Geochronological, Geochemical and Sr-Nd Isotopic Characteristics of Carboniferous Rock Mass in Bayern Daba Area, Inner Mongolia and Its Constraints on Central Asian Orogenic Belt
-
摘要: 为探讨内蒙古拜仁达坝岩体岩浆来源与构造环境,进而限制古亚洲洋闭合时间,锆石U-Pb年代学、岩石地球化学及Sr-Nd同位素地球化学研究结果表明,岩体由花岗闪长岩和石英闪长岩组成,岩石侵位年龄为327±2 Ma(MSWD=1.4). 岩体具有偏铝质-弱过铝质钙碱性特征,富集Rb、Th、U、K,亏损Ba、Sr、P及Nb、Ta、Ti等高场强元素,Eu负异常,具典型岛弧钙碱性Ⅰ型花岗岩特征. 岩体具有亏损的Sr-Nd同位素组成,(87Sr/86Sr)i=0.705 8~0.709 6,εNd(t)=-4.93~0.01,TDM2=1.08~1.48 Ga,且锆石中发现有继承锆石,高Rb/Sr(0.70~2.63)、Zr/Hf(35.88~77.17)比值,表明岩浆起源于早石炭世晚期由中元古代幔源基性地壳物质熔融.拜仁达坝岩体形成于俯冲带的活动大陆边缘环境,认为西伯利亚板块南缘在晚石炭世已进入俯冲消减的活动大陆边缘演化阶段,进而表明此时古亚洲洋俯冲作用仍在持续.对兴蒙造山带南部早中二叠世中酸性岩体的研究也得到同样的结论,表明晚石炭世到晚二叠世古亚洲洋一直在向北俯冲消减,直到中晚三叠世后造山伸展环境形成的花岗岩类岩体出现,暗示古亚洲洋完全闭合.Abstract: In order to examine the magma origin and tectonic setting of the Bayern Daba rock mass in Inner Mongolia and thereby limit the closure of the paleo-Asian Ocean, zircon LA-ICP-MS U-Pb geochronological, geochemical and Sr-Nd isotopic measurement and analysis are presented in this paper. Zircon U-Pb dating yields a weighted mean age of 327±2 Ma(MSWD=1.4), indicating an Early Carboniferous magmatic event. The Bayern Daba rock mass is characterized by the high Si, Na, Mg, Fe and metaluminous-peraluminous features. They are relatively enriched in Rb, Th, U and K, depleted in Ba, Sr, P, Nb, Ta and Ti, and enriched in LREE over HREE with negative Eu anormaly, showing the calc-alkaline Ⅰ-type granite in island arc. Their depleted isotopic compositions with (87Sr/86Sr)i from 0.705 8 to 0.709 6, negative εNd(t) values from -4.93 to 0.01, and TDM2 from 1.08 to 1.48 Ga, as well as the inherited zircon present in zircon, indicating that the magma source was derived from the partial melting of Mesoproterozoic mantle-derived basic materials. High Rb/Sr (0.70-2.63) and Zr/Hf (35.88-77.17) ratios and the positive correlation of ISr and εNd(t) isotopic data suggest contamination by a proportion of mantle material. Combined with regional tectonic evolution, the Bayern Daba rock mass was formed in the island-arc environment of an active continental margin in Carboniferous, which further suggests that the subduction of the paleo-Asian Ocean was still ongoing at that time. The same conclusion is also reported about the Early Permian intermediate-acidic rock masses in the southern part of the Xing-Meng orogenic belt, suggesting that the paleo-Asian Ocean had been subducting northward from Late Carboniferous up to Late Permian and did not fully close until the appearance of granitoids formed in a post-orogenic extensional environment in Middle to Late Triassic.
-
Key words:
- Bayern Daba rock mass /
- Sr-Nd isotope /
- paleo-Asian Ocean /
- active continental margin /
- petrology
-
图 1 中亚造山带大地构造位置简图(a)和区域岩浆活动的时空分布(b)
底图据王金芳等(2020)
Fig. 1. Sketch tectonic map of the Central Asian orogenic belt (a) and spatiotemporal distribution of regional magmatism (b)
图 2 区域构造略图(据刘翼飞等, 2010修改)(a)、研究区地质简图(b)
1.第四系;2.晚侏罗统满克头鄂博组;3.中侏罗统万宝组;4.中二叠统林西组;5.早二叠统大石寨组;6.中石炭统;7.古元古界宝音图群;8.晚石炭世花岗闪长岩;9.晚石炭世花岗岩;10.早白垩世花岗岩、花岗斑岩;11.断层;12.研究区
Fig. 2. Sketch tectonic map (according Liu et al., 2010) (a) and geological map of the study area(b)
图 5 拜仁达坝岩体主量元素关系
a. TAS图解,底图据Irvine and Baragar(1971);b. SiO2-K2O图解,底图据Rickwood et al.(1989);c. A/CNK-A/NK图解,底图据Maniar and Piccoli(1989)
Fig. 5. Major element variation diagrams of Bayern Daba rock mass
图 6 稀土元素球粒陨石标准化配分模式图(a)与微量元素原始地幔标准化蛛网图(b)
原始地幔标准化值与球粒陨石标准化值据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE distribution pattern diagram (a) and primitive mantle-normalized trace element spidergram (b) of Bayern Daba rock mass
图 7 拜仁达坝岩体(87Sr/86Sr)i-εNd(t)图解
底图a据Hou et al.(2004),图b据张旗等(2008):B源区. 玄武岩源区;C源区. 陆壳源区;B-C源区. 壳幔过渡区;迪彦庙蛇绿岩数据来自程杨等(2019)
Fig. 7. (87Sr/86Sr)i-εNd(t) diagrams of Bayern Daba rock mass
图 8 拜仁达坝岩体分离结晶趋势
a. Ba-Sr图解;b. Ni-Cr图解;c. Rb/Sr-Sr图解;d.(La/Yb)N-La图解. 底图据邱检生等(2008),王梁等(2015)修改
Fig. 8. Diagrams showing the fractional crystallization of Bayern Daba rock mass
图 11 拜仁达坝岩体构造环境判别图解
a.Rb-(Y+Nb)图解,底图据Pearce et al.(1984);b. Ta-Rb图解,底图据Pearce et al.(1984);c. FAM图解,底图据Lameyre and Bowden(1982);d. Rb/30-Hf-Ta*3图解,底图据Harris et al.(1986)
Fig. 11. Tectonic discrimination diagrams of Bayern Daba rock mass
表 1 拜仁达坝岩体主量元素(%)和微量元素(10-6)分析结果
Table 1. Major element (%) and trace element (10-6) analyses of Bayern Daba rock mass
岩性 石英闪长岩、花岗闪长岩 样号 BR-2-1 BR-2-2 BR-2-3 BR-2-4 BR-3-1 BR-3-2 BR-3-3 BR-3-4 SiO2 65.77 67.03 66.23 62.53 61.34 62.73 64.45 65.71 TiO2 0.54 0.48 0.64 0.71 0.83 0.69 0.66 0.61 Al2O3 14.46 15.13 14.59 14.96 15.97 16.02 15.74 16.31 Fe2O3 2.21 1.68 1.94 2.66 2.54 1.84 2.02 0.67 FeO 2.42 2.28 2.75 4.09 3.69 3.40 3.09 3.46 MnO 0.08 0.10 0.09 0.17 0.14 0.13 0.13 0.09 MgO 2.06 1.82 2.32 3.22 2.82 2.54 2.21 1.76 CaO 2.64 3.31 3.01 4.29 5.02 3.46 4.83 2.39 Na2O 3.68 3.59 3.63 3.01 3.29 4.19 3.67 4.21 K2O 2.52 2.43 2.24 1.58 1.97 1.74 1.73 2.53 P2O5 0.15 0.13 0.16 0.23 0.19 0.18 0.23 0.17 LOI 2.68 1.62 1.76 2.34 1.97 2.93 1.13 1.87 A/CNK 1.06 1.04 1.05 1.03 0.96 1.06 0.94 1.16 A/NK 1.65 1.77 1.74 2.24 2.12 1.83 1.99 1.69 Mg# 45 46 48 47 46 47 45 44 K2O+Na2O 6.20 6.02 5.87 4.59 5.26 5.93 5.40 6.74 K2O/Na2O 0.68 0.68 0.62 0.52 0.60 0.42 0.47 0.60 Rb 127.00 124.00 84.10 79.20 58.80 22.00 67.40 49.50 Ba 575.79 222.47 474.41 293.11 385.84 394.24 224.56 336.04 Th 22.66 19.15 16.40 17.94 21.07 16.71 22.44 16.15 U 3.41 2.76 2.87 2.13 2.26 2.74 3.75 4.11 Nb 11.51 11.53 13.30 14.54 15.78 16.50 12.85 12.50 Ta 1.33 1.36 1.31 0.99 1.17 1.20 1.29 1.16 Sr 208.00 339.00 323.00 283.00 295.00 67.90 272.00 313.00 Zr 202.51 174.02 179.77 187.53 167.09 190.04 202.70 159.15 Hf 5.32 3.52 4.19 2.43 2.46 2.51 5.65 4.14 Y 14.40 20.43 19.24 15.86 33.59 26.06 23.54 26.40 Er 1.73 2.40 2.35 2.03 3.99 2.97 2.82 3.12 V 83.98 77.75 82.17 98.75 93.54 98.32 75.10 61.94 Cr 84.87 74.09 75.66 84.38 61.15 81.64 70.60 54.22 Co 10.91 10.04 11.22 14.07 6.54 11.73 11.07 5.08 Ni 27.06 22.16 28.95 33.33 33.24 35.14 21.69 19.60 La 44.32 36.40 36.00 39.11 30.45 39.11 39.58 38.19 Ce 74.31 66.34 64.60 68.39 60.01 73.81 71.61 66.69 Pr 9.16 8.26 8.09 8.54 7.59 9.68 9.31 8.76 Nd 26.73 24.70 24.47 24.83 23.96 30.27 28.05 26.29 Sm 5.13 4.89 5.17 4.77 5.33 6.41 5.74 5.47 Eu 1.21 1.17 1.09 0.97 1.04 1.33 1.14 0.86 Gd 6.17 6.56 6.73 6.31 7.29 8.51 7.17 6.98 Tb 0.72 0.75 0.77 0.71 1.02 1.10 0.87 0.96 Dy 2.84 3.77 3.69 3.05 5.79 5.09 4.33 4.67 Ho 0.57 0.76 0.76 0.61 1.28 1.03 0.93 1.01 Er 1.73 2.40 2.35 2.03 3.99 2.97 2.82 3.12 Tm 0.23 0.35 0.35 0.31 0.67 0.46 0.46 0.52 Yb 1.30 2.23 2.21 2.11 4.15 2.63 2.83 3.09 ∑REE 174.65 158.93 156.63 162.07 153.22 182.83 175.28 167.11 δEu 0.66 0.63 0.56 0.54 0.51 0.55 0.54 0.43 δCe 0.84 0.89 0.88 0.86 0.93 0.89 0.87 0.85 (La/Yb)N 22.98 11.00 10.98 12.50 4.95 10.03 9.43 8.33 Nb/Ta 8.63 8.48 10.18 14.71 13.50 13.79 9.96 10.75 Zr/Hf 38.04 49.40 42.93 77.24 67.93 75.69 35.86 38.40 表 2 拜仁达坝岩体Sr、Nd同位素分析数据
Table 2. Sr, Nd isotope data of Bayern Daba rock mass
岩性 花岗闪长岩、石英闪长岩 样品 BR-2-1 BR-2-2 BR-2-3 BR-2-4 BR-3-1 BR-3-2 BR-3-3 BR-3-4 NBR-2 NBR-3 Rb 127.00 124.00 84.10 79.20 58.80 22.00 67.40 49.50 71.20 54.80 Sr 208.00 339.00 323.00 283.00 295.00 67.90 272.00 313.00 274.00 177.00 87Rb/86Sr 1.767 6 1.058 9 0.753 5 0.809 9 0.576 9 0.937 7 0.717 2 0.457 7 0.752 2 0.896 1 87Sr/86Sr 0.714 0 0.713 8 0.710 0 0.710 5 0.711 0 0.710 7 0.711 4 0.711 7 0.712 2 0.712 0 (87Sr/86Sr)i 0.705 8 0.708 9 0.707 0 0.706 7 0.708 3 0.706 3 0.708 0 0.709 6 0.708 7 0.707 8 Sm 3.13 4.55 2.94 3.24 3.65 8.47 5.37 3.73 4.62 4.77 Nd 15.20 32.24 26.96 18.58 17.63 36.50 19.12 17.80 16.88 29.79 147Sm/144Nd 0.124 5 0.085 3 0.065 9 0.105 4 0.125 2 0.140 3 0.169 8 0.126 7 0.165 5 0.096 8 143Nd/144Nd 0.512 321 0.512 443 0.512 291 0.512 232 0.512 238 0.512 312 0.512 424 0.512 241 0.512 537 0.512 422 εNd(t) -3.71 0.01 -0.88 -4.40 -4.93 -4.87 -3.99 -4.83 -1.53 -0.82 fSm/Nd -0.37 -0.57 -0.66 -0.46 -0.36 -0.29 -0.14 -0.36 -0.16 -0.51 TDM2(Ga) 1.38 1.08 1.16 1.44 1.48 1.48 1.40 1.47 1.20 1.15 -
[1] Bao, Q.Z., Zhang, C.J., Wu, Z.L., et al., 2007. SHRIMP U-Pb Zircon Geochronology of a Carboniferous Quartz-Diorite in Baiyingaole Area, Inner Mongolia and Its Implications. Journal of Jilin University (Earth Science Edition), 37(1): 15-23(in Chinese with English abstract). [2] Bian, Q.T., Gai, S.S., Liu, S.Y., et al., 2017. Petrology and Geochemistry of the Cu-Bearing Carbonatite from the Shivuma Copper Deposit, Zambia: Implications to Petrogenesis and Metallogeny. Acta Petrologica Sinica, 33(6): 1805-1826(in Chinese with English abstract). [3] Chappell, B.W., White, A.J.R., Williams, I.S., et al., 2004. Low- and High-Temperature Granites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1-2): 125-140. https://doi.org/10.1017/s0263593300000973 doi: 10.1017/S0263593300000973 [4] Chen, B., Jahn, B.M., Wilde, S., et al., 2000. Two Contrasting Paleozoic Magmatic Belts in Northern Inner Mongolia, China: Petrogenesis and Tectonic Implications. Tectonophysics, 328(1-2): 157-182. https://doi.org/10.1016/S0040-1951(00)00182-7 [5] Chen, Y., Zhang, Z.C., Li, K., et al., 2014. Geochronology, Geochemistry and Geological Significance of the Permian Bimodal Volcanic Rocks in Xi Ujimqin Banner, Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(5): 843-858(in Chinese with English abstract). [6] Chen, Y.J., Zhang, C., Wang, P., et al., 2017. The Mo Deposits of Northeast China: A Powerful Indicator of Tectonic Settings and Associated Evolutionary Trends. Ore Geology Reviews, 81: 602-640. https://doi.org/10.1016/j.oregeorev.2016.04.017 [7] Cheng, Y., Xiao, Q.H., Li, T.D., et al., 2019. Magmatism and Tectonic Background of Early Permian Intra-Oceanic Arc in Diyanmiao Subduction Accretion Complex Belt in Eastern Margin of Central Asian Orogenic Belt. Earth Science, 44(10): 3454-3468(in Chinese with English abstract). [8] Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0 [9] Fan, Y.X., Li, T.D., Xiao, Q.H., et al., 2019. Zircon U-Pb Ages, Geochemical Characteristics of Late Permian Granite in West Ujimqin Banner, Inner Mongolia, and Tectonic Significance. Geological Review, 65(1): 248-266(in Chinese with English abstract). [10] Fan, Y.X., Xiao, Q.H., Cheng, Y., et al., 2020. Chronology, Sr-Nd-Hf Isotope Geochemistry and Geology Significance of Pluton in the Naolaiketu of Diyanmiao, Inner Mongolia. Earth Science, 45(7): 2379-2392(in Chinese with English abstract). [11] Fang, J.Q., Zhao, P., Xu, B., et al., 2014. Sedimentary Facies Analyses and Discovery of Gastropods from Zhesi Formation in the South of West Ujimqin, Inner Mongolia and Their Significances. Acta Petrologica Sinica, 30(7): 1889-1898(in Chinese with English abstract). [12] Feng, G.Y., Liu, S., Zhong, H., et al., 2010. Geochemical Characteristics and Petrogenesis of Late Paleozoic Mafic Rocks from Yumuchuan, Jilin Province. Geochimica, 39(5): 427-438(in Chinese with English abstract). [13] Foley, S.F., Barth, M.G., Jenner, G.A., 2000. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas. Geochimica et Cosmochimica Acta, 64(5): 933-938. https://doi.org/10.1016/S0016-7037(99)00355-5 [14] Gong, F.H., Huang, X., Zheng, Y.J., et al., 2013. Significance of the Submarine Fan of Lower Permian Shoushangou Formation in West Ujimqin-Qi, Inner Mongolia. Geology and Resources, 22(6): 478-483(in Chinese with English abstract). [15] Guan, Q.B., Liu, Z.H., Liu, Y.J., et al., 2019. Geochemistry and Zircon U–Pb Geochronology of Mafic Rocks in the Kaiyuan Tectonic Mélange of Northern Liaoning Province, NE China: Constraints on the Tectonic Evolution of the Paleo-Asian Ocean. Geological Journal, 54(2): 656-678. https://doi.org/10.1002/gj.3442 [16] Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. https://doi.org/10.1144/gsl.sp.1986.019.01.04 doi: 10.1144/GSL.SP.1986.019.01.04 [17] Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1/2): 139-155. https://doi.org/10.1016/S0012-821X(04)00007-X [18] Hua, B., Gao, X., Hu, Z.G., et al., 2020. Petrogenesis and Tectonic Setting of the Wuzhuxinwusu Granite, Western Xing-Meng Orogenic Belt: Evidences from Geochemistry, Zircon U-Pb Geochronology and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 36(5): 1426-1444(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.05.07 [19] Huang, B., Fu, D., Li, S.C., et al., 2016. The Age and Tectonic Implications of the Hegenshan Ophiolite in Inner Mongolia. Acta Petrologica Sinica, 32(1): 158-176(in Chinese with English abstract). [20] Irvine, T.N., Baragar, W.R.A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055 [21] Jiang, X.J., Liu, Y.Q., Peng, N., et al., 2011. Geochemistry and SHRIMP U-Pb Dating of the Guangxingyuan Composite Pluton in Hexigten Qi, Inner Mongolia and Its Geological Implication. Acta Geologica Sinica, 85(1): 114-128(in Chinese with English abstract). [22] Kang, J.L., Xiao, Z.B., Wang, H.C., et al., 2016. Late Paleozoic Subduction of the Paleo-Asian Ocean: Geochronological and Geochemical Evidence from the Meta-Basic Volcanics of Xilinhot, Inner Mongolia. Acta Geologica Sinica, 90(2): 383-397(in Chinese with English abstract). [23] Kessel, R., Schmidt, M.W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth. Nature, 437(7059): 724-727. https://doi.org/10.1038/nature03971 [24] Lameyre, J., Bowden, P., 1982. Plutonic Rock Types Series: Discrimination of Various Granitoid Series and Related Rocks. Journal of Volcanology and Geothermal Research, 14(1-2): 169-186. https://doi.org/10.1016/0377-0273(82)90047-6 [25] Li, G.Z., Wang, Y.J., Li, C.Y., et al., 2017. Discovery of Early Permian Radiolarian Fauna in the Solon Obo Ophiolite Belt, Inner Mongolia and Its Geological Significance. Chinese Science Bulletin, 62(5): 400-406(in Chinese). doi: 10.1360/N972016-00703 [26] Li, J.Y., Gao, L.M., Sun, G.H., et al., 2007. Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates. Acta Petrologica Sinica, 23(3): 565-582(in Chinese with English abstract). [27] Li, P.F., Sun, M., Rosenbaum, G., et al., 2017a. Late Paleozoic Closure of the Ob-Zaisan Ocean along the Irtysh Shear Zone (NW China): Implications for Arc Amalgamation and Oroclinal Bending in the Central Asian Orogenic Belt. Geological Society of America Bulletin, 129(5/6): 547-569. https://doi.org/10.1130/b31541.1 [28] Li, P.F., Sun, M., Rosenbaum, G., et al., 2017b. Geometry, Kinematics and Tectonic Models of the Kazakhstan Orocline, Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 42-56. https://doi.org/10.1016/j.jseaes.2017.07.029 [29] Li, Y.J., Wang, J.F., Li, H.Y., et al., 2015. Recognition of Meilaotewula Ophiolite in Xi Ujimqin Banner, Inner Mongolia. Acta Petrologica Sinica, 31(5): 1461-1470(in Chinese with English abstract). [30] Li, Y.J., Wang, J.F., Wang, G.H., et al., 2018. Discovery and Significance of the Dahate Fore-Arc Basalts from the Diyanmiao Ophiolite in Inner Mongolia. Acta Petrologica Sinica, 34(2): 469-482(in Chinese with English abstract). [31] Li, Y.L., Zhou, H.W., Brouwer, F.M., et al., 2014. Nature and Timing of the Solonker Suture of the Central Asian Orogenic Belt: Insights from Geochronology and Geochemistry of Basic Intrusions in the Xilin Gol Complex, Inner Mongolia, China. International Journal of Earth Sciences, 103(1): 41-60. https://doi.org/10.1007/s00531-013-0931-3 [32] Liu, C.F., Zhang, H.R., Yu, Y.S., et al., 2010. Dating and Petrochemistry of the Beijige Pluton in Siziwangqi, Inner Mongolia. Geoscience, 24(1): 112-119, 150(in Chinese with English abstract). [33] Liu, M., Zhao, H.T., Zhang, D., et al., 2017. Chronology, Geochemistry and Tectonic Implications of Late Palaeozoic Intrusions from South of Xiwuqi, Inner Mongolia. Earth Science, 42(4): 527-548(in Chinese with English abstract). [34] Liu, R., Yang, Z., Xu, Q.D., et al., 2016. Zircon U-Pb Ages, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Hercynian Granitoids from the Southern Segment of the Da Hinggan MTS. : Petrogenesis and Tectonic Implications. Acta Petrologica Sinica, 32(5): 1505-1528(in Chinese with English abstract). [35] Liu, Y.F., Jiang, S.H., Bagas, L.B., 2016. The Genesis of Metal Zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) Deposits in the Shallow Part of a Porphyry Sn-W-Rb System, Inner Mongolia, China. Ore Geology Reviews, 75: 150-173. https://doi.org/10.1016/j.oregeorev.2015.12.006 [36] Liu, Y.F., Jiang, S.H., Zhang, Y., 2010. The SHRIMP Zircon U-Pb Dating and Geochemical Features of Bairendaba Diorite in the Xilinhaote Area, Inner Mongolia, China. Geological Bulletin of China, 29(5): 688-696(in Chinese with English abstract). [37] Lü, H.B., Feng, X.D., Wang, J., et al., 2018. Ophiolitic Mélanges Found in Mount Langshan as the Crucial Evidence of Collisional Margin between North China Craton and Central Asian Orogenic Belt. Geological Review, 64(4): 777-805(in Chinese with English abstract). [38] Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [39] Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2 [40] Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0 [41] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [42] Qiu, J.S., Xiao, E., Hu, J., et al., 2008. Petrogenesis of Highly Fractionated Ⅰ-Type Granites in the Coastal Area of Northeastern Fujian Province: Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes. Acta Petrologica Sinica, 24(11): 2468-2484(in Chinese with English abstract). [43] Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891 [44] Rickwood, P.C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5 [45] Rogers, G., Hawkesworth, C.J., 1989. A Geochemical Traverse across the North Chilean Andes: Evidence for Crust Generation from the Mantle Wedge. Earth and Planetary Science Letters, 91(3/4): 271-285. https://doi.org/10.1016/0012-821X(89)90003-4 [46] Rudnick, R.L., Gao, S., Ling, W.L., et al., 2004. Petrology and Geochemistry of Spinel Peridotite Xenoliths from Hannuoba and Qixia, North China Craton. Lithos, 77(1/2/3/4): 609-637. https://doi.org/10.1016/j.lithos.2004.03.033 [47] Shao, J.A., Zhang, L., Mou, B.L., 1999. Magmatism in the Mesozoic Extending Orogenic Process of Da Hinggan MTS. Earth Science Frontiers, 6(4): 339-346(in Chinese with English abstract). [48] Shi, G.H., Miao, L.C., Zhang, F.Q., et al., 2004. Age and Regional Tectonic Significance of A-Type Granite in Xilinhaote Inner Mongolia. Chinese Science Bulletin, 49(4): 384-389(in Chinese). doi: 10.1360/csb2004-49-4-384 [49] Shi, W.J., Zhao, X., Wei, J.H., et al., 2020. Geochemical Characteristics of A-Type Granites in Southern Xingmeng Orogen and Constraints on the Evolution of the Paleo-Asian Ocean. Geotectonica et Metallogenia, 44(1): 141-156(in Chinese with English abstract). [50] Sun, L.X., Ren, B.F., Zhao, F.Q., et al., 2013. Late Paleoproterozoic Magmatic Records in the Eerguna Massif: Evidences from the Zircon U-Pb Dating of Granitic Gneisses. Geological Bulletin of China, 32(2/3): 341-352(in Chinese with English abstract). [51] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [52] Tang, W.H., Zhang, Z.C., Li, J.F., et al., 2011. Geochemistry of the Carboniferous Volcanic Rocks of Benbatu Formation in Sonid Youqi, Inner Mongolia and Its Geological Significance. Acta Scientiarum Naturalium Universitatis Pekinensis, 47(2): 321-330(in Chinese with English abstract). [53] Taylor, S.R., McLennan, S.M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95rg00262 doi: 10.1029/95RG00262 [54] Wang, J.F., Li, Y.J., Li, H.Y., et al., 2019. Zircon U-Pb Ages and Geochemical Characteristics of Baiyinhushu Trondhjemite in Hegenshan Suture Zone and Their Tectonic Implications. Geological Review, 65(4): 857-872(in Chinese with English abstract). [55] Wang, J.F., Li, Y.J., Li, H.Y., et al., 2020. Late Carboniferous Intraoceanic Subduction of the Paleo-Asian Ocean: New Evidences from the Zagayin High-Mg Andesite in the Meilaotewula SSZ Ophiolite. Geological Review, 66(2): 289-306(in Chinese with English abstract). [56] Wang, L., Wang, G.H., Lei, S.B., et al., 2015. Petrogenesis of Dahuabei Pluton from Wulashan, Inner Mongolia: Constraints from Geochemistry, Zircon U-Pb Dating and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 31(7): 1977-1994(in Chinese with English abstract). [57] Wang, S.H., Chen, Y.L., Li, D.P., 2012. U-Pb Dating and Hf Isotopic Composition of Zircons in Amphibolite from the Xilinhot Complex. Geoscience, 26(5): 1019-1027(in Chinese with English abstract). [58] Wang, S.Q., Hu, X.J., Yang, Z.L., et al., 2018. Geochronology, Geochemistry, Sr-Nd-Hf Isotopic Characteristics and Geological Significance of Carboniferous Yuejin Arc Intrusive Rocks of Xilinhot, Inner Mongolia. Earth Science, 43(3): 672-695(in Chinese with English abstract). [59] Wang, S.Q., Hu, X.J., Zhao, H.L., et al., 2017. Geochronology and Geochemistry of Late Carboniferous Jinggesitai Alkaline Granites, Inner Mongolia: Petrogenesis and Implications for Tectonic Evolution. Acta Geologica Sinica, 91(7): 1467-1482(in Chinese with English abstract). [60] Wang, Y.J., Fan, Z.Y., 1997. Discovery of Permian Radiolarians in Ophiolite Belt on Northern Side of Xar Moron River, Nei Monggol and Its Geological Significance. Acta Palaeontologica Sinica, (1): 60-71(in Chinese with English abstract). [61] Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X [62] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 [63] Wolf, M.B., Wyllie, P.J., 1994. Dehydration-Melting of Amphibolite at 10 kbar: The Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 115(4): 369-383. https://doi.org/10.1007/BF00320972 [64] Xiao, W.J., Windley, B.F., Han, C.M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020 [65] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1-21. https://doi.org/10.1029/2002tc001484 [66] Xiao, W.J., Windley, B.F., Huang, B.C., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217. https://doi.org/10.1007/s00531-008-0407-z [67] Xiao, W.J., Windley, B.F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [68] Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. https://doi.org/10.1016/j.gr.2012.05.015 [69] Xu, B., Zhao, P., Bao, Q.Z., et al., 2014. Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841–1857(in Chinese with English abstract). [70] Xu, Q.W., Wang, P., Wang, Z.Q., et al., 2019. LA-ICP-MS Zircon U-Pb Ages, Geochemical Characteristics of the Dashizhai Formation Tuffs in Hexigten Banner, Inner Mongolia and Thier Tectonic Significance. Geological Review, 65(1): 119-149(in Chinese with English abstract). [71] Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646(in Chinese with English abstract). [72] Xue, H.M., Guo, L.J., Hou, Z.Q., et al., 2009. The Xilingele Complex from the Eastern Part of the Central Asian-Mongolia Orogenic Belt, China: Products of Early Variscan Orogeny Other than Ancient Block: Evidence from Zircon SHRIMP U-Pb Ages. Acta Petrologica Sinica, 25(8): 2001-2010(in Chinese with English abstract). [73] Xue, J.P., Liu, M.Y., Li, G.Z., et al., 2018. Zircon Geochronology and Geochemistry of Haer Bogetuoer TTG Rock, Solonker Zone, Inner Mongolia and Their Tectonic Implications. Earth Science Frontiers, 25(3): 230-239 (in Chinese with English abstract). [74] Yuan, L.L., Zhang, X.H., Xue, F.H., et al., 2016. Late Permian High-Mg Andesite and Basalt Association from Northern Liaoning, North China: Insights into the Final Closure of the Paleo-Asian Ocean and the Orogen-Craton Boundary. Lithos, 258/259: 58-76. https://doi.org/10.1016/j.lithos.2016.04.024 [75] Zhang, C., Guo, W., Xu, Z.Y., et al., 2014. Study on Geochronology, Petrogenesis and Tectonic Implications of Monzogranite from the Yanbian Area, Eastern Jilin Province. Acta Petrologica Sinica, 30(2): 512-526 (in Chinese with English abstract). [76] Zhang, F.F., Wang, Y.H., Liu, J.J., et al., 2016. Origin of the Wunugetushan Porphyry Cu-Mo Deposit, Inner Mongolia, NE China: Constraints from Geology, Geochronology, Geochemistry, and Isotopic Compositions. Journal of Asian Earth Sciences, 117(1): 208-224. https://doi.org/10.1016/j.jseaes.2015.12.018 [77] Zhang, J.R., Chu, H., Wei, C.J., et al., 2014. Geochemical Characteristics and Tectonic Significance of Late Paleozoic-Early Mesozoic Meta-Basic Rocks in the Mélange Zones, Central Inner Mongolia. Acta Petrologica Sinica, 30(7): 1935-1947 (in Chinese with English abstract). [78] Zhang, J.R., Wei, C.J., Chu, H., 2018. New Model for the Tectonic Evolution of Xing'an-Inner Mongolia Orogenic Belt: Evidence from Four Different Phases of Metamorphism in Central Inner Mongolia. Acta Petrologica Sinica, 34(10): 2857-2872 (in Chinese with English abstract). [79] Zhang, Q., Wang, Y., Xiong, X.L., et al., 2008. Adakites and Granites: Challenges and Opportunities. China Land Press, Beijing (in Chinese). [80] Zhang, W.Y., Nie, F.J., Gao, Y.G., et al., 2012. Geochemical Characteristics and Genesis of Triassic Chagan Obo Alkaline Quartz Diorites in Inner Mongolia. Acta Petrologica Sinica, 28(2): 525-534 (in Chinese with English abstract). [81] Zhang, X.H., Yuan, L.L., Xue, F.H., et al., 2015. Early Permian A-Type Granites from Central Inner Mongolia, North China: Magmatic Tracer of Post-Collisional Tectonics and Oceanic Crustal Recycling. Gondwana Research, 28(1): 311-327. https://doi.org/10.1016/j.gr.2014.02.011 [82] Zhang, X.H., Zhai, M.G., 2010. Magmatism and Its Metallogenetic Effects during the Paleozoic Continental Crustal Construction in Northern North China: An Overview. Acta Petrologica Sinica, 26(5): 1329-1341 (in Chinese with English abstract). [83] Zhang, X.H., Zhang, H.F., Tang, Y.J., et al., 2008. Geochemistry of Permian Bimodal Volcanic Rocks from Central Inner Mongolia, North China: Implication for Tectonic Setting and Phanerozoic Continental Growth in Central Asian Orogenic Belt. Chemical Geology, 249(3/4): 262-281. https://doi.org/10.1016/j.chemgeo.2008.01.005 [84] Zhang, Y.Q., 2009. Geochemical Characteristics of Permian Adakitic Granodiorite in Bayinwula of Sonid Left Banner, Inner Mongolia. Acta Petrologica et Mineralogica, 28(4): 329-338 (in Chinese with English abstract). [85] Zhao, Z., Chi, X.G., Liu, J.F., et al., 2010. Late Paleozoic Arc-Related Magmatism in Yakeshi Region, Inner Mongolia: Chronological and Geochemical Evidence. Acta Petrologica Sinica, 26(11): 3245-3258(in Chinese with English abstract). [86] Zhou, J.B., Han, J., Wilde, S, A., et al., 2013. A Primary Study of the Jilin-Heilongjiang High-Pressure Metamorphic Belt: Evidence and Tectonic Implications. Acta Petrologica Sinica, 29(2): 386-398(in Chinese with English abstract). [87] 鲍庆中, 张长捷, 吴之理, 等, 2007. 内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义. 吉林大学学报(地球科学版), 37(1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200701002.htm [88] 边千韬, 盖寿山, 刘绍友, 等, 2017. 赞比亚希富玛铜矿床含铜碳酸岩岩石学和地球化学及其成岩成矿意义. 岩石学报, 33(6): 1805-1826. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201706012.htm [89] 陈彦, 张志诚, 李可, 等, 2014. 内蒙古西乌旗地区二叠纪双峰式火山岩的年代学、地球化学特征和地质意义. 北京大学学报(自然科学版), 50(5): 843-858. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201405008.htm [90] 程杨, 肖庆辉, 李廷栋, 等, 2019. 中亚造山带东缘迪彦庙俯冲增生杂岩带早二叠世洋内弧岩浆作用及构造背景. 地球科学, 44(10): 3454-3468. doi: 10.3799/dqkx.2019.085 [91] 范玉须, 李廷栋, 肖庆辉, 等, 2019. 内蒙古西乌珠穆沁旗晚二叠世花岗岩的锆石U-Pb年龄、地球化学特征及其构造意义. 地质论评, 65(1): 248-266. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201901026.htm [92] 范玉须, 肖庆辉, 程杨, 等, 2020. 内蒙古迪彦庙孬来可图侵入岩的年代学、Sr-Nd-Hf同位素特征及其地质意义. 地球科学, 45(7): 2379-2392. doi: 10.3799/dqkx.2020.100 [93] 方俊钦, 赵盼, 徐备, 等, 2014. 内蒙古西乌珠穆沁旗哲斯组宏体化石新发现和沉积相分析. 岩石学报, 30(7): 1889-1898. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407005.htm [94] 冯光英, 刘燊, 钟宏, 等, 2010. 吉林晚古生代榆木川基性岩的地球化学特征及其岩石成因. 地球化学, 39(5): 427-438. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201005003.htm [95] 公繁浩, 黄欣, 郑月娟, 等, 2013. 内蒙古西乌旗下二叠统寿山沟组海底扇的发现及意义. 地质与资源, 22(6): 478-483. doi: 10.3969/j.issn.1671-1947.2013.06.007 [96] 华北, 高雪, 胡兆国, 等, 2020. 兴蒙造山带西段乌珠新乌苏花岗岩岩石成因和构造背景: 地球化学、U-Pb年代学和Sr-Nd-Hf同位素约束. 岩石学报, 36(5): 1426-1444. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202005007.htm [97] 黄波, 付冬, 李树才, 等, 2016. 内蒙古贺根山蛇绿岩形成时代及构造启示. 岩石学报, 32(1): 158-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201601021.htm [98] 江小均, 柳永清, 彭楠, 等, 2011. 内蒙古克什克腾旗广兴源复式岩体SHRIMP U-Pb定年及地质意义讨论. 地质学报, 85(1): 114-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101008.htm [99] 康健丽, 肖志斌, 王惠初, 等, 2016. 内蒙古锡林浩特早石炭世构造环境: 来自变质基性火山岩的年代学和地球化学证据. 地质学报, 90(2): 383-397. doi: 10.3969/j.issn.0001-5717.2016.02.014 [100] 李钢柱, 王玉净, 李成元, 等, 2017. 内蒙古索伦山蛇绿岩带早二叠世放射虫动物群的发现及其地质意义. 科学通报, 62(5): 400-406. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201705008.htm [101] 李锦轶, 高立明, 孙桂华, 等, 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm [102] 李英杰, 王金芳, 李红阳, 等, 2015. 内蒙古西乌旗梅劳特乌拉蛇绿岩的识别. 岩石学报, 31(5): 1461-1470. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505020.htm [103] 李英杰, 王金芳, 王根厚, 等, 2018. 内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义. 岩石学报, 34(2): 469-482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201802019.htm [104] 柳长峰, 张浩然, 於炀森, 等, 2010. 内蒙古中部四子王旗地区北极各岩体锆石定年及其岩石化学特征. 现代地质, 24(1): 112-119, 150. doi: 10.3969/j.issn.1000-8527.2010.01.014 [105] 刘敏, 赵洪涛, 张达, 等, 2017. 内蒙古西乌旗南部晚古生代侵入岩年代学、地球化学特征及地质意义. 地球科学, 42(4): 527-548. doi: 10.3799/dqkx.2017.042 [106] 刘锐, 杨振, 徐启东, 等, 2016. 大兴安岭南段海西期花岗岩类锆石U-Pb年龄、元素和Sr-Nd-Pb同位素地球化学: 岩石成因及构造意义. 岩石学报, 32(5): 1505-1528. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201605017.htm [107] 刘翼飞, 江思宏, 张义, 2010. 内蒙古锡林浩特地区拜仁达坝矿区闪长岩体锆石SHRIMP U-Pb定年及其地质意义. 地质通报, 29(5): 688-696. doi: 10.3969/j.issn.1671-2552.2010.05.008 [108] 吕洪波, 冯雪东, 王俊, 等, 2018. 狼山发现蛇绿混杂岩: 华北克拉通与中亚造山带碰撞边界的关键证据. 地质论评, 64(4): 777-805. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201804001.htm [109] 邱检生, 肖娥, 胡建, 等, 2008. 福建北东沿海高分异Ⅰ型花岗岩的成因: 锆石U-Pb年代学、地球化学和Nd-Hf同位素制约. 岩石学报, 24(11): 2468-2484. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm [110] 邵济安, 张履桥, 牟保磊, 1999. 大兴安岭中生代伸展造山过程中的岩浆作用. 地学前缘, 6(4): 339-346. doi: 10.3321/j.issn:1005-2321.1999.04.017 [111] 施光海, 苗来成, 张福勤, 等, 2004. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义. 科学通报, 49(4): 384-389. doi: 10.3321/j.issn:0023-074X.2004.04.015 [112] 石文杰, 赵旭, 魏俊浩, 等, 2020. 兴蒙造山带南段白音图嘎地区A型花岗岩地球化学特征及其对古亚洲洋演化的制约. 大地构造与成矿学, 44(1): 141-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202001012.htm [113] 孙立新, 任邦方, 赵凤清, 等, 2013. 内蒙古额尔古纳地块古元古代末期的岩浆记录: 来自花岗片麻岩的锆石U-Pb年龄证据. 地质通报, 32(2): 341-352. doi: 10.3969/j.issn.1671-2552.2013.02.013 [114] 汤文豪, 张志诚, 李建锋, 等, 2011. 内蒙古苏尼特右旗查干诺尔石炭系本巴图组火山岩地球化学特征及其地质意义. 北京大学学报(自然科学版), 47(2): 321-330. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201102021.htm [115] 王金芳, 李英杰, 李红阳, 等, 2019. 贺根山缝合带白音呼舒奥长花岗岩锆石U-Pb年龄、地球化学特征及构造意义. 地质论评, 65(4): 857-872. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201904007.htm [116] 王金芳, 李英杰, 李红阳, 等, 2020. 古亚洲洋晚石炭世俯冲作用: 梅劳特乌拉蛇绿岩中扎嘎音高镁安山岩证据. 地质论评, 66(2): 289-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002004.htm [117] 王梁, 王根厚, 雷时斌, 等, 2015. 内蒙古乌拉山大桦背岩体成因: 地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约. 岩石学报, 31(7): 1977-1994. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201507014.htm [118] 王善辉, 陈岳龙, 李大鹏, 2012. 锡林浩特杂岩中斜长角闪岩锆石U-Pb年代学及Hf同位素研究. 现代地质, 26(5): 1019-1027. doi: 10.3969/j.issn.1000-8527.2012.05.023 [119] 王树庆, 胡晓佳, 杨泽黎, 等, 2018. 兴蒙造山带中段锡林浩特跃进地区石炭纪岛弧型侵入岩: 年代学、地球化学、Sr-Nd-Hf同位素特征及其地质意义. 地球科学, 43(3): 672-695. doi: 10.3799/dqkx.2017.510 [120] 王树庆, 胡晓佳, 赵华雷, 等, 2017. 内蒙古京格斯台晚石炭世碱性花岗岩年代学及地球化学特征: 岩石成因及对构造演化的约束. 地质学报, 91(7): 1467-1482. doi: 10.3969/j.issn.0001-5717.2017.07.005 [121] 王玉净, 樊志勇, 1997. 内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义. 古生物学报, (1): 60-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX701.004.htm [122] 徐备, 赵盼, 鲍庆中, 等, 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm [123] 许强伟, 王玭, 王志强, 等, 2019. 内蒙古克什克腾旗大石寨组凝灰岩锆石LA-ICP-MS U-Pb年龄、地球化学特征及其构造意义. 地质论评, 65(1): 119-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201901016.htm [124] 许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036 [125] 薛怀民, 郭利军, 侯增谦, 等, 2009. 中亚-蒙古造山带东段的锡林郭勒杂岩: 早华力西期造山作用的产物而非古老陆块?: 锆石SHRIMP U-Pb年代学证据. 岩石学报, 25(8): 2001-2010. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908025.htm [126] 薛建平, 刘美玉, 李钢柱, 等, 2018. 内蒙古索伦山地区哈尔博格托尔TTG岩锆石年代学、岩石地球化学及大地构造意义. 地学前缘, 25(3): 230-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201803024.htm [127] 张超, 郭巍, 徐仲元, 等, 2014. 吉林东部延边地区二长花岗岩年代学、岩石成因学及其构造意义研究. 岩石学报, 30(2): 512-526. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201402015.htm [128] 张晋瑞, 初航, 魏春景, 等, 2014. 内蒙古中部构造混杂带晚古生代-早中生代变质基性岩的地球化学特征及其大地构造意义. 岩石学报, 30(7): 1935-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407009.htm [129] 张晋瑞, 魏春景, 初航, 2018. 兴蒙造山带构造演化的新模式: 来自内蒙古中部四期不同类型变质作用的证据. 岩石学报, 34(10): 2857-2872. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810004.htm [130] 张旗, 王焰, 熊小林, 等, 2008. 埃达克岩和花岗岩: 挑战与机遇. 北京: 中国大地出版社. [131] 张万益, 聂凤军, 高延光, 等, 2012. 内蒙古查干敖包三叠纪碱性石英闪长岩的地球化学特征及成因. 岩石学报, 28(2): 525-534. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202015.htm [132] 张晓晖, 翟明国, 2010. 华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应. 岩石学报, 26(5): 1329-1341. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005001.htm [133] 张玉清, 2009. 内蒙古苏尼特左旗巴音乌拉二叠纪埃达克质花岗闪长岩类地球化学特征及其地质意义. 岩石矿物学杂志, 28(4): 329-338. doi: 10.3969/j.issn.1000-6524.2009.04.003 [134] 赵芝, 迟效国, 刘建峰, 等, 2010. 内蒙古牙克石地区晚古生代弧岩浆岩: 年代学及地球化学证据. 岩石学报, 26(11): 3245-3258. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011007.htm [135] 周建波, 韩杰, Wilde, S.A., 等, 2013. 吉林-黑龙江高压变质带的初步厘定: 证据和意义. 岩石学报, 29(2): 386-398. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302005.htm -
张艳飞 附表1 拜仁达坝岩体样品锆石U.doc