Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River
-
摘要: 江汉平原浅层地下水中锰含量普遍较高,探究锰在河流交互带中的分布特征有助于认识交互带中锰的生物地球化学过程,对水质的保护具有重要指导意义.通过监测汉江下游侧向交互带河水、地下水中溶解态锰含量及其相关指标,分析不同河水-地下水交互作用方向下溶解态锰的时空分布规律,并探讨其成因.结果表明:研究区侧向交互带中靠近河岸带区域存在溶解态锰的富集,且在有局部反向流的地方锰含量较高;该局部富集的现象在河水补给地下水的交互带中更加明显;泄洪后该富集区域随水流方向发生迁移;研究区地下水中锰的含量与HCO3-、Ca2+、Mg2+呈极显著正相关,与NO3-、Fe2+显著负相关,但与交互带地下水中Eh和pH不相关.交互带溶解态锰的时空分布受地形条件、水动力和水化学的共同影响.Abstract: The content of manganese in shallow groundwater in Jianghan Plain is generally high. Studying the distribution characteristics of manganese in the hyporheic zone helps to understand manganese's biogeochemical process in the hyporheic zone. It is of great significance for guiding the protection of river and groundwater quality. This study takes the lateral hyporheic zone in the Han River's lower reaches as the research object. The temporal and spatial distribution of dissolved manganese under different interaction directions between river and groundwater in the lateral hyporheic zone is studied and discussed by detecting manganese concentration and its related parameters in the river and groundwater. The results showed that the dissolved manganese is enriched in the river-groundwater lateral interaction zone near the riparian zone, and the manganese content is higher in the place where there is local reverse flow; The phenomenon of local enrichment is more obvious in the interactive zone where river water supplies groundwater. After flooding for 1-3 months, the enrichment area migrates with the direction of water flow; The dissolved manganese concentration in the groundwater of the study area has a very significant positive correlation with HCO3-, Mg2+, Ca2+, and has a remarkably substantial negative correlation with NO3-. It is also negatively correlated with Fe2+. However, it is not related to the Eh and pH of groundwater in the hyporheic zone.In a word, the spatial and temporal distribution of dissolved manganese in the hyporheic zone is influenced by topographic conditions, hydrodynamics and hydrochemistry.
-
图 3 PM02河水与交互带地下水的水位、水流场及溶解态锰的时空分布
图中标识同图 2
Fig. 3. The water level, flow field, and time-space distribution of dissolved Mn in profile 2 of the hyporheic zone
图 4 PM03河水与交互带地下水的水位、水流场及溶解态锰的时空分布
图中标识同图 2
Fig. 4. The water level, flow field, and time-space distribution of dissolved Mn in profile 3 of the hyporheic zone
图 7 不同氧化还原对的电极电势以及成岩孔隙水中相应各组分浓度随深度变化图
引自Froelich et al.(1979);Lam and Kuypers(2011);董志国等(2020)
Fig. 7. The electrode potential of different redox pairs and the corresponding component concentrations in diagenetic pore water vary with depth
表 1 水样不同指标的前处理及保存方法
Table 1. Pretreatment and preservation methods of different indexes of water samples
水质指标 处理方法 保存和测试 Mn 水样过滤(0.45 μm) 后酸化(1+1 HNO3) 避光,高碘酸钾显色法现场测试 Fe 水样过滤(0.45 μm) 后酸化(1+3 HCl) 避光,邻菲罗啉显色法现场测试 HCO3- 水样过滤(0.45 μm) 现场滴定测定 pH、Eh、DO 通入过渡仓隔绝空气 水质分析仪现场测定 DOC 水样过滤(0.45 μm)后酸化(H2SO4) 避光,低温保存,带回上机测试 阴阳离子 水样过滤(0.45 μm)后加保护剂保存 避光,低温保存,带回上机测试 注:锰和铁取样过程尽量保证隔绝氧气,因此采用注射器外接滤头的方式,直接将抽出的地下水过滤后酸化保存. 表 2 研究区河水-地下水化学组分(单位:mg/L,pH和Eh除外)
Table 2. Chemical composition of river water and groundwater in the study area(unit: mg/L, except pH and Eh)
化学组分 河水 地下水 最大值 最小值 平均值 变异系数 最大值 最小值 平均值 变异系数 Mn2+ 0.77 0.00 0.20 1.26 6.61 0.00 2.29 0.75 pH 8.56 6.96 7.95 0.04 8.01 6.11 7.01 0.04 DO 11.85 3.20 8.17 0.32 2.55 0.00 0.41 1.14 Eh (mV) 341.60 -1.30 115.22 0.77 315.00 -392.30 -85.88 -1.33 Fe2+ 0.45 0.00 0.14 1.08 35.41 0.00 3.88 1.89 DOC 6.67 2.41 3.59 0.31 22.50 0.55 2.77 0.80 HCO3- 436.90 57.97 193.09 0.57 1 032.46 100.68 498.82 0.34 Cl- 18.28 1.46 8.75 0.46 153.70 0.49 12.81 1.24 NO3- 10.88 0.00 3.08 0.98 47.63 0.00 1.76 3.54 SO42- 85.19 0.00 28.41 0.62 335.21 0.00 31.73 1.15 K+ 3.43 0.05 1.77 0.54 5.32 0.00 1.67 0.69 Ca2+ 104.33 0.05 48.60 0.52 303.62 12.91 113.01 0.47 Na+ 13.99 5.87 10.09 0.22 22.51 0.00 8.17 0.35 Mg2+ 23.38 0.00 11.49 0.49 54.45 0.00 23.86 0.34 表 3 研究地下水水化学指标相关系数表
Table 3. The correlation coefficient table of groundwater hydrochemical indicators in the study area
pH DO Ec Eh DOC HCO3- Cl- NO3- SO42- K+ Ca2+ Na+ Mg2+ Fe2+ Mn2+ -0.082 -0.023 0.089 -0.076 -0.076 0.276** -0.194** -0.248** -0.062 0.218** 0.135** 0.066 0.364** -0.115* HCO3-- -0.538** -0.147** 0.420** -0.085 0.151** 1 0.154** 0.127* -0.181** 0.070 0.511** -0.110* 0.756** 0.379** DOC 0.001 0.213** 0.198** 0.005 1 0.151** 0.125* 0.009 -0.156** 0.273** 0.198** 0.111* 0.083 0.330** 注:**. 在0.01级别(双尾),相关性显著;*. 在0.05级别(双尾),相关性显著. -
[1] Atkinson, C. A., Jolley, D. F., Simpson, S. L., 2007. Effect of Overlying Water pH, Dissolved Oxygen, Salinity and Sediment Disturbances on Metal Release and Sequestration from Metal Contaminated Marine Sediments. Chemosphere, 69(9): 1428-1437. https://doi.org/10.1016/j.chemosphere.2007.04.068 [2] Benner, S. G., Smart, E. W., Moore, J. N., 1995. Metal Behavior during Surface-Groundwater Interaction, Silver Bow Creek, Montana. Environmental Science & Technology, 29(7): 1789-1795. https://doi.org/10.1021/es00007a015 [3] Boano, F., Revelli, R., Ridolfi, L., 2008. Reduction of the Hyporheic Zone Volume Due to the Stream-Aquifer Interaction. Geophysical Research Letters, 35(9): L09401. https://doi.org/10.1029/2008GL033554 [4] Bryant, S. R., Sawyer, A. H., Briggs, M. A., et al., 2020. Seasonal Manganese Transport in the Hyporheic Zone of a Snowmelt-Dominated River (East River, Colorado, USA). Hydrogeology Journal, 28(4): 1323-1341. https://doi.org/10.1007/s10040-020-02146-6 [5] Byrne, P., Binley, A., Heathwaite, A., et al., 2014. Control of River Stage on the Reactive Chemistry of the Hyporheic Zone. Hydrological Processes, 28(17): 4766-4779. https://doi.org/10.1002/hyp.9981 [6] Cai, L., Hu, C., Chen, Z.H., et al., 2019. Distribution and Genesis of High Fe and Mn Groundwater in the Northeast of the Jianghan Plain. Hydrogeology & Engineering Geology, 46(4): 18-25(in Chinese with English abstract). [7] Davis, A., Atkins, D, 2001. Metal Distribution in Clark Fork River Sediments. Environmental Science & Technology, 35(17): 3501-3506. https://doi.org/10.1021/es001881c [8] Dong, Z. G., Zhang, L. C., Wang, C. L., et al., 2020. Progress and Problems in Understanding Sedimentary Manganese Carbonate Metallogenesis. Mineral Deposits, 39(2): 237-255. http://doi.org/10.16111/j.0258-7106.2020.02.003 (in Chinese with English abstract). [9] Fischer, H., Kloep, F., Wilzcek, S., et al., 2005. A River Liver: Microbial Processes within the Hyporheic Zone of a Large Lowland River. Biogeochemistry, 76(2): 349-371. https://doi.org/10.1007/s10533-005-6896-y [10] Froelich, P. N., Klinkhammer, G. P., Bender, M. L., et al., 1979. Early Oxidation of Organic Matter in Pelagic Sediments of the Eastern Equatorial Atlantic: Suboxic Diagenesis. Geochimica et Cosmochimica Acta, 43(7): 1075-1090. https://doi.org/10.1016/0016-7037(79)90095-4 [11] Fuller, C. C., Harvey, J. W., 2000. Reactive Uptake of Trace Metals in the Hyporheic Zone of a Mining-Contaminated Stream, Pinal Creek, Arizona. Environmental Science & Technology, 34(7): 1150-1155. https://doi.org/10.1021/es990714d [12] Herndon, E. M., Havig, J. R., Singer, D. M., et al., 2018. Manganese and Iron Geochemistry in Sediments Underlying the Redox-Stratified Fayetteville Green Lake. Geochimica et Cosmochimica Acta, 231: 50-63. https://doi.org/10.1016/j.gca.2018.04.013 [13] Hou, Q. X., Zhang, Q., Huang, G. X., et al., 2020. Elevated Manganese Concentrations in Shallow Groundwater of Various Aquifers in a Rapidly Urbanized Delta, South China. Science of the Total Environment, 701: 134777. https://doi.org/10.1016/j.scitotenv.2019.134777 [14] Kulakov, V. V., Kondratyeva, L. M., Golubeva, Y. M., 2010. Geological and Biogeochemical Prerequisites for High Fe and Mn Contents in the Amur River Water. Russian Journal of Pacific Geology, 4(6): 510-519. https://doi.org/10.1134/S1819714010060060 [15] Kurz, M. J., Martin, J. B., Cohen, M. J., et al., 2015. Diffusion and Seepage-Driven Element Fluxes from the Hyporheic Zone of a Karst River. Freshwater Science, 34(1): 206-211. https://doi.org/10.1086/679654 [16] Lam, P., Kuypers, M. M. M., 2011. Microbial Nitrogen Cycling Processes in Oxygen Minimum Zones. Annual Review of Marine Science, 3(1): 317-345. https://doi.org/10.1146/annurev-marine-120709-142814 [17] Lan, K., Liang, X., Li, J., 2020. Hydrochemical Characteristics of Groundwater of the Hanjiang Zone in the Jianghan Plain. Safety and Environmental Engineering, 27(5): 1-9, 16(in Chinese with English abstract). [18] Li, J., Cen, Y. Y., Li, Y., 2019. The Research Advances in the Mechanism of Manganese-Induced Neurotoxicity. Toxin Reviews, 38(1): 54-60. https://doi.org/10.1080/15569543.2018.1486859 [19] Liang, G.L., Sun, J.C., Huang, G.X., et al., 2009. Distribution and Genesis of Manganese in Groundwater in the Pearl River Delta. Geology in China, 36: 899-906(in Chinese). [20] Liang, X., Zhang, J. W., Lan, K., et al., 2020. Hydrochemical Characteristics of Groundwater and Analysis of Groundwater Flow Systems in Jianghan Plain. Bulletin of Geological Science and Technology, 39(1): 21-33(in Chinese with English abstract). [21] Ma, T., Shen, S., Deng, Y. M., et al., 2020. Theoretical Approaches of Survey on Earth's Critical Zone in Basin: An Example from Jianghan Plain, Central Yangtze River. Earth Science, 45(12): 4498-4511(in Chinese with English abstract). [22] Marin, C., Tudorache, A., Moldovan, O. T., et al., 2010. Assessing the Contents of Arsenic and of some Heavy Metals in Surface Flows and in the Hyporheic Zone of the Arieş Stream Catchment Area, Romania. Carpathian Journal of Earth and Environmental Sciences, 5(1): 13-24. [23] Nathalie, T., Joseph, N. R., Menachem, E., 2002. The Promise of Bank Filtration. Environmental Science & Technology, 36(21): 422-428. https://doi.org/10.1021/es022441j [24] Packman, A. I., Brooks, N. H., 2001. Hyporheic Exchange of Solutes and Colloids with Moving Bed Forms. Water Resources Research, 37(10): 2591-2605. https://doi.org/10.1029/2001WR000477 [25] Ren, J. F., 2017. Distribution Characteristics and Cause Analysis of Manganese Content in Groundwater of Dezhou City. Groundwater, 39(1): 37-38(in Chinese). [26] Singer, D. M., Jefferson, A. J., Traub, E. L., et al., 2018. Mineralogical and Geochemical Variation in Stream Sediments Impacted by Acid Mine Drainage is Related to Hydro-Geomorphic Setting. Elem Sci Anth, 6(1): 31. https://doi.org/10.1525/elementa.286 [27] Spangler, A. H., Spangler, J. G, 2009. Groundwater Manganese and Infant Mortality Rate by County in North Carolina: an Ecological Analysis. EcoHealth, 6(4): 596-600. https://doi.org/10.1007/s10393-010-0291-4 [28] Su, D., Su, X.S., Zhang, L. H., 2016. Redox Zonation in the Process of River Water Infiltration in the Huangjia Riverside Well Field, Shenyang City. China Environmental Science, 36(7): 2043-2050(in Chinese with English abstract). [29] Triska, F. J., Kennedy, V. C., Avanzino, R. J., et al., 1989. Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California: Hyporheic Processes. Ecology, 70(6): 1893-1905. https://doi.org/10.2307/1938120 [30] Wang, L. X., 2020. Analysis of Origin of Groundwater in Jianghan Plain Based on Typical Drillings. Earth Science, 45(2): 701-710(in Chinese with English abstract). [31] Williams, D. D., 1993. Nutrient and Flow Vector Dynamics at the Hyporheic/Groundwater Interface and Their Effects on the Interstitial Fauna. Hydrobiologia, 251(1/2/3): 185-198. https://doi.org/10.1007/BF00007178 [32] Winter, T. C., Harvey, J. W., Franke, O. L., et al. 1998. Ground Water and Surface Water A Single Resource. U.S. Geological Survey, 1139: 1-79. [33] Zeng, S. H., Cai, W. X., Zhang, Z. L., 2004. Migration and Enrichment of Manganese in Groundwater and Its Controlling Factors. Resources Environment & Engineering, (4): 39-42(in Chinese). [34] Zhou, S. B., Yuan, X. Z., Peng, S. C., et al., 2014. Groundwater-Surface Water Interactions in the Hyporheic Zone under Climate Change Scenarios. Environmental Science and Pollution Research, 21(24): 13943-13955. https://doi.org/10.1007/s11356-014-3255-3 [35] Zielinski, P., Jekatierynczuk-Rudczyk, E., 2010. Dissolved Organic Matter Transformation in the Hyporheic Zone of a Small Lowland River. Oceanological and Hydrobiological Studies, 39(2): 97-103. https://doi.org/10.2478/v10009-010-0021-9 [36] 蔡玲, 胡成, 陈植华, 等, 2019. 江汉平原东北部地区高铁锰地下水成因与分布规律. 水文地质工程地质, 46(4): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904004.htm [37] 董志国, 张连昌, 王长乐, 等, 2020. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题. 矿床地质, 39(2): 237-255. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002003.htm [38] 蓝坤, 梁杏, 李静, 2020. 江汉平原汉江带地下水水化学特征分析. 安全与环境工程, 27(5): 1-9, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202005001.htm [39] 梁国玲, 孙继朝, 黄冠星, 等, 2009. 珠江三角洲地区地下水锰的分布特征及其成因. 中国地质, 36: 899-906. doi: 10.3969/j.issn.1000-3657.2009.04.018 [40] 梁杏, 张婧玮, 蓝坤, 等, 2020. 江汉平原地下水化学特征及水流系统分析. 地质科技通报, 39(1): 21-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001004.htm [41] 马腾, 沈帅, 邓娅敏, 等, 2020. 流域地球关键带调查理论方法: 以长江中游江汉平原为例. 地球科学, 45(12): 4498-4511. doi: 10.3799/dqkx.2020.274 [42] 任金峰, 2017. 德州市地下水锰含量的分布特征及成因分析. 地下水, 39(1): 37-38. doi: 10.3969/j.issn.1004-1184.2017.01.012 [43] 苏东, 苏小四, 张丽华, 等, 2016. 沈阳黄家傍河水源地河水入渗过程中氧化还原分带规律. 中国环境科学, 36(7): 2043-2050. doi: 10.3969/j.issn.1000-6923.2016.07.020 [44] 王露霞, 梁杏, 李静, 等, 2020. 基于典型钻孔的江汉平原地下水成因分析. 地球科学, 45(2): 701-710. doi: 10.3799/dqkx.2018.363 [45] 曾昭华, 蔡伟娣, 张志良, 2004. 地下水中锰元素的迁移富集及其控制因素. 资源环境与工程, (4): 39-42. doi: 10.3969/j.issn.1671-1211.2004.04.008