Analysis of Ore-Controlling Structure of Changjiang Uranium Ore Field, Northern Guangdong
-
摘要:
控矿构造研究是长江铀矿田的薄弱环节,制约了成矿规律的深入探讨和进一步找矿方向. 通过对矿田内控矿构造的详细解析,厘定了控矿构造形式,构建了构造控矿模型,探讨了控矿构造的演化,指出了找矿方向. 铀矿田内的矿体和矿化带受北北西(近南北)向展布的小型断裂构造控制,具有走向延伸长、倾向延深大、产状比较稳定、局部弧形形态、呈带状成群出现等特点,显示含矿构造是形成于近东西向挤压条件的压性、压扭性断裂构造(密集节理带或劈理带). 铀矿田的控矿构造是北北西(近南北)向的较大规模断裂构造(主断裂)系统,这个主断裂与深部成矿流体连通,起到导矿-配(运)矿作用,浅部连接作为含矿构造的北北西(近南北)向的次级断裂和密集劈理带,后者构成了铀矿体的赋存空间,控制了铀矿体产出. 控矿构造经历了含矿构造形成期、基性岩脉侵位期、成矿期、成矿后小位移断错和隆升剥露共5个阶段的演化,最终形成目前的状态. 油洞断裂不是控矿构造,仅局部含矿,棉花坑断裂为成矿后断裂. 依据对控矿构造系统的认识,矿田内进一步的找矿方向是近南北(北北西)向铀矿化蚀变带沿走向延伸部位和倾向深部,同时现有地表或浅部矿带之间的空白区存在隐伏矿带的可能性也非常大.
Abstract:The study of ore-controlling structures is still weak in the Changjiang uranium ore field, which has restricted the understanding of metallogenic regularity and future prospecting direction. Through detailed analysis of ore-controlling structure in ore field, the authors determined the ore-controlling structure form, constructed a structural ore-controlling model, discussed the evolution of ore-controlling structure, and pointed out the prospecting direction in this study.It is found that uranium ore bodies and mineralization belts in the ore field are controlled by NNW-trending (near SN-trending) fault structure and are characterized by a long strike extension, a large dip depth, a stable occurrence with some arcuate shape and belted groups, which indicates that the ore-bearing structures are compressive or/and compresso-shear fault (closely spaced joint or/and cleavage belt) forming under an EW-trending compressive stress field. However, the ore controlling structure in the ore field is a larger scale NNW-trending (near SN-trending) fault structure system (or main fault), in which deep part links the ore-forming solution in depth and acts as passage-way for the ore fluid and shallow part links the ore-bearing NNW-trending (near SN-trending) fault structures. They not only act as the host space but also control the occurrence of ore-bodies. The ore-controlling structure went through five stages as forming stage of ore-bearing structure, emplacement stage of basic dike, metallogenic stage, forming stage of brittle fracture after mineralization and uplifted-exhumation stage, finally appearing the present state. The Youdong fault is not a high degree ore-controlling structure, it only acts as ore-bearing structure. The Mianhuakeng fault maybe occurred after mineralization. On the basis of the ore-controlling structure, the further prospecting for uranium deposits should be along the NNW-trending (near SN-trending) fault belt, concentrated in the strike extending area and deep dipping area. In the meantime, there is a good chance for concealed ore zone in the blank area between existing ore zone at surface and shallow part.
-
图 1 长江铀矿田大地构造与区域构造图
a. 大地构造图(据Hu et al.,2008). b. 长江铀矿田外围区域构造图(据黄国龙等,2012修编):1. 第四系;2. 寒武系浅变质碎屑岩;3. 燕山早期晚阶段花岗岩;4. 燕山早期早阶段花岗岩;5. 印支晚期花岗岩;6. 印支早期花岗岩;7. 海西期花岗闪长岩;8. 主干断裂/次级断裂;9. 铀矿带;10. 地质界线;11. 铀矿床
Fig. 1. Tectonic and regional geological map of Changjiang uranium ore field
图 2 粤北长江铀矿田地质图
据核工业北京地质研究院,2021. 1. 第四系;2. 燕山晚期细粒二云母花岗岩;3. 燕山晚期花岗斑岩;4. 燕山晚期闪斜煌斑岩;5. 燕山早期第三阶段细粒黑云母花岗岩;6. 燕山早期第一阶段不等粒黑云母花岗岩;7. 燕山早期第一阶段中粒黑云母花岗岩;8. 印支期第三阶段中粒小斑状二云母花岗岩;9. 印支期第二阶段中粒斑状黑云母二长花岗岩;10. 碱交代岩;11. 主要断层;12. 次级断层;13. 碱性岩脉;14. 地质界线;15. 岩性界线;16. 铀矿带编号;17. 大型铀矿床;18. 中/小型铀矿床
Fig. 2. Geological map of Changjiang uranium ore field, northern Guangdong
图 4 长江铀矿田10号铀矿带矿化剖面
1. 花岗岩;2. 石英脉;3. 节理裂隙;4. 硅化强度界线;5. 铀矿化强度界线;6. 中等硅化;7. 强硅化;8. 弱铀矿化(30 nC/kg·h≤伽玛值≤50 nC/kg·h);9. 中强铀矿化(50 nC/kg·h≤伽玛值≤100 nC/kg·h);10. 强铀矿化(伽玛值≥100 nC/kg·h);11. 伽玛异常值(nC/kg·h);12. 裂隙及石英脉产状
Fig. 4. Picture showing the No. 10 uranium mineralization zone of Changjiang uranium ore field, northern Guangdong
图 5 长江铀矿田9号铀矿带矿化剖面图
1. 花岗岩;2. 石英脉;3. 节理裂隙;4. 硅化;5. 铀矿化强度界线;6. 弱铀矿化(30 nC/kg·h≤伽玛值≤50 nC/kg·h);7. 中铀矿化(50 nC/kg·h≤伽玛值≤100 nC/kg·h);8. 中强铀矿化(100 nC/kg·h≤伽玛值≤200 nC/kg·h);9. 强铀矿化(伽玛值≥200 nC/kg·h);10. 伽玛异常值(nC/kg·h);11. 裂隙产状
Fig. 5. Pictures showing the No. 9 uranium mineralization zone of Changjiang uranium ore field, northern Guangdong
图 6 棉花坑铀矿床9号矿带9C穿脉剖面
据黄国龙等(2015)修改. 1. 中粒黑云母花岗岩;2. 弱蚀变(绢云母化、绿泥石化)花岗岩;3. 中等蚀变花岗岩;4. 强蚀变花岗岩型铀矿石;5. 蚀变岩铀矿石;6. 紫黑色萤石脉;7. 白色石英脉;8. 硅化/赤铁矿化;9. 绢云母化/绿泥石化;10. 高岭土化/萤石化
Fig. 6. Sketch showing the lateralization of No.9 uranium mineralization belt at 9C section in Mianhuakeng uranium deposit
图 7 长江铀矿田长排铀矿床9号矿带南段ZK8-2钻孔岩心铀矿化剖面
1. 中粒黑云母花岗岩;2. 弱蚀变(绿泥石化、绢云母化)花岗岩;3. 中等蚀变(硅化、赤铁矿化)花岗岩;4. 强硅化赤铁矿化花岗岩型铀矿石;5. 猪肝色微晶含赤铁矿硅化岩型铀矿石;6. 晚期白色石英脉;7. 硅化/赤铁矿化;8. 绢云母化/绿泥石化;9. 暗紫色萤石化
Fig. 7. Sketch showing the core mineralization of ZK8-2 drill hole in southern No.9 uranium belt of Changpai uranium deposit, Changjiang uranium ore field
图 9 粤北长江铀矿田控矿构造演化模式
1. 含矿断裂;2. 铀矿带;3. 中基性岩脉;4. 断层(不含矿);5. 压性断裂/扭性断裂;6. 张性断裂/张扭性断裂;7. 导矿、运(配)矿断裂;8. 主应力及其方向(σ1:最大主应力,σ2:中间主应力,σ3:最小主应力);9. 表层岩石(1~3 km,已经被剥蚀);10. 浅部岩石(2~6 km,矿体赋存岩石,与成矿深度相当);11. 中浅部岩石(4~8 km);12. 中部岩石(6~10 km)
Fig. 9. Evolution model of the ore-controlling structures of the Changjiang uranium ore field, northern Guangdong
-
[1] Barcos, L., Díaz-Azpiroz, M., Balanyá, J. C., et al., 2016. Analogue Modelling of Inclined, Brittle-Ductile Transpression: Testing Analytical Models through Natural Shear Zones (External Betics). Tectonophysics, 682: 169-185. https://10.1016/j.tecto.2016.05.021 doi: 10.1016/j.tecto.2016.05.021 [2] Beijing Research Institute of Uranium Geology, 2021. Study on Prediction and Resources Enlargement in the Deep and Peripheral Area of Granite-Type Uranium Deposit, Southern Zhuguang. Beijing Research Institute of Uranium Geology, Beijing (in Chinese). [3] Bonnetti, C., Liu, X. D., Mercadier, J., et al., 2018. The Genesis of Granite-Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China: Insights from Mineralogical, Trace Elements and U-Pb Isotopes Signatures of the U Mineralization. Ore Geology Reviews, 92: 588-612. https://10.1016/j.oregeorev.2017.12.010 doi: 10.1016/j.oregeorev.2017.12.010 [4] Bons, P. D., Elburg, M. A., Gomez-Rivas, E., 2012. A Review of the Formation of Tectonic Veins and Their Microstructures. Journal of Structural Geology, 43: 33-62. https://10.1016/j.jsg.2012.07.005 doi: 10.1016/j.jsg.2012.07.005 [5] Boullier, A. M., Robert, F., 1992. Palaeoseismic Events Recorded in Archaean Gold-Quartz Vein Networks, Val d'Or, Abitibi, Quebec, Canada. Journal of Structural Geology, 14(2): 161-179. https://10.1016/0191-8141(92)90054-z doi: 10.1016/0191-8141(92)90054-z [6] Cao, H.J., Huang, G.L., Xu, L.L., et al., 2013. The Ar-Ar Age and Geochemical Characteristics of Diabase Dykes of the Youdong Fault Zone in South of Zhuguang Granite Pluton. Acta Geologica Sinica, 87(7): 957-966 (in Chinese with English abstract). [7] Chen, B.L., 2020. Development Process of Fault Structure and Formation and Evolution of Ore-Controlling Structure: A Case Study of the Zoujiashan Uranium Deposit. Journal of Geomechanics, 26(3): 285-298 (in Chinese with English abstract). [8] Curren, I. S., Bird, P., 2014. Formation and Suppression of Strike-Slip Fault Systems. Pure and Applied Geophysics, 171(11): 2899-2918. https://10.1007/s00024-014-0826-7 doi: 10.1007/s00024-014-0826-7 [9] Deng, P., Ren, J.S., Ling, H.F., et al., 2011. Yanshanian Granite Batholiths of Southern Zhuguang Mountian: SHRIMP Zircon U-Pb Dating and Tectonic Implications. Geological Review, 57(6): 881-888 (in Chinese with English abstract). [10] Dooley, T. P., Schreurs, G., 2012. Analogue Modelling of Intraplate Strike-Slip Tectonics: A Review and New Experimental Results. Tectonophysics, 574-575: 1-71. https://10.1016/j.tecto.2012.05.030 doi: 10.1016/j.tecto.2012.05.030 [11] Guo, C.Y., Xu, H., Bai, Y., et al., 2013. Preliminary Study on Ore-Controlling Structure of Changjiang Uranium Ore Field in North Guangdong. Acta Mineralogica Sinica, 33(S2): 207-208 (in Chinese). [12] Hu, R. Z., Bi, X. W., Zhou, M. F., et al., 2008. Uranium Metallogenesis in South China and Its Relationship to Crustal Extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583-598. https://10.2113/gsecongeo.103.3.583 doi: 10.2113/gsecongeo.103.3.583 [13] Huang, G.L., Cao, H.J., Ling, H.F., et al., 2012. Zircon SHRIMP U-Pb Age, Geochemistry and Genesis of the Youdong Granite in Northern Guangdong. Acta Geologica Sinica, 86(4): 577-586 (in Chinese with English abstract). [14] Huang, G.L., Cao, H.J., Xu, W.X., et al., 2015. Vertical Zoning Model and Prospecting Potential in Depth of Mianhuakeng Uranium Deposit in Zhuguang. Uranium Geology, 31(3): 355-362 (in Chinese with English abstract). [15] Huang, G.L., Liu, X.Y., Sun, L.Q., et al., 2014. Zircon U-Pb Dating, Geochemical Characteristic and Genesis of the Changjiang Granite in Northern Guangdong. Acta Geologica Sinica, 88(5): 836-849 (in Chinese with English abstract). [16] Li, J. H., Zhang, Y. Q., Dong, S. W., et al., 2014. Cretaceous Tectonic Evolution of South China: A Preliminary Synthesis. Earth-Science Reviews, 134: 98-136. https://10.1016/j.earscirev.2014.03.008 doi: 10.1016/j.earscirev.2014.03.008 [17] Li, S.Z., Cao, X.Z., Wang, G.Z., et al., 2019. Meso-Cenozoic Tectonic Evolution and Plate Reconstruction of the Pacific Plate. Journal of Geomechanics, 25(5): 642-677 (in Chinese with English abstract). https://www.researchgate.net/publication/337303786_Meso-Cenozoic_tectonic_evolution_and_plate_reconstruction_of_the_Pacific_Plate [18] Liang, L., Li, J.H., Liu, C.D., 2019. Feature of Mylonite Belt and Its Relation to Granite-Type Uranium Deposit in Northern Guangdong Metallization Cluster. Uranium Geology, 35(2): 73-79 (in Chinese with English abstract). https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDTEMP&filename=YKDZ201902003 [19] Liu, J.G., Li, Z.Y., Nie, J.T., et al., 2019. Study on Structural Properties and Prospecting Significance of Youdong Fault in Changjiang Uranium Orefield, South Zhuguang. Uranium Geology, 35(4): 199-205 (in Chinese with English abstract). [20] Liu, J.L., Qin, M.K., Cai, Y.Q., et al., 2019. Fluid Inclusion Studies of the Changpai Area in Zhuguang Mountain, Northern Guangdong Province. Geological Bulletin of China, 38(2-3): 388-396 (in Chinese with English abstract). [21] Luo, Q., Xu, Y., Fu, S.C., et al., 2020. Uranium Metallogenic Geological Characteristics and Prospecting Potential in Zhuguang Changjiang Ore Field. Mineral Exploration, 11(2): 276-285 (in Chinese with English abstract). [22] Naylor, M. A., Mandl, G., Supesteijn, C. H. K., 1986. Fault Geometries in Basement-Induced Wrench Faulting under Different Initial Stress States. Journal of Structural Geology, 8(7): 737-752. https://10.1016/0191-8141(86)90022-2 doi: 10.1016/0191-8141(86)90022-2 [23] Pang, Y.Q., Fan, H.H., Gao, F., et al., 2019. Helium and Argon Isotopic Compositions of Fluid Inclusions and Tracing to the Source of Ore-Forming Fluids for the Southern Zhuguang Uranium Ore Field in Northern Guangdong Province. Acta Petrologica Sinica, 35(9): 2765-2773 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.09 [24] Richard, P. D., Naylor, M. A., Koopman, A., 1995. Experimental Models of Strike-Slip Tectonics. Petroleum Geoscience, 1(1): 71-80. https://10.1144/petgeo.1.1.71 doi: 10.1144/petgeo.1.1.71 [25] Shu, L. S., Deng, P., Wang, B., et al., 2004. Lithology, Kinematics and Geochronology Related to Late Mesozoic Basin-Mountain Evolution in the Nanxiong-Zhuguang Area, South China. Science China Earth Sciences, 47(8): 673-688. https://10.1360/03yd0113 doi: 10.1360/03yd0113 [26] Sibson, R. H., Robert, F., Poulsen, K. H., 1988. High-Angle Reverse Faults, Fluid-Pressure Cycling, and Mesothermal Gold-Quartz Deposits. Geology, 16(6): 551-555. https://10.1130/0091-7613(1988)0160551:harffp>2.3.co;2 doi: 10.1130/0091-7613(1988)0160551:harffp>2.3.co;2 [27] Tao, N., Li, Z. X., Danišík, M., et al., 2019. Post-250 Ma Thermal Evolution of the Central Cathaysia Block (SE China) in Response to Flat-Slab Subduction at the Proto-Western Pacific Margin. Gondwana Research, 75: 1-15. https://10.1016/j.gr.2019.03.019 doi: 10.1016/j.gr.2019.03.019 [28] Tan, Z.Y., Zhang, D.C., Kuang, Z.P., et al., 2015. Analysis of Deep Prospecting at Mianhuakeng Uranium Deposit in the Southern Zhuguang Massif in Northern Guangdong. Uranium Mining and Metallurgy, 34(2): 78-81 (in Chinese with English abstract). [29] Xu, W.X., Fu, S.C., Xu, Y., et al., 2017. Analysis of Prospecting Potential in the Depth of Shulouqiu Uranium Deposit in Southern Zhuguangshan Pluton. Mineral Exploration, 8(5): 782-788 (in Chinese with English abstract). [30] Xu, X.W., Niu, L., Hong, T., et al., 2019. Tectonic Dynamics of Fluids and Metallogenesis. Journal of Geomechanics, 25(1): 1-8 (in Chinese with English abstract). [31] Xu, X.W., Yu, G.H., Ma, W.T., et al., 2008. Rupture Behavior and Deformation Localization of the Kunlunshan Earthquake (Mw 7.8) and Their Tectonic Implications. Scientia Sinica Terrae, 38(7): 785-796 (in Chinese). [32] Yao, S.Z., Ding, Z.J., Zhou, Z.G., et al., 2020. Ore-Accumulating Structural System and Mineral Exploration. Earth Science, 45(12): 4389-4398 (in Chinese with English abstract). [33] Ye, S. X., Xu, Y., 2019. Characteristics of Fault Structure in Changjiang Ore Concentration Area and Its Relation to Uranium Ore-Forming, Southern Zhuguang Area. Science & Technology Vision, (17): 107-108, 64 (in Chinese). [34] Zhai, Y.S., Wang, J.P., 2011. A Historical View of Mineral Deposit Research. Acta Geologica Sinica, 85(5): 603-611 (in Chinese with English abstract). [35] Zhang, A., Liu, C.D., Yu, Z.L., et al., 2009. The Features and Geochronology of Alkali Metasomatic Rock in Southern Zhuguang Uranium Mineralization Area. Journal of East China Institute of Technology (Natural Science), 32(3): 209-212 (in Chinese with English abstract). [36] Zhang, C., Cai, Y. Q., Xu, H., et al., 2017. Mechanism of Mineralization in the Changjiang Uranium Ore Field, South China: Evidence from Fluid Inclusions, Hydrothermal Alteration, and H-O Isotopes. Ore Geology Reviews, 86: 225-253. https://10.1016/j.oregeorev.2017.01.013 doi: 10.1016/j.oregeorev.2017.01.013 [37] Zhang, G.Q., Hu, R. Z., Bi, X. W., et al., 2007. REE Geochemical Characteristics of the No. 302 Uranium Deposit in Northern Guangdong, South China. Chinese Journal of Geochemistry, 26(4): 425-433. doi: 10.1007/s11631-007-0425-8 [38] Zhang, X.Q., Zhang, X.M., Hou, M.C., et al., 2013. Lithostratigraphic Subdivision of Red Beds in Nanxiong Basin, Guangdong, China. Journal of Stratigraphy, 37(4): 441-451 (in Chinese with English abstract). [39] Zhong, F. J., Pan, J. Y., Qi, J. M., et al., 2018. New In-Situ LA-ICP-MS U-Pb Ages of Uraninite from the Mianhuakeng Uranium Deposit, Northern Guangdong Province, China: Constraint on the Metallogenic Mechanism. Acta Geologica Sinica (English Edition), 92(2): 852-854. https://10.1111/1755-6724.13558 doi: 10.1111/1755-6724.13558 [40] Zhong, F.J., Pan, J.Y., Wu, J.H., et al., 2019a. Petrogenesis and Its Relationship with Uranium Mineralization of Gabbro-Diorite in Changjiang Uranium Ore-Field, Northern Guangdong Province, China. Earth Science, 44(9): 3042-3059 (in Chinese with English abstract). [41] Zhong, F.J., Pan, J.Y., Zhang, W.M., et al., 2019b. Magmation, Tectonic Activity and Uranium Mineralization Events of Southern Zhuguang Uranium Ore-Concentrated District, Northern Guangdong, China. Journal of Geomechanics, 25(S1): 108-114 (in Chinese with English abstract). [42] 曹豪杰, 黄国龙, 许丽丽, 等, 2013. 诸广花岗岩体南部油洞断裂带辉绿岩脉的Ar-Ar年龄及其地球化学特征. 地质学报, 87(7): 957-966. doi: 10.3969/j.issn.0001-5717.2013.07.005 [43] 陈柏林, 2020. 断裂构造发育过程与控矿构造形成演化——以邹家山铀矿床为例. 地质力学学报, 26(3): 285-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202003003.htm [44] 邓平, 任纪舜, 凌洪飞, 等, 2011. 诸广山南体燕山期花岗岩的锆石SHRIMP U-Pb年龄及其构造意义. 地质论评, 57(6): 881-888. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201106011.htm [45] 郭春影, 徐浩, 白芸, 等, 2013. 粤北长江铀矿田构造控矿规律初探. 矿物学报, 33(增刊): 207-208. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2013S2116.htm [46] 核工业北京地质研究院, 2021. 诸广南部花岗岩型铀矿深部及外围资源预测与扩大研究. 北京: 核工业北京地质研究院. [47] 黄国龙, 曹豪杰, 凌洪飞, 等, 2012. 粤北油洞岩体SHRIMP锆石U-Pb年龄、地球化学特征及其成因研究. 地质学报, 86(4): 577-586. doi: 10.3969/j.issn.0001-5717.2012.04.004 [48] 黄国龙, 曹豪杰, 徐文雄, 等, 2015. 诸广棉花坑铀矿床垂向分带模式及深部找矿潜力. 铀矿地质, 31(3): 355-362. doi: 10.3969/j.issn.1000-0658.2015.03.001 [49] 黄国龙, 刘鑫扬, 孙立强, 等, 2014. 粤北长江岩体的锆石U-Pb定年、地球化学特征及其成因研究. 地质学报, 88(5): 836-849. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201405003.htm [50] 李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中-新生代构造演化及板块重建. 地质力学学报, 25(5): 642-677. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905005.htm [51] 梁良, 李建红, 刘成东, 2019. 粤北花岗岩型铀矿矿集区糜棱岩带特征及其与铀成矿的关系. 铀矿地质, 35(2): 73-79. doi: 10.3969/j.issn.1672-0636.2019.02.002 [52] 刘军港, 李子颖, 聂江涛, 等, 2019. 诸广南长江铀矿田油洞断裂性质及其找矿意义研究. 铀矿地质, 35(4): 199-205. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201904002.htm [53] 刘佳林, 秦明宽, 蔡煜琦, 等, 2019. 粤北诸广山岩体南部长排矿区流体包裹体研究. 地质通报, 38(2-3): 388-396. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2019Z1019.htm [54] 罗强, 许幼, 伏顺成, 等, 2020. 诸广长江矿田铀矿地质特征及找矿潜力. 矿产勘查, 11(2): 276-285. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202002012.htm [55] 庞雅庆, 范洪海, 高飞, 等, 2019. 粤北诸广南部铀矿田流体包裹体的氦氩同位素组成及成矿流体来源示踪. 岩石学报, 35(9): 2765-2773. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909009.htm [56] 谭忠银, 张德存, 匡正平, 等, 2015. 粤北诸广南部棉花坑铀矿床深部找矿分析. 铀矿冶, 34(2): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YKYI201502006.htm [57] 徐文雄, 伏顺成, 许幼, 等, 2017. 诸广山岩体南部书楼丘铀矿床深部找矿潜力分析. 矿产勘查, 8(5): 782-788. doi: 10.3969/j.issn.1674-7801.2017.05.008 [58] 徐兴旺, 牛磊, 洪涛, 等, 2019. 流体构造动力学与成矿作用. 地质力学学报, 25(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201901002.htm [59] 徐锡伟, 于贵华, 马文涛, 等, 2008. 昆仑山地震(Mw 7.8)破裂行为、变形局部化特征及其构造内涵讨论. 中国科学: 地球科学, 38(7): 785-796. doi: 10.3321/j.issn:1006-9267.2008.07.001 [60] 姚书振, 丁振举, 周宗桂, 等, 2020. 聚矿构造系统与找矿. 地球科学, 45(12): 4389-4398. doi: 10.3799/dqkx.2020.337 [61] 叶松鑫, 许幼, 2019. 诸广南部长江矿集区断裂构造特征及其与铀成矿关系. 科技视界, (17): 107-108, 64. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201917051.htm [62] 翟裕生, 王建平, 2011. 矿床学研究的历史观. 地质学报, 85(5): 603-611. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105003.htm [63] 张爱, 刘成东, 余志灵, 等, 2009. 诸广南部铀矿区碱交代岩特征及同位素年代学研究. 东华理工大学学报(自然科学版), 32(3): 209-212. doi: 10.3969/j.issn.1674-3504.2009.03.003 [64] 张显球, 张喜满, 侯明才, 等, 2013. 南雄盆地红层岩石地层划分. 地层学杂志, 37(4): 441-451. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201304006.htm [65] 钟福军, 潘家永, 巫建华, 等, 2019a. 粤北长江铀矿田辉长闪长岩的岩石成因及其与铀成矿的关系. 地球科学, 44(9): 3042-3059. doi: 10.3799/dqkx.2017.592 [66] 钟福军, 潘家永, 张伟盟, 等, 2019b. 粤北诸广南铀矿聚集区岩浆、构造与铀成矿活动. 地质力学学报, 25(S1): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX2019S1018.htm