Example from the Spirit Mountain Batholith, Nevada. Mineralogical Magazine, 70(5): 517-543. https://doi.org/10.1180/0026461067050348
      [6] Cocker, H.A., Valente, D.L., Park, J.W., et al., 2016. Using Platinum Group Elements to Identify Sulfide Saturation in a Porphyry Cu System: The El Abra Porphyry Cu Deposit, Northern Chile. Journal of Petrology, 56(12): 2491-2514. https://doi.org/10.1093/petrology/egv076
      [7] Deveaud, S., Millot, R., Villaros, A., 2015. The Genesis of LCT-Type Granitic Pegmatites, as Illustrated by Lithium Isotopes in Micas. Chemical Geology, 411: 97-111. https://doi.org/10.1016/j.chemgeo.2015.06.029
      [8] Dilles, J.H., Kent, A.J.R., Wooden, J.L., et al., 2015. Zircon Compositional Evidence for Sulfur-Degassing from Ore-Forming Arc Magmas. Economic Geology, 110(1): 241-251. https://doi.org/10.2113/econgeo.110.1.241
      [9] Ferry, J.M., Watson, E.B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      [10] Fu, Z.R., Li, Z.J., Zheng, D.Y., 1999. Structural Pattern and Tectonic Evolution of NNE Trending Strike Slip Orogenic Belt in the Border Region of Hunan and Jiangxi Provinces. Earth Science Frontiers, 6(4): 263-272(in Chinese with English abstract).
      [11] Gao, X.Y., Zheng, Y.F., 2011. On the Zr-in-Rutile and Ti-in-Zircon Geothermometers. Acta Petrologica Sinica, 27(2): 417-432(in Chinese with English abstract).
      [12] Grimes, C.B., John, B.E., Kelemen, P.B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: a Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643. https://doi.org/10.1130/g23603a.1
      [13] Iveson, A.A., Rowe, M.C., Webster, J.D., et al., 2018. Amphibole-, Clinopyroxene- and Plagioclase-Melt Partitioning of Trace and Economic Metals in Halogen-Bearing Rhyodacitic Melts. Journal of Petrology, 59(8): 1579-1604. https://doi.org/10.1093/petrology/egy072
      [14] Iveson, A.A., Webster, J.D., Rowe, M.C., et al., 2017. Major Element and Halogen (F, Cl) Mineral-Melt-Fluid Partitioning in Hydrous Rhyodacitic Melts at Shallow Crustal Conditions. Journal of Petrology, 58(12): 2465-2492. https://doi.org/10.1093/petrology/egy011
      [15] Jahns, R.H., Burnham, C.W., 1969. Experimental Studies of Pegmatite Genesis; L, A Model for the Derivation and Crystallization of Granitic Pegmatites. Economic Geology, 64(8): 843-864. https://doi.org/10.2113/gsecongeo.64.8.843
      [16] Ji, W.B., Lin, W., Faure, M., et al., 2017. Origin of the Late Jurassic to Early Cretaceous Peraluminous Granitoids in the Northeastern Hunan Province (Middle Yangtze Region), South China: Geodynamic Implications for the Paleo-Pacific Subduction. Journal of Asian Earth Sciences, 141: 174-193. https://doi.org/10.1016/j.jseaes.2016.07.005
      [17] Li, P., Li, J.K., Liu, X., et al., 2020. Geochronology and Source of the Rare-Metal Pegmatite in the Mufushan Area of the Jiangnan Orogenic Belt: A Case Study of the Giant Renli Nb-Ta Deposit in Hunan, China. Ore Geology Reviews, 116: 103237. https://doi.org/10.1016/j.oregeorev.2019.103237
      [18] Li, J.W., Li, X.F., Li, Z.J., et al., 1999. Fluid Inclusions Study in the Process of Strike Slip Faulting: A Case Study in Eastern Hunan Province. Geotectonica et Metallogenia, 23(3): 240-247(in Chinese with English abstract).
      [19] Li, L.G., Wang, L.X., Tian, Y., et al., 2019. Petrogenesis and Rare-Metal Mineralization of the Mufushan Granitic Pegmatite, South China: Insights from In Situ Mineral Analysis. Earth Science, 44(7): 2532-2560(in Chinese with English abstract).
      [20] Li, P., Li, J.K., Pei, R.F., et al., 2017. Multistage Magmatic Evolution and Cretaceous Peak Metallogenic Epochs of Mufushan Composite Granite Mass: Constrains from Geochronological Evidence. Earth Science, 42(10): 1684-1696(in Chinese with English abstract).
      [21] Li, Z.L., Yang, R.Y., Li, W., et al., 1998. Forming Physicochemical Condition of Different Genetic Pegmatites in China. Geological Science and Technology Information, 17(Suppl. 1): 3-5(in Chinese with English abstract).
      [22] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      [23] Liu, X., Zhou, F.C., Huang, Z.B., et al., 2018. Discovery of Renli Superlarge Pegmatite-Type Nb-Ta Polymetallic Deposit in Pingjiang, Hunan Province and Its Significances. Geotectonica et Metallogenia, 42(2): 235-243(in Chinese with English abstract).
      [24] Liu, X., Zhou, F.C., Li, P., et al., 2019. Geological Characteristics and Metallogenic Age of Renli Rare Metal Orefield in Hunan and Its Prospecting Significance. Mineral Deposits, 38(4): 771-791(in Chinese with English abstract).
      [25] London, D., 2005. Granitic Pegmatites: An Assessment of Current Concepts and Directions for the Future. Lithos, 80(1-4): 281-303. https://doi.org/10.1016/j.lithos.2004.02.009
      [26] Ludwig, K.R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Geochronology Center, California, Berkeley, 39.
      [27] Park, J.W., Campbell, I.H., Kim, J., et al., 2015. The Role of Late Sulfide Saturation in the Formation of a Cu- and Au-Rich Magma: Insights from the Platinum Group Element Geochemistry of Niuatahi-Motutahilavas, Tonga Rear Arc. Journal of Petrology, 56(1): 59-81. https://doi.org/10.1093/petrology/egu071
      [28] Pupin, J.P., 2000. Granite Genesis Related to Geodynamics from Hf-Y in Zircon. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 245-256. https://doi.org/10.1017/s0263593300007410
      [29] Shaw, R.A., Goodenough, K.M., Roberts, N.M.W., et al., 2016. Petrogenesis of Rare-Metal Pegmatites in High-Grade Metamorphic Terranes: A Case Study from the Lewisian Gneiss Complex of North-West Scotland. Precambrian Research, 281: 338-362. https://doi.org/10.1016/j.precamres.2016.06.008
      [30] Simmons, W.B.S., Webber, K.L., 2008. Pegmatite Genesis: State of the Art. European Journal of Mineralogy, 20(4): 421-438. https://doi.org/10.1127/0935-1221/2008/0020-1833
      [31] Stewart, D.B., 1978. Petrogenesis of Lithium-Rich Pegmatites. American Mineralogist, 63(9-10): 970-980.
      [32] Stilling, A., Ćerný, P., Vanstone, P.J., 2006. The Tanco Pegmatite at Bernic Lake, Manitoba. XVI. Zonal and Bulk Compositions and Their Petrogenetic Significance. The Canadian Mineralogist, 44(3): 599-623. https://doi.org/10.2113/gscanmin.44.3.599
      [33] Villaros, A., Pichavant, M., 2019. Mica-Liquid Trace Elements Partitioning and the Granite-Pegmatite Connection: The St-Sylvestre Complex (Western French Massif Central). Chemical Geology, 528: 119265. https://doi.org/10.1016/j.chemgeo.2019.07.040
      [34] Wang, F.Y., Liu, S.G., Li, S.G., et al., 2013. Contrasting Zircon Hf-O Isotopes and Trace Elements between Ore-Bearing and Ore-Barren Adakitic Rocks in Central-Eastern China: Implications for Genetic Relation to Cu-Au Mineralization. Lithos, 156-159: 97-111. https://doi.org/10.1016/j.lithos.2012.10.017
      [35] Wang, L.X., Ma, C.Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206-207: 147-163. https://doi.org/10.1016/j.lithos.2014.07.026
      [36] Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
      [37] Woodhead, J., Hellstrom, J., Maas, R., 2006. Refining Terrestrial Palaeoclimate Chronologies: New Tools for Old Speleothems. Geochimica et Cosmochimica Acta, 70(18): A707. https://doi.org/10.1016/j.gca.2006.06.1534
      [38] Xiong, Y.Q., Jiang, S.Y., Wen, C.H., et al., 2020. Granite-Pegmatite Connection and Mineralization Age of the Giant Renli Ta-Nb Deposit in South China: Constraints from U-Th-Pb Geochronology of Coltan, Monazite, and Zircon. Lithos, 358-359: 105422. https://doi.org/10.1016/j.lithos.2020.105422
      [39] Xu, C., Li, J.K., Shi, G.H., et al., 2019. Zircon U-Pb Age and Hf Isotopic Composition of Porphyaceous Biotite Granite in South Margin of Mufushan and Their Geological Implications. Mineral Deposits, 38(5): 1053-1068(in Chinese with English abstract).
      [40] Yin, S., 2019. The Formation and Evolution of Zonation Pattern in Magnetite from a Magmatic-Hydrothermal System: A Case Study of Skarn Iron Deposits from East Kunlun Orogenic Belt (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [41] Zhang, H., Lü, Z.H., Tang, Y., 2019. Metallogeny and Prospecting Model as Well as Prospecting Direction of Pegmatite-Type Rare Metal Ore Deposits in Altay Orogenic Belt, Xinjiang. Mineral Deposits, 38(4): 792-814 (in Chinese with English abstract).
      [42] Zhang, J.Y., Yang, Z.B., Zhang, H., et al., 2017. Controls on the Formation of Cu-Rich Magmas: Insights from the Late Triassic Post-Collisional Saishitang Complex in the Eastern Kunlun Orogen, Western China. Lithos, 278-281: 400-418. https://doi.org/10.1016/j.lithos.2017.02.008
      [43] Zong, K.Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
      [44] 傅昭仁, 李紫金, 郑大瑜, 1999. 湘赣边区NNE向走滑造山带构造发展样式. 地学前缘, 6(4): 263-272. doi: 10.3321/j.issn:1005-2321.1999.04.009
      [45] 高晓英, 郑永飞, 2011. 金红石Zr和锆石Ti含量地质温度计. 岩石学报, 27(2): 417-432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102006.htm
      [46] 李建威, 李先福, 李紫金, 等, 1999. 走滑变形过程中的流体包裹体研究: 以湘东地区为例. 大地构造与成矿学, 23(3): 240-247. doi: 10.3969/j.issn.1001-1552.1999.03.006
      [47] 李乐广, 王连训, 田洋, 等, 2019. 华南幕阜山花岗伟晶岩的矿物化学特征及指示意义. 地球科学, 44(7): 2532-2560. doi: 10.3799/dqkx.2018.378
      [48] 李鹏, 李建康, 裴荣富, 等, 2017. 幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰: 年代学依据. 地球科学, 42(10): 1684-1696. doi: 10.3799/dqkx.2017.114
      [49] 李兆麟, 杨荣勇, 李文, 等, 1998. 中国不同成因伟晶岩形成的物理化学条件. 地质科技情报, 17(增刊1): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S1.004.htm
      [50] 刘翔, 周芳春, 黄志飚, 等, 2018. 湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义. 大地构造与成矿学, 42(2): 235-243. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201802004.htm
      [51] 刘翔, 周芳春, 李鹏, 等, 2019. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义. 矿床地质, 38(4): 771-791. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904007.htm
      [52] 许畅, 李建康, 施光海, 等, 2019. 幕阜山南缘似斑状黑云母花岗岩锆石U-Pb年龄、Hf同位素组成及其地质意义. 矿床地质, 38(5): 1053-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905007.htm
      [53] 尹烁, 2019. 岩浆-热液体系与磁铁矿环带的形成演化及其地质意义: 以东昆仑造山带矽卡岩型铁矿为例(博士学位论文). 武汉: 中国地质大学.
      [54] 张辉, 吕正航, 唐勇, 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(4): 792-814. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904008.htm
    • dqkxzx-46-12-4517-附表.docx
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  491
    • HTML全文浏览量:  115
    • PDF下载量:  51
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-30
    • 刊出日期:  2021-12-15

    目录

      /

      返回文章
      返回