• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高反应温度对五氟化溴法氧同位素组成测定的影响

    张建锋 刘汉彬 石晓 金贵善 韩娟 李军杰 张佳 郭东侨

    张建锋, 刘汉彬, 石晓, 金贵善, 韩娟, 李军杰, 张佳, 郭东侨, 2021. 高反应温度对五氟化溴法氧同位素组成测定的影响. 地球科学, 46(12): 4470-4479. doi: 10.3799/dqkx.2021.052
    引用本文: 张建锋, 刘汉彬, 石晓, 金贵善, 韩娟, 李军杰, 张佳, 郭东侨, 2021. 高反应温度对五氟化溴法氧同位素组成测定的影响. 地球科学, 46(12): 4470-4479. doi: 10.3799/dqkx.2021.052
    Zhang Jianfeng, Liu Hanbin, Shi Xiao, Jin Guishan, Han Juan, Li Junjie, Zhang Jia, Guo Dongqiao, 2021. High Reaction Temperature Influence on Determination of Oxygen Isotopic Composition by BrF5 Method. Earth Science, 46(12): 4470-4479. doi: 10.3799/dqkx.2021.052
    Citation: Zhang Jianfeng, Liu Hanbin, Shi Xiao, Jin Guishan, Han Juan, Li Junjie, Zhang Jia, Guo Dongqiao, 2021. High Reaction Temperature Influence on Determination of Oxygen Isotopic Composition by BrF5 Method. Earth Science, 46(12): 4470-4479. doi: 10.3799/dqkx.2021.052

    高反应温度对五氟化溴法氧同位素组成测定的影响

    doi: 10.3799/dqkx.2021.052
    基金项目: 

    国家重点研发计划项目“华南热液型铀矿基地深部探测技术示范” 2017YFC0602600

    核工业北京地质研究院院长青年科技创新基金项目 测QJ2008

    详细信息
      作者简介:

      张建锋(1978-), 男, 高级工程师, 主要从事同位素地球化学研究工作.E-mail: hdyyzjf@163.com

      通讯作者:

      刘汉彬, 研究员.E-mail: hanbinliu@sina.com

    • 中图分类号: P599

    High Reaction Temperature Influence on Determination of Oxygen Isotopic Composition by BrF5 Method

    • 摘要: 五氟化溴法在分析氧化物和硅酸盐矿物的氧同位素组成时,反应温度与反应时间是关键要素.在保证反应时间的前提下,研究较高反应温度条件(550~800 ℃)对五氟化溴法氧同位素组成分析的影响.在高反应温度条件下对国家标准物质GBW04409进行氧同位素样品制备与同位素组成分析表明:反应温度在550~675 ℃,获得了较足量的O2产率,δ18O集中在10.4‰~11.8‰范围,准确度较高;反应温度高于700 ℃后,O2产率降低,δ18O分布在10.8‰~26.8‰范围,δ18O产生明显的正偏差;通过分次氟化反应、合并收集气体的方式获得了与标准物质推荐值相吻合的δ18O分析结果.在高于700 ℃的反应温度条件下,BrF5与镍反应器发生反应,增加了试剂消耗.由于BrF5试剂量不足,导致O2产率偏低从而引起氧同位素分馏.

       

    • 图  1  BrF5法氧同位素分析制样装置示意

      张建锋等(2021);R1~R12.镍反应器;T1~T3.金属冷阱;G1.热偶真空规;G2.电容薄膜真空规;G3.电离真空规;SA.收集管;V1~V30.金属阀门;SB.BrF5储集罐;HV.涡轮分子泵;LV.旋片式真空泵;P1.真空压力表

      Fig.  1.  Schematic diagram of oxygen isotope extraction device in BrF5 method

      图  2  反应温度与GBW04409标准物质的O2产率、δ18OV⁃SMOW关系

      Fig.  2.  Diagram of relationship among reaction temperature and yield of O2 liberated from quartz standard material GBW04409 and δ18OV⁃SMOW

      图  3  分次收集标准物质GBW04409释放O2的产率与合并两次收集O2δ18OV⁃SMOW关系图

      Fig.  3.  Diagram of relationship between yield of O2 liberated partially from quartz standard material GBW04409 and δ18OV⁃SMOW values

      图  4  镍反应器内壁脱落物质物相分析谱图

      a.脱落物质能谱分析谱图;b.脱落物质X射线衍射谱图

      Fig.  4.  Spectrograms of phase analysis of falling substance in nickel reactor

      表  1  不同反应温度下GBW04409标准物质释放O2压强、产率与δ18O值

      Table  1.   The measured pressure of O2 liberated from quartz standard material GBW04409 and yield and δ18O values at different reaction temperatures

      序号 反应温度(℃) 质量(mg) 气体压强(Pa) 产率(%) δ18OV⁃SMOW (‰) 序号 反应温度(℃) 质量(mg) 气体压强(Pa) 产率(%) δ18OV⁃SMOW (‰)
      1 762 10.4 743 66.3 21.14 56 595 11.6 1 258 100.6 10.49
      2 742 11.8 1 145 90.0 12.98 57 593 10.5 1 148 101.4 10.90
      3 730 10.1 564 51.8 24.34 58 583 11.6 1 264 101.1 11.12
      4 730 11.2 681 56.4 23.04 59 592 10.7 1 131 98.1 11.29
      5 720 10.7 505 43.8 26.83 60 587 11.8 1 286 101.1 11.12
      6 760 11.6 1 008 80.6 12.87 61 616 10.7 1 165 101.0 11.10
      7 720 13.1 1 053 74.6 15.27 62 596 11.3 1 248 102.5 11.29
      8 710 10.2 845 76.8 16.96 63 596 11.6 1 263 101.0 10.89
      9 805 10.6 704 61.6 19.85 64 592 11.6 1 244 99.5 10.50
      10 724 13.7 878 59.5 22.94 65 620 10.9 1 208 102.8 11.39
      11 714 11.0 1 100 92.8 12.38 66 597 11.3 1 302 106.9 11.68
      12 703 12.8 868 62.9 21.85 67 613 10.3 1 127 101.5 11.36
      13 702 12.9 816 58.7 23.74 68 601 11.7 1 270 100.7 10.42
      14 701 12.9 977 70.3 18.76 69 599 11.4 1 228 99.9 11.33
      15 723 11.9 666 51.9 21.15 70 574 10.8 1 147 98.5 11.09
      16 720 11.3 1 112 91.3 13.08 71 583 11.8 1 265 99.4 11.59
      17 726 11.7 710 56.3 25.03 72 622 10.0 1 107 102.7 11.26
      18 710 11.5 902 72.8 19.26 73 588 9.9 1 068 100.1 11.48
      19 620 12.3 1 320 99.6 11.67 74 590 10.3 1 117 100.6 10.92
      20 622 12.1 1 309 100.4 10.62 75 602 10.9 1 157 98.5 11.28
      21 624 11.8 1 260 99.1 11.18 76 605 10.8 1 165 100.1 11.38
      22 618 13.2 1 414 99.4 10.60 77 571 11.9 1 283 100.0 11.66
      23 640 12.4 1 321 98.8 11.18 78 580 11.8 1 292 101.6 10.78
      24 648 12.2 1 324 100.7 11.88 79 641 13.7 1 471 99.6 11.58
      25 650 13.0 1 395 99.5 10.58 80 650 15.1 1 563 96.0 11.34
      26 630 12.4 1 267 94.8 11.58 81 667 10.4 1 111 99.1 10.67
      27 660 11.9 1 275 99.4 11.37 82 703 11.0 1 175 99.1 10.79
      28 663 10.6 1 126 98.5 10.80 83 655 9.8 1 046 99.0 11.50
      29 658 10.6 1 122 98.2 10.39 84 670 12.9 1 412 101.5 10.61
      30 643 11.4 1 213 98.7 11.11 85 548 9.5 1 018 99.4 10.84
      31 660 11.5 1 226 98.9 10.59 86 552 11.4 1 226 99.8 11.18
      32 627 12.0 1 299 100.4 10.39 87 557 13.1 1 385 98.1 11.38
      33 656 10.6 1 150 100.6 10.70 88 574 8.3 887 99.1 11.09
      34 669 10.6 1 133 99.2 11.45 89 597 8.8 967 101.9 11.38
      35 671 11.3 1 043 85.6 16.37 90 597 12.8 1 384 100.3 11.68
      36 635 11.0 1 212 102.2 11.25 91 595 10.8 1 150 98.8 11.18
      37 633 10.4 1 114 99.4 10.78 92 566 12.1 1 370 105.0 10.59
      38 655 11.1 1 220 102.0 11.14 93 620 13.4 1 455 100.7 10.99
      39 680 10.9 1 194 101.6 11.06 94 570 11.2 1 196 99.1 11.48
      40 645 11.4 1 190 96.8 11.68 95 571 10.9 1 207 102.7 10.69
      41 652 11.3 1 216 99.8 11.82 96 597 12.0 1 299 100.4 11.78
      42 660 12.6 1 341 98.7 10.96 97 556 11.1 1 203 100.5 11.28
      43 600 11.7 1 284 101.8 10.91 98 550 11.0 1 184 99.8 11.09
      44 596 11.1 1 208 101.0 11.00 99 552 11.2 1 226 101.5 11.09
      45 576 11.6 1 246 99.6 10.69 100 593 11.5 1 273 102.7 11.28
      46 626 10.0 1 086 100.7 11.78 101 612 11.6 1 237 98.9 10.69
      47 600 13.4 1 455 100.7 10.96 102 565 11.6 1 232 98.5 11.18
      48 598 11.7 1 285 101.9 10.59 103 561 10.4 1 151 102.7 10.49
      49 556 11.4 1 237 100.7 11.09 104 570 12.5 1 331 98.8 11.28
      50 542 12.0 1 301 100.6 10.78 105 620 11.8 1 295 101.8 11.68
      51 627 11.1 1 223 102.2 10.99 106 581 10.1 1 083 99.5 11.28
      52 615 10.6 1 179 103.2 10.68 107 594 10.5 1 140 100.7 11.48
      53 610 11.0 1 201 101.3 11.01 108 563 10.4 1 148 102.4 10.79
      54 608 11.4 1 219 99.2 11.23 109 561 10.4 1 122 100.1 11.48
      55 605 12.0 1 374 106.2 10.92 110 565 10.1 1 077 98.9 11.68
      下载: 导出CSV

      表  2  不同质量GBW04409标准物质分次氟化释放O2的气体压强与产率

      Table  2.   The measured pressure of O2 liberated fractionally from quartz standard material GBW04409 and yield

      序号 质量(mg) 第一次收集O2压强(Pa) 第二次收集O2压强(Pa) 产率(%) 序号 质量(mg) 第一次收集O2压强(Pa) 第二次收集O2压强(Pa) 产率(%)
      1 10.8 1 076 89 100.4 15 11.5 1108 118 99.3
      2 11.2 1 092 120 100.8 16 10.5 1082 36 99.1
      3 11.5 1 052 170 99.0 17 11.8 1152 116 100.1
      4 12.0 1 169 102 98.7 18 10.6 1110 57 102.5
      5 12.4 1 227 89 98.9 19 11.3 1065 142 99.5
      6 12.5 1 246 93 99.8 20 10.3 1098 8 100.0
      7 11.6 1 197 41 99.4 21 10.9 1 166 35 102.6
      8 11.6 1 144 93 99.3 22 11.4 1 155 78 100.7
      9 11.6 1 186 46 98.9 23 11.0 1 060 154 102.8
      10 13.9 1 350 159 101.1 24 11.3 1 169 27 98.5
      11 10.4 1 084 67 103.0 25 11.2 990 204 99.3
      12 12.5 1 107 224 99.1 26 11.5 1 123 153 103.3
      13 11.8 1 195 26 96.3 27 11.5 1 185 73 101.9
      14 10.9 987 164 98.3
      下载: 导出CSV
    • [1] Chen, Z.M., 1990. Preliminary Experiment in Analyzing Oxygen Isotope in Minerals and Rocks by BrF5 Method. Geological Laboratory, 6(6): 377-379(in Chinese).
      [2] Clayton, R.N., 1986. High Temperature Isotope Effects in the Early Solar System. Review in Mineralogy and Geochemistry, 16: 129-139.
      [3] Clayton, R.N., Mayeda, T.K., 1963. The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis. Geochimica et Cosmochimica Acta, 27(1): 43-52. https://doi.org/10.1016/0016-7037(63)90071-1
      [4] Ding, T.P., Wan, D.F., Li, J.C., et al., 1988. The Analytic Method of Silicon Isotopes and Its Geological Application. Mineral Deposits, 7(4): 90-96(in Chinese with English abstract).
      [5] Gao, J.F., Ding, T.P., 2008. Laser Microprobe Oxygen Isotope Analysis Method and Geology Applications. Geological Review, 54(1): 139-144(in Chinese with English abstract).
      [6] Garlick, G.D., Epstein, S., 1967. Oxygen Isotope Ratios in Coexisting Minerals of Regionally Metamorphosed Rocks. Geochimica et Cosmochimica Acta, 31(2): 181-214. https://doi.org/10.1016/s0016-7037(67)80044-9
      [7] Gong, B., Zheng, Y.F., 2003. A CO2-Laser Technique for Oxygen Isotope Analysis of Silicates. Earth Science Frontiers, 10(2): 279-286(in Chinese with English abstract).
      [8] Hao, G.M., Xie, H.Q., Liu, Y.S., et al., 2020. SHRIMP Zircon U-Pb Ages, Geochemistry, Nd-Hf-O Isotopic Compositions of the Huai'an Complex in the Northwest of Hebei Province and Its Geological Significance. Earth Science, 45(9): 3353-3371(in Chinese with English abstract).
      [9] Jiang, J.S., Zheng, Y.Y., Gao, S.B., et al., 2015. Genesis of Chazangcuo Cu-Pb-Zn Deposit, Tibet: Constrains from C-H-O-S-Pb Isotope Geochemistry. Earth Science, 40(6): 1006-1016(in Chinese with English abstract).
      [10] Li, Y.H., Wan, D.F., Zhang, G.B., et al., 1992. A Study on BrF5Method of Oxygen Isotope Analyses of Oxides and Silicates: Progress of Analytic Methods of Stable Isotopes. Science and Technology Publishing House, Beijing, 37-43(in Chinese).
      [11] Liang, W., 2019. Characteristics of Ore-Forming Fluids in Himalayan Au-Sb-Pb-Zn Polymetallic Belt: Constraints from H-O Isotopes. Earth Science, 44(7): 2308-2321(in Chinese with English abstract).
      [12] Liu, X., Deng, W.F., Wei, J.X., et al., 2016. Analysis of Triple Oxygen Isotopic Compositions of Silicate Minerals by Using Laser Fluorination System. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 448-453(in Chinese with English abstract).
      [13] Lu, Q.Y., Zheng, Y., Wang, C.M., et al., 2018. S-Pb-Sr-Nd-C-H-O Isotopic Geochemistry of the Wulasigou Cu Deposit in the South Altay: Constraints for the Fluid and Metal Sources. Earth Science, 43(9): 3141-3153(in Chinese with English abstract).
      [14] Mattey, D., MacPherson, C., 1993. High-Precision Oxygen Isotope Microanalysis of Ferromagnesian Minerals by Laser-Fluorination. Chemical Geology, 105(4): 305-318. https://doi.org/10.1016/0009-2541(93)90133-4
      [15] Pan, Z.L., Zhao, A.X., Pan, T.H., 1994. Crystallography and Mineralogy II (Third Edition). Geological Publishing House, Beijing, 50-102(in Chinese).
      [16] Sharp, Z. D, 1990. A Laser-Based Microanalytical Method for the In-Situ Determination of Oxygen Isotope Ratios of Silicates and Oxides. Geochimica et Cosmochimica Acta, 54(5): 1353-1357. https://doi.org/10.1016/0016-7037(90)90160-m
      [17] Shi, X., Liu, H. B, Zhang, J.F., et al., 2018. Study on Reaction Temperature of Oxygen Isotopes Composition of Refractory Minerals Using BrF5 Method. World Nuclear Geoscience, 35(1): 52-59(in Chinese with English abstract).
      [18] Valley, J.W., Kinny, P.D., Schulze, D.J., et al., 1998. Zircon Megacrysts from Kimberlite: Oxygen Isotope Variability among Mantle Melts. Contributions to Mineralogy and Petrology, 133(1-2): 1-11. https://doi.org/10.1007/s004100050432
      [19] Wan, D.F., Li, Y.H., 2006. Analytical Method of Oxygen Isotope Composition in Sulphates. Geological Journal of China Universitis, 12(3): 378-383(in Chinese with English abstract).
      [20] Wang, R., Chen, J.B., Zhao, L.S., et al., 2013. In-Situ Oxygen Isotope Analysis of Conodonts by SIMS and Its Implication for Paleo-Sea Surface Temperature. Global Geology, 2013, 32(4): 652-658(in Chinese with English abstract).
      [21] Yuan, W.L., Pan, F.Y., 1996. Experiment Study of BrF5 Method: An Analysis Method of Oxygen Isotope. Mineral Resources and Geology, 10(5): 356-361(in Chinese with English abstract).
      [22] Zhang, J.F., Liu, H.B., Shi, X., et al., 2019. Study on Influence Factors for Determination of Oxygen Isotopic Composition of Silicates and Oxide Minerals by BrF5 Method. Rock and Mineral Analysis, 38(1): 45-54(in Chinese with English abstract).
      [23] Zhang, J.F., Liu, H.B., Jin, G.S., et al., 2021. Improvement of Analysis Device and Method of Oxygen Isotopic Compositions in Rocks and Minerals. World Nuclear Geoscience, 38(1): 97-105(in Chinese with English abstract).
      [24] Zhao, R.Y., Chen, Y.C., Chen, Y.J., et al., 2020. Geological Characteristics and Its Genesis of the Jiling Na-Metasomatic Uranium Deposit in Longshou Mountains, Gansu Province. Earth Science, 45(1): 90-107(in Chinese with English abstract).
      [25] Zheng, S.H., Zheng, S.C., Mo, Z.C., 1986. Stable Isotope Analyses of Geochemistry. Peking University Press, Beijing, 194-216(in Chinese).
      [26] Zhou, L.Q., Williams, I.S., Liu, J.H., et al., 2012. Methodology of SHRIMP In-Situ O Isotope Analysis on Conodont. Acta Geologica Sinica, 86(4): 611-618(in Chinese with English abstract).
      [27] 陈忠民, 1990. BrF5法分析岩石矿物中氧同位素的条件试验. 地质实验室, 6(6): 377-379.
      [28] 丁悌平, 万德芳, 李金城, 等, 1988. 硅同位素测量方法及其地质应用. 矿床地质, 7(4): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198804011.htm
      [29] 高建飞, 丁悌平, 2008. 激光熔蚀微量氧同位素分析方法及其地质应用. 地质论评, 54(1): 139-144. doi: 10.3321/j.issn:0371-5736.2008.01.016
      [30] 龚冰, 郑永飞, 2003. 硅酸盐矿物氧同位素组成的激光分析. 地学前缘, 10(2): 279-286. doi: 10.3321/j.issn:1005-2321.2003.02.003
      [31] 郝光明, 颉颃强, 刘永顺, 等, 2020. 冀西北怀安杂岩的年代学、地球化学、Nd-Hf-O同位素组成及其地质意义. 地球科学, 45(9): 3353-3371. doi: 10.3799/dqkx.2020.188
      [32] 姜军胜, 郑有业, 高顺宝, 等, 2015. 西藏查藏错铜铅锌矿床成因: C-H-O-S-Pb同位素制约. 地球科学, 40(6): 1006-1016. doi: 10.3799/dqkx.2015.084
      [33] 李延河, 万德芳, 张国柄, 等, 1992. 氧化物、硅酸盐矿物的氧同位素分析方法: BrF5法: 稳定同位素分析方法研究进展. 北京: 科学技术出版社, 37-43.
      [34] 梁维, 2019. 特提斯喜马拉雅金锑铅锌多金属成矿带成矿流体特征: 来自H-O同位素的约束. 地球科学, 44(7): 2308-2321. doi: 10.3799/dqkx.2019.172
      [35] 刘熙, 邓文峰, 魏静娴, 等, 2016. 利用激光氟化系统分析硅酸盐矿物的三氧同位素组成. 矿物岩石地球化学通报, 35(3): 448-453. doi: 10.3969/j.issn.1007-2802.2016.03.006
      [36] 卢琦园, 郑义, 王成明, 等, 2018. 阿尔泰南缘乌拉斯沟铜矿床S-Pb-Sr-Nd-C-H-O同位素特征及其对成矿物质和流体来源限定. 地球科学, 43(9): 3141-3153. doi: 10.3799/dqkx.2018.135
      [37] 潘兆橹, 赵爱醒, 潘铁虹, 1994. 结晶学及矿物学下册(第三版). 北京: 地质出版社, 50-102.
      [38] 石晓, 刘汉彬, 张建锋, 等, 2018. BrF5法分析难熔矿物氧同位素组成的反应温度探讨. 世界核地质科学, 35(1): 52-59. doi: 10.3969/j.issn.1672-0636.2018.01.008
      [39] 万德芳, 李延河, 2006. 硫酸盐的氧同位素测量方法. 高校地质学报, 12(3): 378-383. doi: 10.3969/j.issn.1006-7493.2006.03.010
      [40] 王润, 陈剑波, 赵来时, 等, 2013. 二次离子质谱微区原位牙形石氧同位素分析及其在古海表水温记录中的应用. 世界地质, 32(4): 652-658. doi: 10.3969/j.issn.1004-5589.2013.04.002
      [41] 袁维玲, 潘飞云, 1996. 氧同位素分析方法: BrF5法的实验研究. 矿产与地质, 10(5): 356-361. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD605.011.htm
      [42] 张建锋, 刘汉彬, 金贵善, 等, 2021. 岩石和矿物中氧同位素组成分析制样装置改进及分析方法. 世界核地质科学, 38(1): 97-105. doi: 10.3969/j.issn.1672-0636.2021.01.011
      [43] 张建锋, 刘汉彬, 石晓, 等, 2019. 五氟化溴法测定硅酸盐及氧化物矿物氧同位素组成的影响因素研究. 岩矿测试, 38(1): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201901005.htm
      [44] 赵如意, 陈毓川, 陈云杰, 等, 2020. 甘肃省龙首山芨岭钠交代型铀矿床地质特征与成因. 地球科学, 45(1): 90-107. doi: 10.3799/dqkx.2018.287
      [45] 郑淑蕙, 郑斯成, 莫志超, 1986. 稳定同位素地球化学分析. 北京: 北京大学出版社, 194-216.
      [46] 周丽芹, Williams, I.S., 刘建辉, 等, 2012. 牙形石SHRIMP微区原位氧同位素分析方法. 地质学报, 86(4): 611-618. doi: 10.3969/j.issn.0001-5717.2012.04.007
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  443
    • HTML全文浏览量:  295
    • PDF下载量:  31
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-01-12
    • 刊出日期:  2021-12-15

    目录

      /

      返回文章
      返回