Experimental Study on Possibility of Deep Uranium-Rich Source Rocks Providing Uranium Source in Ordos Basin
-
摘要:
鄂尔多斯盆地上三叠统延长组长7段石油优质烃源岩以富铀为特色,而盆地侏罗-白垩纪地层以赋存大量砂岩型铀矿而著称. 为探索深部长7富铀烃源岩为浅部砂岩型铀矿形成提供铀源的可能性,选择盆地南部的富铀烃源岩、油样以及具有代表性的碳酸铀酰作为反应物,在中-高温高压还原条件下分别进行烃源岩生排烃-排铀模拟实验和油-铀关系模拟实验. 结果表明,铀元素可随烃源岩排烃过程一同排出,30~200℃和2~5 MPa内温压的增高有利于生烃量和排铀量的增加;且铀携出率随生烃量增加而增大,一般为55%~75%. 其中水溶性铀占比约12%,由生烃作用叠加导致的铀携出率为43%~48%. 本实验发现铀迁移形式特殊,为四价(UO2)、六价(UO3)、四价与六价的混合价态(U3O8)及水合物胶体形式(UO3·H2O、U6O7(OH)2O),主要是被低温油气流体吸附而随之迁移,且铀吸附量随温度的增加和压力的降低呈增加的趋势. 因此,低温热液含铀的油-水流体往浅部地层迁移时对铀矿形成是有利的. 综合研究认为鄂尔多斯盆地深部的长7富铀烃源岩可大量释放或排出铀元素,铀以四价、六价、混合价态等形式被低温油气吸附,并且随油水流体一起沿断裂通道向上迁移,从而为盆地浅部砂岩型铀矿的形成提供铀源.
Abstract:The high quality source rocks of the Chang 7 Member in Yanchang Formation of the Upper Triassic in the Ordos Basin are characterized by uranium enrichment, while the Jurassic-Cretaceous strata of the basin are famous for hosting a large number of sandstone-type uranium deposits. To analyze the possibility of source rocks providing uranium source for shallow sandstone type uranium deposits, the uranium-rich source rocks, oil samples from the Chang 7 Member and representative uranyl carbonate were selected as reactants, and simulation experiments of hydrocarbon generation and expulsion of uranium from source rocks and oil-uranium relationship were carried out respectively under the reduction conditions of medium-high temperature and high pressure. The results show that uranium can be discharged along with the process of hydrocarbon expulsion from source rock, and the increase of temperature and pressure at 30-200 ℃ and 2-5 MPa is conductive to the increase of hydrocarbon generation and uranium discharge. The discharged rate of uranium increases with the increase of hydrocarbon generation and is generally 55%-75%. Among them, the proportion of soluble uranium from itself is about 12%, and the discharged rate of uranium caused by the superposition of hydrocarbon generation is 43%-48%. The uranium migration forms found in this experiment are special, such as tetravalent (UO2), hexavalent (UO3), mixed valence (U3O8) and hydrate colloid form (UO3·H2O, U6O7(OH)2O), which are mainly adsorbed by low-temperature oil-gas fluid, and the uranium adsorption capacity shows an increasing trend with the increase of temperature and the decrease of pressure. Thus, it is beneficial for uranium ore formation when low temperature uranium-bearing oil-hydrothermal fluids migrate to shallow strata. Based on the above analyses, it is considered that the source rocks of Chang 7 Member in the southern Ordos Basin can release or discharge a large amount of uranium, which can be adsorbed by low-temperature oil-gas in the form of tetravalent, hexavalent and mixed valence. Subsequently, the adsorbed uranium moves upwards along with the oil-water fluid through the fracture, providing partial material source for the formation of shallow sandstone-type uranium deposits of the basin.
-
图 2 延长组长7段优质烃源岩伽玛异常段典型曲线形态(a)、长7段地层综合柱状图(b)和露头照片(c)
图a修改自刘池洋等,2020;图c在陕西铜川瑶曲镇聂家河村南村口所摄
Fig. 2. Gamma abnormal pattern of high-quality source rocks in Chang 7 Member (a), comprehensive strata columnar (b) and outcrop photograph (c) of the Chang 7 Member
图 4 200 ℃不同压力条件下实验前后的铀携出量(a)、铀携出率(b)、甲烷生成量(c)、烃类成分及含量(d)和总烃量(e)变化
Fig. 4. Changes of discharged content of uranium (a), discharged rate of uranium (b), methane production (c), types and productions of hydrocarbon (d) and total hydrocarbon production (e) after reaction under different pressures at 200 ℃
表 1 鄂尔多斯盆地长7段烃源岩热解分析数据
Table 1. Pyrolysis analysis data of the Chang 7 Member source rocks in Ordos Basin
样品 有机碳TOC(%) 最高峰温Tmax(℃) 可溶烃S1(mg/g) 热解烃S2(mg/g) 有机CO2 S3(mg/g) 产油潜力S1+S2(mg/g) 产率指数Ip 干酪根类型 氢指数IH 降解率D(%) 烃指数IHC(mg/g) 长7段油页岩 16.38 427.0 4.66 29.51 4.21 34.17 0.14 ⅡB 175 2.84 27.69 注:热解分析在西北大学大陆动力学实验室完成. 表 2 模拟实验中设定的温压条件
Table 2. Temperature and pressure conditions set in the simulation experiment
实验名称 对比类型 温度(℃) 压力(MPa) 实验名称 对比类型 温度(℃) 压力(MPa) 烃源岩排烃-排铀实验 相同温度不同压力 200 2 中高温高压及还原条件的油-铀关系 相同温度不同压力 200 2 3 3 4 4 5 5 相同压力不同温度 30 2 相同压力不同温度 30 3 100 100 150 150 200 200 表 3 200 ℃不同压力条件下实验前后的铀含量和烃类成分及含量变化
Table 3. The changes of uranium content and hydrocarbon type and content after reaction under different pressure at 200 ℃
压力(MPa) 铀质量百分比ω(10-6) 样品质量(g) 携出量(10-4 g) 携出率(%) 甲烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙烯 丙稀 总烃 反应前 反应后 反应前 反应后 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 2 281 120 50 47.4 83.62 59.52 27.04 55.54 3.74 7.68 2.67 5.48 0.86 1.76 1.92 3.94 0.87 1.78 1.12 2.30 6.94 14.25 3.51 7.20 48.69 100 3 281 87.8 50 46.8 99.41 70.75 34.70 53.26 5.15 7.90 2.80 4.30 1.08 1.66 2.02 3.10 1.13 1.73 1.61 2.47 8.93 13.71 7.73 11.86 48.69 100 4 281 80.8 50 42.2 106.40 75.72 36.05 51.95 8.27 11.92 5.28 7.61 1.02 1.47 2.44 3.52 1.35 1.95 1.36 1.96 7.39 10.65 6.24 8.99 69.40 100 5 281 72.8 50 46.8 108.43 77.75 37.98 49.75 6.10 7.99 3.48 4.56 1.20 1.57 2.38 3.12 1.37 1.79 1.97 2.58 14.55 19 7.31 9.58 76.34 100 注:反应物分析测试在核工业二〇三研究所完成. 表 4 2 MPa不同温度条件下的样品实验前后铀和烃类成分及含量变化
Table 4. The changes of uranium content and hydrocarbon type and content after reaction under different temperatures at 2 MPa
温度(℃) 铀质量百分比ω(10-6) 样品质量(g) 携出量(10-4 g) 携出率(%) 甲烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙烯 丙稀 总烃 反应前 反应后 反应前 反应后 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 生成量 占比(%) 30 281 268 50 45.9 17.53 12.48 - - - - - - - - - - - - - - - - - - - - 100 281 132 50 46.2 79.52 56.60 20.27 55.93 3.02 8.33 1.63 4.50 2.72 7.51 1.03 2.84 0.52 1.43 0.72 1.99 3.61 9.96 2.72 7.51 36.24 100 150 281 124 50 47.5 81.60 58.08 23.83 57.48 3.46 8.35 2.05 4.94 0.82 1.98 1.39 3.35 0.94 2.27 1.09 2.63 4.92 11.87 2.96 7.14 41.46 100 200 281 120 50 47.4 83.62 59.52 27.04 55.56 3.74 7.69 2.67 5.49 0.86 1.77 1.92 3.94 0.87 1.79 1.12 2.30 6.94 14.26 3.51 7.21 48.67 100 注:反应物分析测试在核工业二〇三研究所完成,“-”代表未检测到. 表 5 200 ℃不同压力条件下石油与碳酸铀酰混合的反应产物及产量与溶液中铀酰离子浓度变化
Table 5. The reaction product and yield of mixture of petroleum and uranyl carbonate and the change of uranyl ion concentration in solution after reaction under different pressures at 200 ℃
压力(MPa) 2 3 4 5 固态产物 类型 U3O8 U3O8 UO3 UO3 产量(g) 0.13 0.10 0.06 0.02 铀酰离子 Abs 1.057 1.326 1.592 1.737 C(mol/L) 0.004 9 0.007 6 0.010 2 0.011 7 表 6 不同浓度的铀酰离子的吸光度
Table 6. The absorbance of uranyl ions at different concentrations
C(mol/L) 0 0.001 25 0.002 5 0.005 0 0.007 5 0.010 0 Abs 0.526 0.695 0.816 1.161 1.331 1.515 表 7 3 MPa不同温度条件下石油与碳酸铀酰混合的反应产物及产量与溶液中铀酰离子浓度变化
Table 7. The reaction product and yield of mixture of petroleum and uranyl carbonate and the change of uranyl ion concentration in solution after reaction under different temperatures at 3 MPa
温度(℃) 30 100 150 200 固态产物 类型 UO3·H2O UO3·H2O UO3·H2O, U6O7(OH)2O UO3 产量(g) 0.09 0.16 0.21 0.01 铀酰离子 Abs 1.542 1.243 3.000 1.057 C(mol/L) 0.009 7 0.006 7 0.004 9 0.024 0 -
[1] Cai, Y.G., 2008. Experimental Simulation of Coal, Gas and Oil in Uranium Mineralization Process (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [2] Deng, Y., 2017. The Effect of Uranium on the Hydrocarbon Generation in a Closed System (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [3] Horita, J., Berndt, M. E., 1999. Abiogenic Methane Formation and Isotopic Fractionation under Hydrothermal Conditions. Science, 285(5430): 1055-1057. https://doi.org/10.1126/science.285.5430.1055 [4] Jiao, Y.Q., Wu, L.Q., Rong, H., 2018. Model of Inner and Outer Reductive Media within Uranium Reservoir Sandstone of Sandstone-Type Uranium Deposits and Its Ore-Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits. Earth Science, 43(2): 459-474 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201802009.htm [5] Liang, Y., Ren, Z.L., Wang, Y.L., et al., 2011. Characteristics of Fluid Inclusions and Reservoiring Phases in the Yanchang Formation of Zichang Area, the Ordos Basin. Oil & Gas Geology, 32(2): 182-191 (in Chinese with English abstract). http://www.researchgate.net/publication/285840085_Characteristics_of_fluid_inclusions_and_reservoiring_phases_in_the_Yanchang_formation_of_Zichang_area_the_Ordos_basin [6] Liu, C.Y., Mao, G.Z., Qiu, X.W., et al., 2013. Organic-Inorganic Energy Minerals Interactions and the Accumulation and Mineralization in the Same Sedimentary Basins. Chinese Journal of Nature, 35(1): 47-55 (in Chinese with English abstract). https://www.nature.com/articles/nature02132/ [7] Liu, C.Y., Wang, J.Q., Qiu, X.W., et al., 2020. Geodynamic Environment and Tectonic Attributes of the Hydrocarbon-Rich Sag in Yanchang Period of Middle-Late Triassic, Ordos Basin. Acta Petrologica Sinica, 36(6): 1913-1930 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.17 [8] Liu, C.Y., Zhao, H.G., Gui, X.J., et al., 2006a. Space-Time Coordinate of the Evolution and Reformation and Mineralization Response in Ordos Basin. Acta Geologica Sinica, 80(5): 617-638 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200605003.htm [9] Liu, C.Y., Zhao, H.G., Tan, C.Q., et al., 2006b. Occurrences of Multiple Energy Mineral Deposits and Mineralization/Reservoiring System in the Basin. Oil & Gas Geology, 27(2): 131-142 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200602000.htm [10] Liu, Q.Y., Jin, Z.J., Gao, B., et al., 2012. Types and Hydrocarbon Generation Potential of the Permian Source Rocks in the Sichuan Basin. Oil & Gas Geology, 33(1): 10-18 (in Chinese with English abstract). http://www.researchgate.net/publication/284926009_Types_and_hydrocarbon_gene-ration_potential_of_the_Permian_source_rocks_in_the_Sichuan_Basin [11] Liu, Z.Y., Qin, M.K., 2007. Experimental Research on the Reduction and Precipitation Ability of Land-Bitumen and Oil-Soaked Sandstone to U, Mo, Se, V and Re. Uranium Geology, 23(2): 84-90, 120 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ200702003.htm [12] Lollar, B.S., Westgate, T. D., Ward, J. A., et al., 2002. A Biogenic Formation of Alkanes in the Earth's Crust as a Minor Source for Global Hydrocarbon Reservoirs. Nature, 416(6880): 522-524. https://doi.org/10.1038/416522a [13] Ma, L.Y., Qiu, G.Q., Li, C., et al., 2020. The Evolution of Abnormal Pressure of Yanchang Formation in Zhenjing Area of Ordos Basin and Its Reservoir-Forming Significance. Geological Bulletin of China, 39(4): 503-511 (in Chinese with English abstract). [14] Ma, W., Li, J., Wang, D.L., et al., 2016. Hydrocarbon Expulsion Efficiency of Source Rocks and Its Influencing Factors. Natural Gas Geoscience, 27(9): 1742-1751 (in Chinese with English abstract). https://www.researchgate.net/publication/316512861_Hydrocarbon_expulsion_efficiency_of_source_rocks_and_its_influencing_factors [15] Mao, G.Z., Liu, C.Y., Zhang, D.D., et al., 2012. Effects of Uranium (Type Ⅱ) on Evolution of Hydrocarbon Generation of Source Rocks. Acta Geologica Sinica, 86(11): 1833-1840 (in Chinese with English abstract). [16] Mao, G.Z., Liu, C.Y., Zhang, D.D., et al., 2014. Effects of Uranium on Hydrocarbon Generation of Hydrocarbon Source Rocks with Type-Ⅲ Kerogen. Scientia Sinica Terrae, 44(8): 1740-1750 (in Chinese). doi: 10.1360/zd-2014-44-8-1740 [17] Pass, G., Littlewood, A. B., Jr Burwell, R. L. . 1960. Reactions between Hydrocarbons and Deuterium on Chromium Oxide Gel. Ⅱ. Isotopic Exchange of Alkanes. Journal of the American Chemical Society, 82(24): 6281-6283. https://doi.org/10.1021/ja01509a020 [18] Qin, Y., Zhang, W. Z., Peng, P. A., et al., 2009. Occurrence and Concentration of Uranium in the Hydrocarbon Source Rocks of Chang 7 Member of Yanchang Formation, Ordos Basin. Acta Petrologica Sinica, 25(10): 2469-2476 (in Chinese with English abstract). http://www.researchgate.net/publication/285804811_Occurrence_and_concentration_of_uranium_in_the_hydrocarbon_source_rocks_of_Chang_7_member_of_Yanchang_Formation_Ordos_basin [19] Quan, J.P., Fan, T.L., Xu, G.Z., et al., 2007. Effects of Hydrocarbon Migration on Sandstone-Type Uranium Mineralization in Basins of Northern China. Geology in China, 34(3): 470-477 (in Chinese with English abstract). [20] Ren, Z.L., Yu, Q., Cui, J.P., et al., 2017. Thermal History and Its Controls on Oil and Gas of the Ordos Basin. Earth Science Frontiers, 24(3): 137-148 (in Chinese with English abstract). [21] Seewald, J. S., 2001. Aqueous Geochemistry of Low Molecular Weight Hydrocarbons at Elevated Temperatures and Pressures: Constraints from Mineral Buffered Laboratory Experiments. Geochimica et Cosmochimica Acta, 65(10): 1641-1664. https://doi.org/10.1016/s0016-7037(01)00544-0 [22] Sun, L.N., Zhang, Z.N., Wu, Y.D., et al., 2015. Effect of Temperature and Pressure on Hydrocarbon Yield of Source Rock HTHP Simulation Experiment in Semi-Open System. Natural Gas Geoscience, 26(1): 118-127 (in Chinese with English abstract). http://www.researchgate.net/profile/Yuandong_Wu6/publication/316514061_Effect_of_liquids_pressure_on_hydrocarbon_yield_and_RO_of_source_rock_HTHP_simulation_experiment_in_semi-open_system/links/59280853a6fdcc4443538401/Effect-of-liquids-pressure-on-hydrocarbon-yield-and-RO-of-source-rock-HTHP-simulation-experiment-in-semi-open-system.pdf [23] Sun, Y., Li, Z.Y., Xiao, X.J., et al., 2004. Relationship between Oil-Gas Trap and Uranium Metallogenesis at Northern Ordos Basin. Uranium Geology, 20(6): 337-343 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ200406002.htm [24] Tan, C.Q., Liu, C.Y., Zhao, J.L., et al., 2007a. Study on Feature of High Natural Gamma Anomaly and Main Controlling Factors in Ordos Basin. Oil Geophysical Prospecting, 42(1): 50-56 (in Chinese with English abstract). http://www.researchgate.net/publication/293247055_Study_on_feature_of_high_natural_gamma_anomaly_and_main_controlling_factors_in_Ordos_Basin [25] Tan, C.Q., Liu, C.Y., Zhao, J.L., et al., 2007b. The Characteristics and Geological Significance of Radioactive Anomaly in Ordos Basin. Scientia Sinica Terrae, 37(S1): 147-156 (in Chinese). [26] Taylor, S. H., Hutchings, G. J., Palacios, M. L., et al., 2003. The Partial Oxidation of Propane to Formaldehyde Using Uranium Mixed Oxide Catalysts. Catalysis Today, 81(2): 171-178. https://doi.org/10.1016/s0920-5861(03)00110-x [27] Tuo, J.C., Wang, S.J., 1995. Catalytic Reaction in the Formation of Oil and Gas. Natural Gas Geoscience, 6(2): 37-40 (in Chinese). [28] Wang, X. F., Liu, W. H., Xu, Y. C., et al., 2006. The Thermal Simulation Experiment of Water in the Evolution of Organic Matter Forming Gaseous Hydrocarbon. Progress in Natural Science, 16(10): 1275-1281 (in Chinese). [29] Wu, B.L., Wei, A.J., Hu, L., et al., 2014. The Hydrocarbon Dissipation and Its Effect of Diagenetic and Mineralization: Progress, Understanding and Outlook. Geological Review, 60(6): 1199-1211 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201406002.htm [30] Wu, B.L., Wei, A.J., Hu, L., et al., 2016. The Epigenetic Alteration Stable Isotope Characteristics of the Dongsheng Uranium Ore District and Their Geological Implications. Geological Bulletin of China, 35(12): 2133-2145 (in Chinese with English abstract). [31] Wu, B.L., Wei, A.J., Liu, C.Y., et al., 2015. Stable Isotope Tracing on the Formation of White Sandstone in Yan'an Group, Northern Ordos Basin, and Its Geological Significance. Earth Science Frontiers, 22(3): 205-214 (in Chinese with English abstract). [32] Xiang, W.D., Chen, X.L., Pang, Y.Q., et al., 2006. Mineralogical and Geochemical Characteristics and Genetic Mechanism of Gray-Greenish Alteration Sandstone of the Dongsheng Uranium Deposit in the Ordos Basin, North China. Mineral Deposits, 25(S1): 261-264 (in Chinese with English abstract). [33] Xie, H. L., Jiao, Y. Q., Liu, Z. Y., et al., 2020. Occurrence and Enrichment Mechanism of Uranium Ore Minerals from Sandstone-Type Uranium Deposit, Northern Ordos Basin. Earth Science, 45(5): 1531-1543 (in Chinese with English abstract). [34] Zhang, L., Wu, B.L., Liu, C.Y., et al., 2016. Provenance Analysis of the Zhiluo Formation in the Sandstone-Hosted Uranium Deposits of the Northern Ordos Basin and Implications for Uranium Mineralization. Acta Geologica Sinica, 90(12): 3441-3453 (in Chinese with English abstract). [35] Zhang, S.C., Zhang, L.Y., Wang, Y.R., et al., 2010. A Study of Hydrocarbon Generation Mechanism of Deep Source Rocks Based on the Comparison of Experimental Simulations in Open and Closed Systems: A Case Study from the Es4 Member in the Dongying Sag. Natural Gas Industry, 30(9): 15-18, 118-119 (in Chinese with English abstract). [36] Zhang, W.Y., 2019. SIMS and fs-LA-ICP-MS In-Situ U-Pb Dating of Sandstone-Type Uranium Deposits-Take Ordos Basin and Yili Basin as Examples (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [37] Zhang, W. Z., Qin, Y., Wu, K., et al., 2016. Occurrence, Formation and Distribution of Hydrocarbon Resources in the Ordos Basin. In: Liu, C. Y., Wu, B. L., eds., Accumulation (Mineralization) Mechanism and Spatial Enrichment Law of Oil / Gas, Coal and Uranium Coexisting in the Same Basin. Science Press, Beijing (in Chinese). [38] Zhang, W.Z., Yang, H., Yang, Y.H., et al., 2008. Petrology and Element Geochemistry and Development Environment of Yanchang Formation Chang-7 High Quality Source Rocks in Ordos Basin. Geochimica, 37(1): 59-64 (in Chinese with English abstract). [39] Zhang, Z.Q., Zhao, Z.H., Yang, B., et al., 2009. Epigenetic-Reduction of Oil and Gas to Uranium Mineralization in Yaojia Formation in Baixingtu Area of Southern Songliao Basin. Uranium Geology, 25(5): 290-295 (in Chinese with English abstract). [40] Zhao, X.Q., Li, X.D., Shi, Q.P., et al., 2016. Hydrocarbon Fluid Feature of the Zhiluo Formation Sandstone in the Dongsheng Area, Ordos Basin and Its Relationship to Uranium Mineralization. Acta Geologica Sinica, 90(12): 3381-3392 (in Chinese with English abstract). [41] Zhao, Y., Liu, C.Y., Zhang, D.D., 2017. The Effect of Inorganic Components on the Formation and Evolution of Hydrocarbon Source Rock. Journal of Northwest University (Natural Science Edition), 47(2): 245-252 (in Chinese with English abstract). [42] Zhou, S.X., Zou, H.L., Xie, Q.L., et al., 2006. Organic-Inorganic Interactions during the Formation of Oils in Sedimentary Basin. Natural Gas Geoscience, 17(1): 42-47 (in Chinese with English abstract). [43] 蔡义各, 2008. 煤、气、油在铀成矿过程中作用的实验模拟(硕士学位论文). 西安: 西北大学. [44] 邓煜. 2017. 铀在封闭体系中对烃源岩生烃作用的影响(硕士学位论文). 西安: 西北大学. [45] 焦养泉, 吴立群, 荣辉, 2018. 砂岩型铀矿的双重还原介质模型及其联合控矿机理: 兼论大营和钱家店铀矿床. 地球科学, 43(2): 459-474. doi: 10.3799/dqkx.2017.512 [46] 梁宇, 任战利, 王彦龙, 等, 2011. 鄂尔多斯盆地子长地区延长组流体包裹体特征与油气成藏期次. 石油与天然气地质, 32(2): 182-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201102006.htm [47] 刘池洋, 毛光周, 邱欣卫, 等, 2013. 有机‒无机能源矿产相互作用及其共存成藏(矿). 自然杂志, 35(1): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201301006.htm [48] 刘池洋, 王建强, 邱欣卫, 等, 2020. 鄂尔多斯盆地延长期富烃坳陷形成的动力学环境与构造属性. 岩石学报, 36(6): 1913-1930. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202006017.htm [49] 刘池洋, 赵红格, 桂小军, 等, 2006a. 鄂尔多斯盆地演化‒改造的时空坐标及其成藏(矿)响应. 地质学报, 80(5): 617-638. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200605003.htm [50] 刘池洋, 赵红格, 谭成仟, 等, 2006b. 多种能源矿产赋存与盆地成藏(矿)系统. 石油与天然气地质, 27(2): 131-142. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200602000.htm [51] 刘全有, 金之钧, 高波, 等, 2012. 四川盆地二叠系烃源岩类型与生烃潜力. 石油与天然气地质, 33(1): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201201003.htm [52] 刘正义, 秦明宽, 2007. 地沥青及油浸砂岩对U、Mo、Se、V、Re等的还原沉淀能力实验研究. 铀矿地质, 23(2): 84-90, 120. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200702003.htm [53] 马立元, 邱桂强, 李超, 等, 2020. 鄂尔多斯盆地镇泾地区延长组异常压力演化及其成藏意义. 地质通报, 39(4): 503-511. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202004009.htm [54] 马卫, 李剑, 王东良, 等, 2016. 烃源岩排烃效率及其影响因素. 天然气地球科学, 27(9): 1742-1751. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201609020.htm [55] 毛光周, 刘池洋, 张东东, 等, 2012. 铀对(Ⅱ型)低熟烃源岩生烃演化的影响. 地质学报, 86(11): 1833-1840. doi: 10.3969/j.issn.0001-5717.2012.11.013 [56] 毛光周, 刘池洋, 张东东, 等, 2014. 铀在Ⅲ型烃源岩生烃演化中作用的实验研究. 中国科学: 地球科学, 44(8): 1740-1750. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201408014.htm [57] 秦艳, 张文正, 彭平安, 等, 2009. 鄂尔多斯盆地延长组长7段富铀烃源岩的铀赋存状态与富集机理. 岩石学报, 25(10): 2469-2476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910015.htm [58] 权建平, 樊太亮, 徐高中, 等, 2007. 中国北方盆地中油气运移对砂岩型铀矿成矿作用讨论. 中国地质, 34(3): 470-477. doi: 10.3969/j.issn.1000-3657.2007.03.016 [59] 任战利, 于强, 崔军平, 等, 2017. 鄂尔多斯盆地热演化史及其对油气的控制作用. 地学前缘, 24(3): 137-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703016.htm [60] 孙丽娜, 张中宁, 吴远东, 等, 2015. 半开放体系下温压对烃源岩HTHP模拟产物产率的影响. 天然气地球科学, 26(1): 118-127. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201501015.htm [61] 孙晔, 李子颖, 肖新建, 等, 2004. 油气圈闭与鄂尔多斯盆地北部铀成矿关系探讨. 铀矿地质, 20(6): 337-343. doi: 10.3969/j.issn.1000-0658.2004.06.003 [62] 谭成仟, 刘池阳, 赵军龙, 等, 2007a. 鄂尔多斯盆地高自然伽马值异常特征及主控因素研究. 石油地球物理勘探, 42(1): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200701009.htm [63] 谭成仟, 刘池洋, 赵军龙, 等, 2007b. 鄂尔多斯盆地典型地区放射性异常特征及其地质意义. 中国科学: 地球科学, 37(增刊1): 147-156. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1016.htm [64] 妥进才, 王随继, 1995. 油气形成过程中的催化反应. 天然气地球科学, 6(2): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199502006.htm [65] 王晓锋, 刘文汇, 徐永昌, 等, 2006. 水在有机质形成气态烃演化中作用的热模拟实验研究. 自然科学进展, 16(10): 1275-1281. doi: 10.3321/j.issn:1002-008X.2006.10.011 [66] 吴柏林, 魏安军, 胡亮, 等, 2014. 油气耗散作用及其成岩成矿效应: 进展、认识与展望. 地质论评, 60(6): 1199-1211. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201406002.htm [67] 吴柏林, 魏安军, 胡亮, 等, 2016. 内蒙古东胜铀矿区后生蚀变的稳定同位素特征及其地质意义. 地质通报, 35(12): 2133-2145. doi: 10.3969/j.issn.1671-2552.2016.12.021 [68] 吴柏林, 魏安军, 刘池洋, 等, 2015. 鄂尔多斯盆地北部延安组白色砂岩形成的稳定同位素示踪及其地质意义. 地学前缘, 22(3): 205-214. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503020.htm [69] 向伟东, 陈晓林, 庞雅庆, 等, 2006. 东胜铀矿床灰绿色蚀变砂岩矿物地球化学特征及其成因探讨. 矿床地质, 25(S1): 261-264. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1071.htm [70] 谢惠丽, 焦养泉, 刘章月, 等, 2020. 鄂尔多斯盆地北部铀矿床铀矿物赋存状态及富集机理. 地球科学, 45(5) 1531-1543. doi: 10.3799/dqkx.2019.164 [71] 张龙, 吴柏林, 刘池洋, 等, 2016. 鄂尔多斯盆地北部砂岩型铀矿直罗组物源分析及其铀成矿意义. 地质学报, 90(12): 3441-3453. doi: 10.3969/j.issn.0001-5717.2016.12.012 [72] 张守春, 张林晔, 王宇蓉, 等, 2010. 开放、封闭两种体系对比模拟确定深层烃源岩成烃机制——以东营凹陷沙四段烃源岩为例. 天然气工业, 30(9): 15-18, 118-119. doi: 10.3787/j.issn.1000-0976.2010.09.003 [73] 张婉莹, 2019. 砂岩型铀矿SIMS和fs-LA-ICP-MS原位微区U-Pb定年: 以鄂尔多斯盆地和伊犁盆地为例(硕士学位论文). 西安: 西北大学. [74] 张文正, 秦艳, 吴凯, 等, 2016. 鄂尔多斯盆地延长组长7段烃源岩铀元素分布、赋存状态及富集机理. 见: 刘池洋, 吴柏林主编, 油气煤铀同盆共存成藏(矿)机理与富集分布规律. 北京: 科学出版社. [75] 张文正, 杨华, 杨奕华, 等, 2008. 鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境. 地球化学, 37(1): 59-64. doi: 10.3321/j.issn:0379-1726.2008.01.008 [76] 张振强, 赵忠华, 杨冰, 等, 2009. 松辽盆地南部白兴吐地区油气后生还原对铀成矿的作用. 铀矿地质, 25(5): 290-295. doi: 10.3969/j.issn.1000-0658.2009.05.006 [77] 赵兴齐, 李西得, 史清平, 等, 2016. 鄂尔多斯盆地东胜区直罗组砂岩中烃类流体特征与铀成矿关系. 地质学报, 90(12): 3381-3392. doi: 10.3969/j.issn.0001-5717.2016.12.008 [78] 赵岩, 刘池洋, 张东东, 2017. 烃源岩发育与生烃过程中无机元素的参加及其作用. 西北大学学报(自然科学版), 47(2): 245-252. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201702016.htm [79] 周世新, 邹红亮, 解启来, 等, 2006. 沉积盆地油气形成过程中有机‒无机相互作用. 天然气地球科学, 17(1): 42-47. doi: 10.3969/j.issn.1672-1926.2006.01.008