Quantitative Constraints of Subduction Cycle Components on Oceanic Mantle Heterogeneity
-
摘要: 大洋地幔内部存在广泛的不均一性,其成因可有多种模式,其中俯冲循环作用对地幔组成的变化具有重要影响. 为明确各循环组分对亏损地幔的改造作用及其在富集源区中的相对贡献,系统总结了不同循环组分(远洋沉积物、俯冲洋壳、陆壳)的平均微量元素特征,计算了各循环组分在俯冲过程中经历的化学变化. 基于改造后的循环组分,开展与亏损地幔源区的混合和熔融模拟. 结果表明,HIMU型玄武岩可以由纯俯冲洋壳(≤10%)与亏损地幔(≥90%)混合形成的源区,经较低程度熔融(0.5%~1.5%)形成;而EMI型玄武岩可以由俯冲洋壳(≤10%)、俯冲剥蚀的下陆壳物质(≤3%)、亏损地幔(≥90%)混合形成的源区,经较低程度熔融(1%~2%)形成;EMII型玄武岩可以由俯冲洋壳(≤10%)、GLOSS-II(全球俯冲沉积物)或上陆壳物质(≤0.8%)与亏损地幔(≥90%)混合形成的源区,经较低程度熔融(1%~1.5%)形成.Abstract: There is a wide range of heterogeneity in the oceanic mantle, which can be caused by a variety of models, among which the subduction cycle has an important influence on the composition of the mantle. In order to clarify the relative contribution of each cyclic component to the reformation of depleted mantle and the enrichment source region, in this paper it systematically summarizes the average trace element characteristics of different cyclic components (pelagic sediments, subducted oceanic crust, continental crust), and the cyclic components undergone chemical changes during subduction are calculated. Based on the modified cyclic components, the mixing and melting simulations with depleted mantle sources are carried out. It is found that the HIMU basalt can be formed by a low degree of melting (0.5%-1.5%) in the mantle formed by the mixing of pure subducted oceanic crust (≤10%) and depleted mantle (≥90%). The EMI basalts can be formed by a low degree of melting (1%-2%) in the mantle formed by the mixing of subducted oceanic crust (≤10%), low continental crust (≤3%) and depleted mantle (≥90%). The EMII basalts can be formed by a low degree of melting (1%-1.5%) in the mantle formed by the mixing of subducted oceanic crust (≤10%), GLOSS-II(global subducting sediment) or upper continental crust (≤0.8%) and depleted mantle (≥90%).
-
Key words:
- mantle heterogeneity /
- subducted oceanic crust /
- subducted sediment /
- depleted mantle /
- partial melting /
- geochemistry
-
图 2 俯冲循环模型:海底蚀变及俯冲脱水过程中的成分变化(据Bebout, 2007修改)
Fig. 2. Subduction cycle model: composition changes during seafloor alteration and subduction dehydration (modified after Bebout, 2007)
图 5 玄武岩微量元素配分图和微量元素比值对比
a.洋岛玄武岩数据为收集数据的平均值,N-MORB、E-MORB数据来自Sun and McDonough(1989);b. 元素比值为各类型洋岛玄武岩的平均值标准化到三种类型玄武岩的平均值
Fig. 5. Trace element pattern and comparison of trace element ratios in basalts
图 6 定量模拟源区及熔体微量元素特征
熔融模式为石榴石‒橄榄岩源区的分离部分熔融,DM组成来自Salters and Stracke(2004);微量元素的熔融分配系数来自Stracke et al.(2003)
Fig. 6. Quantitative simulation of trace elements in source and melt
表 1 不同循环组分的微量元素(10‒6)组成
Table 1. Trace element (10‒6) compositions of different cyclic components
蚀变洋壳a 新鲜玄武岩b 大洋辉长岩c 全洋壳d 俯冲洋壳e 上陆壳f 下陆壳f GLOSS-IIg 俯冲沉积物 Cs 0.153 0.014 08 0.018 77 0.051 0.025 4.9 0.3 4.9 2.79 Rb 9.58 1.262 0.562 2.99 0.57 84 11 83.7 55.24 Ba 22.6 13.87 9.5 13.87 6.59 628 259 786 534.48 Th 0.07 0.187 1 0.155 2 0.142 0.088 10.5 1.2 8.1 5.59 U 0.3 0.071 1 0.043 6 0.115 0.027 2.7 0.2 1.73 1.19 Nb 1.22 3.507 1.695 2.03 1.95 12 5 9.42 6.97 Ta 0.097 0.192 0.11 0.129 0.124 0.9 0.6 0.698 0.51 La 1.84 3.895 4.79 3.83 1.68 31 8 29.1 22.12 Ce 6.01 12.001 14.89 11.95 5.89 63 20 57.6 44.35 Pb 0.240 4 0.489 0.601 0.48 0.09 17 4 21.2 18.44 Nd 6.62 11.179 10.22 9.55 7.45 27 11 27.6 21.80 Sr 115 113.2 157.8 136 81 320 348 302 163.08 Zr 66.5 104.24 77.6 82 64 193 68 129 68.37 Hf 1.92 2.974 2.12 2.28 1.78 5.3 1.9 3.42 1.88 Sm 2.5 3.752 3.09 3.11 2.69 4.7 2.8 6 4.80 Eu 0.91 1.335 1.14 1.13 1.04 1.0 1.1 1.37 1.10 Ti 7 080 9 690 8 052 8 212 7 735 3 840 4 920 3 840 2 918.40 Gd 3.65 5.007 4.1 4.24 4.03 4.0 3.1 5.81 4.71 Dy 4.40 6.304 5.0 5.19 5.01 3.9 3.1 5.43 4.40 Y 26.9 35.82 26.9 29.1 28.5 21 16 33.3 26.97 Er 2.77 4.143 2.8 3.14 3.13 2.30 1.9 3.09 2.50 Yb 2.69 3.90 2.77 3.03 2.99 1.96 1.5 3.01 2.44 Lu 0.425 0.589 0.402 0.45 0.45 0.31 0.25 0.459 0.37 Rb/La 5.21 0.324 0.117 0.781 0.339 0.263 0.032 0.277 0.339 U/Pb 1.248 0.145 4 0.072 5 0.24 0.3 0.159 0.05 0.082 0.645 Th/Pb 0.291 0.383 0.258 0.296 0.978 0.618 0.3 0.382 0.303 Th/U 0.233 2.632 3.559 6 1.235 3.26 3.89 6.0 4.68 4.697 注:a. 蚀变洋壳微量元素组成,数据来自 Staudigel et al.(1995 , 1996);b. 平均N-MORB微量元素组成,数据来自Hofmann(1988);c. 平均大洋辉长岩微量元素组成,数据来自Hart et al.(1999) ;d. 全洋壳组分由25%N-MORB、25%蚀变洋壳、50%辉长岩组成;e. 俯冲洋壳是在全洋壳的基础上经历俯冲脱水后的洋壳成分,元素活动性据Stracke et al.(2003) ;f. 平均上陆壳成分、下陆壳成分,数据源于Rudnick and Gao(2003);g. 全球俯冲沉积物数据源于Plank(2014), 俯冲沉积物成分根据Johnson and Plank(2000)的900 ℃元素活动性参数计算得出. -
[1] Allègre, C. J., Turcotte, D. L., 1986. Implications of a Two-Component Marble-Cake Mantle. Nature, 323(6084): 123-127. https://doi.org/10.1038/323123a0 [2] Anderson, D. L., 2006. Speculations on the Nature and Cause of Mantle Heterogeneity. Tectonophysics, 416(1-4): 7-22. https://doi.org/10.1016/j.tecto.2005.07.011 [3] Armstrong, R. L., 1968. A Model for the Evolution of Strontium and Lead Isotopes in a Dynamic Earth. Reviews of Geophysics, 6(2): 175-199. https://doi.org/10.1029/rg006i002p00175 [4] Barrett, T. J., Taylor, P. N., Lugoqski, J., 1987. Metalliferous Sediments from DSDP Leg 92: The East Pacific Rise Transect. Geochimica et Cosmochimica Acta, 51(9): 2241-2253. https://doi.org/10.1016/0016-7037(87)90278-X [5] Bebout, G. E., 2007. Metamorphic Chemical Geodynamics of Subduction Zones. Earth and Planetary Science Letters, 260(3-4): 373-393. https://doi.org/10.1016/j.epsl.2007.05.050 [6] Boyet, M., Doucelance, R., Israel, C., et al., 2019. New Constraints on the Origin of the EM-1 Component Revealed by the Measurement of the La-Ce Isotope Systematics in Gough Island Lavas. Geochemistry, Geophysics, Geosystems, 20: 2484-2498. https://doi.org/10.1029/2019GC008228 [7] Brandenburg, J. P., Hauri, E. H., Van Keken, P. E., et al., 2008. A Multiple-System Study of the Geochemical Evolution of the Mantle with Force-Balanced Plates and Thermochemical Effects. Earth and Planetary Science Letters, 276(1-2): 1-13. https://doi.org/10.1016/j.epsl.2008.08.027 [8] Brunelli, D., Cipriani, A., Bonatti, E., 2018. Thermal Effects of Pyroxenites on Mantle Melting below Mid-Ocean Ridges. Nature Geoscience, 11(7): 520-525. https://doi.org/10.1038/S41561-018-0139-Z [9] Cheng, Y., Xiao, Q. H., Li, T. D., et al., 2021. An Intra-Oceanic Subduction System Influenced by Ridge Subduction in the Diyanmiao Subduction Accretionary Complex of the Xar Moron Area, Eastern Margin of the Central Asian Orogenic Belt. Journal of Earth Science, 32(1): 253-266. https://doi.org/10.1007/s12583-021-1404-4 [10] Coggon, R. M., Teagle, D. A. H., Smith-Duque, C. E., et al., 2010. Reconstructing Past Seawater Mg/Ca and Sr/Ca from Mid-Ocean Ridge Flank Calcium Carbonate Veins. Science, 327(5969): 1114-1117. https://doi.org/10.1126/science.1182252 [11] Dupré, B., Allègre, C. J., 1983. Pb-Sr Isotope Variation in Indian Ocean Basalts and Mixing Phenomena. Nature, 303(5913): 142-146. https://doi.org/10.1038/303142a0 [12] Dziewonski, A. M., Lekic, V., Romanowicz, B. A., 2010. Mantle Anchor Structure: An Argument for Bottom up Tectonics. Earth and Planetary Science Letters, 299(1-2): 69-79. https://doi.org/10.1016/j.epsl.2010.08.013 [13] Escrig, S., Capmas, F., Dupré, B., et al., 2004. Osmium Isotopic Constraints on the Nature of the Dupal Anomaly from Indian Mid-Ocean-Ridge Basalts. Nature, 431(7004): 59-63. https://doi.org/10.1038/nature02904 [14] Farley, K. A., Natland, J. H., Craig, H., 1992. Binary Mixing of Enriched and Undegassed (Primitive?) Mantle Components (He, Sr, Nd, Pb) in Samoan Lavas. Earth and Planetary Science Letters, 111(1): 183-199. https://doi.org/10.1016/0012-821X(92)90178-X [15] Gao, S., Rudnick, R. L., Xu, W. L., et al., 2008. Recycling Deep Cratonic Lithosphere and Generation of Intraplate Magmatism in the North China Craton. Earth and Planetary Science Letters, 270(1-2): 41-53. https://doi.org/10.1016/j.epsl.2008.03.008 [16] Gast, P. W., Tilton, G. R., Hedge, C., 1964. Isotopic Composition of Lead and Strontium from Ascension and Gough Islands. Science, 145(3637): 1181-1185. https://doi.org/10.1126/science.145.3637.1181 [17] Hanan, B. B., Graham, D. W., 1996. Lead and Helium Isotope Evidence from Oceanic Basalts for a Common Deep Source of Mantle Plumes. Science, 272(5264): 991-995. https://doi.org/10.1126/science.272.5264.991 [18] Hart, S. R., 1971. K, Rb, Cs, Sr and Ba Contents and Sr Isotope Ratios of Ocean Floor Basalts. Philosophical Transactions of the Royal Society of London, 268: 573-587. https://doi.org/10.1098/rsta.1971.0013 [19] Hart, S. R., Blusztajn, J., Dick, H. J. B., et al., 1999. The Fingerprint of Seawater Circulation in a 500-Meter Section of Ocean Crust Gabbros. Geochimica et Cosmochimica Acta, 63(23-24): 4059-4080. https://doi.org/10.1016/S0016-7037(99)00309-9 [20] Hart, S. R., Hauri, E. H., Oschmann, L. A., et al., 1992. Mantle Plumes and Entrainment: Isotopic Evidence. Science, 256(5056): 517-520. https://doi.org/10.1126/science.256.5056.517 [21] Hernández-Uribe, D., Hernández-Montenegro, J. D., Cone, K. A., et al., 2019. Oceanic Slab-Top Melting during Subduction: Implications for Trace-Element Recycling and Adakite Petrogenesis. Geology, 48(3): 216-220. https://doi.org/10.1130/G46835.1 [22] Herzberg, C., Cabral, R. A., Jackson, M. G., et al., 2014. Phantom Archean Crust in Mangaia Hotspot Lavas and the Meaning of Heterogeneous Mantle. Earth and Planetary Science Letters, 396: 97-106. https://doi.org/10.1016/j.epsl.2014.03.065 [23] Hirose, K., Takafuji, N., Sata, N., et al., 2005. Phase Transition and Density of Subducted MORB Crust in the Lower Mantle. Earth and Planetary Science Letters, 237(1-2): 239-251. https://doi.org/10.1016/j.epsl.2005.06.035 [24] Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821X(88)90132-X [25] Hofmann, A. W., 2004. Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/B0-08-043751-6/02123-X [26] Huang, S. C., Zheng, Y. F., 2017. Mantle Geochemistry: Insights from Ocean Island Basalts. Scientia Sinica Terrae, 47(10): 1125-1152 (in Chinese). doi: 10.1360/N072017-0094 [27] Johnson, M. C., Plank, T., 2000. Dehydration and Melting Experiments Constrain the Fate of Subducted Sediments. Geochemistry, Geophysics, Geosystems, 1(1): 1-26. https://doi.org/10.1029/1999GC000014 [28] Jones, T. D., Maguire, R. R., Van Keken, P. E., et al., 2020. Subducted Oceanic Crust as the Origin of Seismically Slow Lower-Mantle Structures. Progress in Earth and Planetary Science, 7: 1-16. https://doi.org/10.1186/s40645-020-00327-1 [29] Kawabata, H., Hanyu, T., Chang, Q., et al., 2011. The Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation of the Oceanic Crust-Recycling Model for HIMU OIB. Journal of Petrology, 52(4): 791-838. https://doi.org/10.1093/petrology/egr003 [30] Kelley, K. A., Plank, T., Farr, L., et al., 2005. Subduction Cycling of U, Th, and Pb. Earth and Planetary Science Letters, 234(3/4): 369-383. https://doi.org/10.1016/j.epsl.2005.03.005 [31] Kempton, P. D., Pearce, J. A., Barry, T. L., et al., 2003. Sr-Nd-Pb-Hf Isotope Results from ODP Leg 187: Evidence for Mantle Dynamics of the Australian-Antarctic Discordance and Origin of the Indian MORB Source. Geochemistry, Geophysics, Geosystems, 3(12): 1-35. https://doi.org/10.1029/2002gc000320 [32] Kim, J., Pak, S. J., Moon, J. W., et al., 2017. Mantle Heterogeneity in the Source Region of Mid-Ocean Ridge Basalts along the Northern Central Indian Ridge (8°S-17°S). Geochemistry, Geophysics, Geosystems, 18(4): 1419-1434. https://doi.org/10.1002/2016gc006673 [33] Klemme, S., Prowatke, S., Hametner, K., et al., 2005. Partitioning of Trace Elements between Rutile and Silicate Melts: Implications for Subduction Zones. Geochimica et Cosmochimica Acta, 69(9): 2361-2371. https://doi.org/10.1016/j.gca.2004.11.015 [34] Kogiso, T., Hirschmann, M. M., 2006. Partial Melting Experiments of Bimineralic Eclogite and the Role of Recycled Mafic Oceanic Crust in the Genesis of Ocean Island Basalts. Earth and Planetary Science Letters, 249(3-4): 188-199. https://doi.org/10.1016/j.epsl.2006.07.016 [35] McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4 [36] Michard, A., Albarede, F., 1985. Hydrothermal Uranium Uptake at Ridge Crests. Nature, 317(6034): 244-246. https://doi.org/10.1038/317244a0 [37] Niu, Y. L., O'Hara, M. J., 2003. Origin of Ocean Island Basalts: A New Perspective from Petrology, Geochemistry, and Mineral Physics Considerations. Journal of Geophysical Research: Solid Earth, 108(B4): 11-19. https://doi.org/10.1029/2002JB002048 [38] Novella, D., Maclennan, J., Shorttle, O., et al., 2020. A Multi-Proxy Investigation of Mantle Oxygen Fugacity along the Reykjanes Ridge. Earth and Planetary Science Letters, 531: 1-14. https://doi.org/10.1016/j.epsl.2019.115973 [39] Plank, T., 2014. The Chemical Composition of Subducting Sediments. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-08-095975-7.00319-3 [40] Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4): 325-394. https://doi.org/10.1016/S0009-2541(97)00150-2 [41] Poreda, R., Schilling, J. G., Craig, H., 1986. Helium and Hydrogen Isotopes in Ocean-Ridge Basalts North and South of Iceland. Earth and Planetary Science Letters, 78(1): 1-17. https://doi.org/10.1016/0012-821X(86)90168-8 [42] Porter, K. A., White, W. M., 2009. Deep Mantle Subduction Flux. Geochemistry, Geophysics, Geosystems, 10(12): 1-23. https://doi.org/10.1029/2009GC002656 [43] Rehkämper, M., Hofmann, A. W., 1997. Recycled Ocean Crust and Sediment in Indian Ocean MORB. Earth and Planetary Science Letters, 147(1-4): 93-106. https://doi.org/10.1016/S0012-821X(97)00009-5 [44] Ringwood, A. E., 1982. Phase Transformations and Differentiation in Subducted Lithosphere: Implications for Mantle Dynamics, Basalt Petrogenesis, and Crustal Evolution. The Journal of Geology, 90(6): 611-643. https://doi.org/10.2307/30081031 [45] Ringwood, A. E., Irifune, T., 1988. Nature of the 650-km Seismic Discontinuity: Implications for Mantle Dynamics and Differentiation. Nature, 331(6152): 131-136. https://doi.org/10.1038/331131a0 [46] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/B0-08-043751-6/03016-4 [47] Salters, V. J. M., Stracke, A., 2004. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 5(5): 1-27. https://doi.org/10.1029/2003GC000597 [48] Schilling, J. G., 1973. Iceland Mantle Plume: Geochemical Study of Reykjanes Ridge. Nature, 242(5400): 565-571. https://doi.org/10.1038/242565a0 [49] Shen, J., Li, W. Y., Li, S. G., et al., 2019. Crust-Mantle Interactions at Different Depths in the Subduction Channel: Magnesium Isotope Records of Ultramafic Rocks from the Mantle Wedges. Earth Science, 44(12): 4102-4111 (in Chinese with English abstract). [50] Sobolev, A. V., Hofmann, A. W., Jochum, K. P., et al., 2011. A Young Source for the Hawaiian Plume. Nature, 476(7361): 434-437. https://doi.org/10.1038/nature10321 [51] Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., et al., 2005. An Olivine-Free Mantle Source of Hawaiian Shield Basalts. Nature, 434(7033): 590-597. https://doi.org/10.1038/nature03411 [52] Spandler, C., Pirard, C., 2013. Element Recycling from Subducting Slabs to Arc Crust: A Review. Lithos, 170-171: 208-223. https://doi.org/10.1016/j.lithos.2013.02.016 [53] Staudigel, H., 2003. Hydrothermal Alteration Processes in the Oceanic Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/B0-08-043751-6/03032-2 [54] Staudigel, H., Davies, G. R., Hart, S. R., et al., 1995. Large Scale Isotopic Sr, Nd and O Isotopic Anatomy of Altered Oceanic Crust: DSDP/ODP Sites 417/418. Earth and Planetary Science Letters, 130(1-4): 169-185. https://doi.org/10.1016/0012-821X(94)00263-X [55] Staudigel, H., Plank, T., White, B., et al., 1996. Geochemical Fluxes during Seafloor Alteration of the Basaltic Upper Oceanic Crust: DSDP Sites 417 and 418. In: Bebout, G. E., Scholl, D. W., Kirby, S. H., et al., eds., Subduction Top to Bottom. American Geophysical Union, Washington, D. C. . https://doi.org/10.1029/GM096p0019 [56] Stracke, A., 2012. Earth's Heterogeneous Mantle: A Product of Convection-Driven Interaction between Crust and Mantle. Chemical Geology, 330-331: 274-299. https://doi.org/10.1016/j.chemgeo.2012.08.007 [57] Stracke, A., Bizimis, M., Salters, V. J. M., 2003. Recycling Oceanic Crust: Quantitative Constraints. Geochemistry, Geophysics, Geosystems, 4(3): 1-33. https://doi.org/10.1029/2001GC000223 [58] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 [59] Tian, Y., Chen, L., Tang, L. M., et al., 2021. Research Progress on Mantle Evolution and Magmatism in the Yap Trench, Western Pacific. Earth Science, 46(3): 840-852 (in Chinese with English abstract). [60] Von Huene, R., Ranero, C. R., Vannucchi, P., 2004. Generic Model of Subduction Erosion. Geology, 32(10): 913-916. https://doi.org/10.1130/G20563.1 [61] Wang, C. G., Xu, W. L., 2019. An Experimental of Crust-Mantle Interaction in Subduction Zones: Implications for Genesis of Mantle Heterogeneity. Earth Science, 44(12): 4112-4118 (in Chinese with English abstract). [62] Wang, X. J., Chen, L. H., Hofmann, A. W., et al., 2018. Recycled Ancient Ghost Carbonate in the Pitcairn Mantle Plume. Proceedings of the National Academy of Sciences of the United States of America, 115(35): 8682-8687. https://doi.org/10.1073/pnas.1719570115 [63] Wasserburg, G. J., DePaolo, D. J., 1979. Models of Earth Structure Inferred from Neodymium and Strontium Isotopic Abundances. Proceedings of the National Academy of Sciences of the United States of America, 76(8): 3594-3598. https://doi.org/10.1073/pnas.76.8.3594 [64] Weaver, B. L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2-4): 381-397. https://doi.org/10.1016/0012-821X(91)90217-6 [65] Wei, C. J., Guan, X., Dong, J., 2017. HT-UHT Metamorphism of Metabasites and the Petrogenesis of TTGS. Acta Petrologica Sinica, 33(5): 1381-1404 (in Chinese with English abstract). [66] Wei, C. J., Zheng, Y. F., 2020. Metamorphism, Fluid Behavior and Magmatism in Oceanic Subduction Zones. Scientia Sinica Terrae, 50(1): 1-27 (in Chinese). [67] White, W. M., 1985. Sources of Oceanic Basalts: Radiogenic Isotopic Evidence. Geology, 13(2): 115-118. https://doi.org/10.1130/0091-7613(1985)13115: soobri>2.0.co;2 doi: 10.1130/0091-7613(1985)13115:soobri>2.0.co;2 [68] White, W. M., 2015. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology, 419: 10-28. https://doi.org/10.1016/j.chemgeo.2015.09.026 [69] Willbold, M., Stracke, A., 2006. Trace Element Composition of Mantle End-Members: Implications for Recycling of Oceanic and Upper and Lower Continental Crust. Geochemistry, Geophysics, Geosystems, 7(4): 1-30. https://doi.org/10.1029/2005GC001005 [70] Willbold, M., Stracke, A., 2010. Formation of Enriched Mantle Components by Recycling of Upper and Lower Continental Crust. Chemical Geology, 276(3-4): 188-197. https://doi.org/10.1016/j.chemgeo.2010.06.005 [71] Xiong, X. L., Liu, X. C., Li, L., et al., 2020. The Partitioning Behavior of Trace Elements in Subduction Zones: Advances and Prospects. Scientia Sinica Terrae, 50(12): 1785-1798 (in Chinese). doi: 10.1360/SSTe-2019-0306 [72] Yan, J., Ballmer, M. D., Tackley, P. J., 2020. The Evolution and Distribution of Recycled Oceanic Crust in the Earth's Mantle: Insight from Geodynamic Models. Earth and Planetary Science Letters, 537: 116-171. https://doi.org/10.1016/j.epsl.2020.116171 [73] Yang, S. Y., Humayun, M., Salters, V. J. M., 2020. Elemental Constraints on the Amount of Recycled Crust in the Generation of Mid-Oceanic Ridge Basalts (MORBs). Science Advances, 6(26): eaba2923. https://doi.org/10.1126/sciadv.aba2923 [74] Zhang, G. L., Chen, L. H., Li, S. Z., 2013. Mantle Dynamics and Generation of a Geochemical Mantle Boundary along the East Pacific Rise-Pacific/Antarctic Ridge. Earth and Planetary Science Letters, 383: 153-163. https://doi.org/10.1016/j.epsl.2013.09.045 [75] Zhang, G. L., Luo, Q., Chen, L. H., 2017. Geochemical Heterogeneity of Oceanic Mantle: A Review. Marine Geology & Quaternary Geology, 37(1): 1-13 (in Chinese with English abstract). [76] Zhang, J. X., 2020. The Study of Subduction Channels: Progress, Controversies, and Challenges. Scientia Sinica Terrae, 50(12): 1671-1691 (in Chinese). doi: 10.1360/SSTe-2019-0312 [77] Zhao, R. J., Yan, Q. S., Zhang, H. T., et al., 2020. The Chemical Composition of Global Subducting Sediments and Its Geological Significance. Advances in Earth Science, 35(8): 789-803 (in Chinese with English abstract). [78] Zheng, J, P., Xiong, Q., Zhao, Y., et al., 2019. Subduction-Zone Peridotites and Their Records of Crust-Mantle Interaction. Scientia Sinica Terrae, 49(7): 1037-1058 (in Chinese). doi: 10.1360/N072018-00272 [79] Zheng, Y. F., Chen, Y. X., 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983 (in Chinese with English abstract). [80] Zheng, Y. F., Yang, J. H., Song, S. G., et al., 2013. Progress in the Study of Chemical Geodynamics. Bulletin of Mineralogy, Petrology and Geochemistry, 32(1): 1-24 (in Chinese with English abstract). [81] Zindler, A., Hart, S. R., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 [82] Zindler, A., Jagoutz, E., Goldstein, S., 1982. Nd, Sr and Pb Isotopic Systematics in a Three-Component Mantle: A New Perspective. Nature, 298(5874): 519-523. https://doi.org/10.1038/298519a0 [83] 黄士春, 郑永飞, 2017. 地幔地球化学: 洋岛玄武岩制约. 中国科学: 地球科学, 47(10): 1125-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201710001.htm [84] 沈骥, 李王晔, 李曙光, 等, 2019. 俯冲隧道内不同深度的壳幔相互作用: 地幔楔超镁铁质岩的镁同位素记录. 地球科学, 44(12): 4102-4111. doi: 10.3799/dqkx.2019.286 [85] 田原, 陈灵, 唐立梅, 等, 2021. 西太平洋雅浦海沟地幔演化与岩浆作用研究进展. 地球科学, 46(3): 840-852. doi: 10.3799/dqkx.2021.003 [86] 王春光, 许文良, 2019. 俯冲带壳‒幔相互作用的高温高压实验: 对地幔不均一性成因的启示. 地球科学, 44(12): 4112-4118. doi: 10.3799/dqkx.2019.230 [87] 魏春景, 关晓, 董杰, 2017. 基性岩高温‒超高温变质作用与TTG质岩成因. 岩石学报, 33(5): 1381-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705002.htm [88] 魏春景, 郑永飞, 2020. 大洋俯冲带变质作用、流体行为与岩浆作用. 中国科学: 地球科学, 50(1): 1-27. doi: 10.3969/j.issn.0253-2778.2020.01.001 [89] 熊小林, 刘星成, 李立, 等, 2020. 俯冲带微量元素分配行为研究: 进展和展望. 中国科学: 地球科学, 50(12): 1785-1798. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012007.htm [90] 张国良, 罗青, 陈立辉, 2017. 大洋地幔化学组成不均一性成因研究回顾及展望. 海洋地质与第四纪地质, 37(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201701001.htm [91] 张建新, 2020. 俯冲隧道研究: 进展、问题及其挑战. 中国科学: 地球科学, 50(12): 1671-1691. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012001.htm [92] 赵仁杰, 鄢全树, 张海桃, 等, 2020. 全球俯冲沉积物组分及其地质意义. 地球科学进展, 35(8): 789-803. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202008002.htm [93] 郑建平, 熊庆, 赵伊, 等, 2019. 俯冲带橄榄岩及其记录的壳幔相互作用. 中国科学: 地球科学, 49(7): 1037-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201907001.htm [94] 郑永飞, 陈伊翔, 2019. 大陆俯冲带壳幔相互作用. 地球科学, 44(12): 3961-3983. doi: 10.3799/dqkx.2019.982 [95] 郑永飞, 杨进辉, 宋述光, 等, 2013. 化学地球动力学研究进展. 矿物岩石地球化学通报, 32(1): 1-24. doi: 10.3969/j.issn.1007-2802.2013.01.001