• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    汉江下游河水-地下水侧向交互带中溶解态锰的分布特征

    马奥兰 刘慧 毛胜军 朱子超 李民敬

    马奥兰, 刘慧, 毛胜军, 朱子超, 李民敬, 2022. 汉江下游河水-地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038
    引用本文: 马奥兰, 刘慧, 毛胜军, 朱子超, 李民敬, 2022. 汉江下游河水-地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038
    Ma Aolan, Liu Hui, Mao Shengjun, Zhu Zichao, Li Minjing, 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741. doi: 10.3799/dqkx.2021.038
    Citation: Ma Aolan, Liu Hui, Mao Shengjun, Zhu Zichao, Li Minjing, 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741. doi: 10.3799/dqkx.2021.038

    汉江下游河水-地下水侧向交互带中溶解态锰的分布特征

    doi: 10.3799/dqkx.2021.038
    基金项目: 

    国家自然科学基金重点项目 41830862

    国家创新群体项目 41521001

    湖北省创新群体项目 2018CFA028

    中央高校基础研究基金中国地质大学(武汉)项目 CUGCJ180

    中央高校基础研究基金中国地质大学(武汉)项目 CUGQY1928

    详细信息
      作者简介:

      马奥兰(1996-), 女, 硕士研究生, 主要研究河流-地下水交互带重金属的生物地球化学过程.ORCID: 0000-0003-3501-1319.E-mail: OranMa@cug.edu.cn

      通讯作者:

      刘慧, ORCID: 0000-0002-1080-0883.E-mail: hliu2009@cug.edu.cn

    • 中图分类号: X142

    Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River

    • 摘要: 江汉平原浅层地下水中锰含量普遍较高,探究锰在河流交互带中的分布特征有助于认识交互带中锰的生物地球化学过程,对水质的保护具有重要指导意义.通过监测汉江下游侧向交互带河水、地下水中溶解态锰含量及其相关指标,分析不同河水-地下水交互作用方向下溶解态锰的时空分布规律,并探讨其成因.结果表明:研究区侧向交互带中靠近河岸带区域存在溶解态锰的富集,且在有局部反向流的地方锰含量较高;该局部富集的现象在河水补给地下水的交互带中更加明显;泄洪后该富集区域随水流方向发生迁移;研究区地下水中锰的含量与HCO3-、Ca2+、Mg2+呈极显著正相关,与NO3-、Fe2+显著负相关,但与交互带地下水中Eh和pH不相关.交互带溶解态锰的时空分布受地形条件、水动力和水化学的共同影响.

       

    • 图  1  研究区及采样点分布

      右图蓝色分别代表河水和地下水水位,红色线段为多水平监测井的位置及高程

      Fig.  1.  Distribution map of the study area and sampling points

      图  2  PM01河水与交互带地下水的水位、水流场及溶解态锰的时空分布

      图中白色箭头的朝向和长度分别指示水流的方向和流速大小;空心圆为采样点,其中横坐标为0的点位样品为各剖面对应的河水样品

      Fig.  2.  The water level, flow field, and time-space distribution of dissolved Mn in profile 1 of the hyporheic zone

      图  3  PM02河水与交互带地下水的水位、水流场及溶解态锰的时空分布

      图中标识同图 2

      Fig.  3.  The water level, flow field, and time-space distribution of dissolved Mn in profile 2 of the hyporheic zone

      图  4  PM03河水与交互带地下水的水位、水流场及溶解态锰的时空分布

      图中标识同图 2

      Fig.  4.  The water level, flow field, and time-space distribution of dissolved Mn in profile 3 of the hyporheic zone

      图  5  研究区地下水化学指标聚类分析树状图

      Fig.  5.  Cluster analysis dendrogram of groundwater chemical parameters in the study area

      图  6  标准状态下研究区Mn与C、N和水环境Eh-pH相图

      黑色圆点为样品点

      Fig.  6.  Phase diagram of Mn, C, N and water environment Eh-pH in the study area under standard conditions

      图  7  不同氧化还原对的电极电势以及成岩孔隙水中相应各组分浓度随深度变化图

      引自Froelich et al.(1979)Lam and Kuypers(2011)董志国等(2020)

      Fig.  7.  The electrode potential of different redox pairs and the corresponding component concentrations in diagenetic pore water vary with depth

      表  1  水样不同指标的前处理及保存方法

      Table  1.   Pretreatment and preservation methods of different indexes of water samples

      水质指标 处理方法 保存和测试
      Mn 水样过滤(0.45 μm) 后酸化(1+1 HNO3) 避光,高碘酸钾显色法现场测试
      Fe 水样过滤(0.45 μm) 后酸化(1+3 HCl) 避光,邻菲罗啉显色法现场测试
      HCO3- 水样过滤(0.45 μm) 现场滴定测定
      pH、Eh、DO 通入过渡仓隔绝空气 水质分析仪现场测定
      DOC 水样过滤(0.45 μm)后酸化(H2SO4) 避光,低温保存,带回上机测试
      阴阳离子 水样过滤(0.45 μm)后加保护剂保存 避光,低温保存,带回上机测试
      注:锰和铁取样过程尽量保证隔绝氧气,因此采用注射器外接滤头的方式,直接将抽出的地下水过滤后酸化保存.
      下载: 导出CSV

      表  2  研究区河水-地下水化学组分(单位:mg/L,pH和Eh除外)

      Table  2.   Chemical composition of river water and groundwater in the study area(unit: mg/L, except pH and Eh)

      化学组分 河水 地下水
      最大值 最小值 平均值 变异系数 最大值 最小值 平均值 变异系数
      Mn2+ 0.77 0.00 0.20 1.26 6.61 0.00 2.29 0.75
      pH 8.56 6.96 7.95 0.04 8.01 6.11 7.01 0.04
      DO 11.85 3.20 8.17 0.32 2.55 0.00 0.41 1.14
      Eh (mV) 341.60 -1.30 115.22 0.77 315.00 -392.30 -85.88 -1.33
      Fe2+ 0.45 0.00 0.14 1.08 35.41 0.00 3.88 1.89
      DOC 6.67 2.41 3.59 0.31 22.50 0.55 2.77 0.80
      HCO3- 436.90 57.97 193.09 0.57 1 032.46 100.68 498.82 0.34
      Cl- 18.28 1.46 8.75 0.46 153.70 0.49 12.81 1.24
      NO3- 10.88 0.00 3.08 0.98 47.63 0.00 1.76 3.54
      SO42- 85.19 0.00 28.41 0.62 335.21 0.00 31.73 1.15
      K+ 3.43 0.05 1.77 0.54 5.32 0.00 1.67 0.69
      Ca2+ 104.33 0.05 48.60 0.52 303.62 12.91 113.01 0.47
      Na+ 13.99 5.87 10.09 0.22 22.51 0.00 8.17 0.35
      Mg2+ 23.38 0.00 11.49 0.49 54.45 0.00 23.86 0.34
      下载: 导出CSV

      表  3  研究地下水水化学指标相关系数表

      Table  3.   The correlation coefficient table of groundwater hydrochemical indicators in the study area

      pH DO Ec Eh DOC HCO3- Cl- NO3- SO42- K+ Ca2+ Na+ Mg2+ Fe2+
      Mn2+ -0.082 -0.023 0.089 -0.076 -0.076 0.276** -0.194** -0.248** -0.062 0.218** 0.135** 0.066 0.364** -0.115*
      HCO3-- -0.538** -0.147** 0.420** -0.085 0.151** 1 0.154** 0.127* -0.181** 0.070 0.511** -0.110* 0.756** 0.379**
      DOC 0.001 0.213** 0.198** 0.005 1 0.151** 0.125* 0.009 -0.156** 0.273** 0.198** 0.111* 0.083 0.330**
      注:**. 在0.01级别(双尾),相关性显著;*. 在0.05级别(双尾),相关性显著.
      下载: 导出CSV
    • [1] Atkinson, C. A., Jolley, D. F., Simpson, S. L., 2007. Effect of Overlying Water pH, Dissolved Oxygen, Salinity and Sediment Disturbances on Metal Release and Sequestration from Metal Contaminated Marine Sediments. Chemosphere, 69(9): 1428-1437. https://doi.org/10.1016/j.chemosphere.2007.04.068
      [2] Benner, S. G., Smart, E. W., Moore, J. N., 1995. Metal Behavior during Surface-Groundwater Interaction, Silver Bow Creek, Montana. Environmental Science & Technology, 29(7): 1789-1795. https://doi.org/10.1021/es00007a015
      [3] Boano, F., Revelli, R., Ridolfi, L., 2008. Reduction of the Hyporheic Zone Volume Due to the Stream-Aquifer Interaction. Geophysical Research Letters, 35(9): L09401. https://doi.org/10.1029/2008GL033554
      [4] Bryant, S. R., Sawyer, A. H., Briggs, M. A., et al., 2020. Seasonal Manganese Transport in the Hyporheic Zone of a Snowmelt-Dominated River (East River, Colorado, USA). Hydrogeology Journal, 28(4): 1323-1341. https://doi.org/10.1007/s10040-020-02146-6
      [5] Byrne, P., Binley, A., Heathwaite, A., et al., 2014. Control of River Stage on the Reactive Chemistry of the Hyporheic Zone. Hydrological Processes, 28(17): 4766-4779. https://doi.org/10.1002/hyp.9981
      [6] Cai, L., Hu, C., Chen, Z.H., et al., 2019. Distribution and Genesis of High Fe and Mn Groundwater in the Northeast of the Jianghan Plain. Hydrogeology & Engineering Geology, 46(4): 18-25(in Chinese with English abstract).
      [7] Davis, A., Atkins, D, 2001. Metal Distribution in Clark Fork River Sediments. Environmental Science & Technology, 35(17): 3501-3506. https://doi.org/10.1021/es001881c
      [8] Dong, Z. G., Zhang, L. C., Wang, C. L., et al., 2020. Progress and Problems in Understanding Sedimentary Manganese Carbonate Metallogenesis. Mineral Deposits, 39(2): 237-255. http://doi.org/10.16111/j.0258-7106.2020.02.003 (in Chinese with English abstract).
      [9] Fischer, H., Kloep, F., Wilzcek, S., et al., 2005. A River Liver: Microbial Processes within the Hyporheic Zone of a Large Lowland River. Biogeochemistry, 76(2): 349-371. https://doi.org/10.1007/s10533-005-6896-y
      [10] Froelich, P. N., Klinkhammer, G. P., Bender, M. L., et al., 1979. Early Oxidation of Organic Matter in Pelagic Sediments of the Eastern Equatorial Atlantic: Suboxic Diagenesis. Geochimica et Cosmochimica Acta, 43(7): 1075-1090. https://doi.org/10.1016/0016-7037(79)90095-4
      [11] Fuller, C. C., Harvey, J. W., 2000. Reactive Uptake of Trace Metals in the Hyporheic Zone of a Mining-Contaminated Stream, Pinal Creek, Arizona. Environmental Science & Technology, 34(7): 1150-1155. https://doi.org/10.1021/es990714d
      [12] Herndon, E. M., Havig, J. R., Singer, D. M., et al., 2018. Manganese and Iron Geochemistry in Sediments Underlying the Redox-Stratified Fayetteville Green Lake. Geochimica et Cosmochimica Acta, 231: 50-63. https://doi.org/10.1016/j.gca.2018.04.013
      [13] Hou, Q. X., Zhang, Q., Huang, G. X., et al., 2020. Elevated Manganese Concentrations in Shallow Groundwater of Various Aquifers in a Rapidly Urbanized Delta, South China. Science of the Total Environment, 701: 134777. https://doi.org/10.1016/j.scitotenv.2019.134777
      [14] Kulakov, V. V., Kondratyeva, L. M., Golubeva, Y. M., 2010. Geological and Biogeochemical Prerequisites for High Fe and Mn Contents in the Amur River Water. Russian Journal of Pacific Geology, 4(6): 510-519. https://doi.org/10.1134/S1819714010060060
      [15] Kurz, M. J., Martin, J. B., Cohen, M. J., et al., 2015. Diffusion and Seepage-Driven Element Fluxes from the Hyporheic Zone of a Karst River. Freshwater Science, 34(1): 206-211. https://doi.org/10.1086/679654
      [16] Lam, P., Kuypers, M. M. M., 2011. Microbial Nitrogen Cycling Processes in Oxygen Minimum Zones. Annual Review of Marine Science, 3(1): 317-345. https://doi.org/10.1146/annurev-marine-120709-142814
      [17] Lan, K., Liang, X., Li, J., 2020. Hydrochemical Characteristics of Groundwater of the Hanjiang Zone in the Jianghan Plain. Safety and Environmental Engineering, 27(5): 1-9, 16(in Chinese with English abstract).
      [18] Li, J., Cen, Y. Y., Li, Y., 2019. The Research Advances in the Mechanism of Manganese-Induced Neurotoxicity. Toxin Reviews, 38(1): 54-60. https://doi.org/10.1080/15569543.2018.1486859
      [19] Liang, G.L., Sun, J.C., Huang, G.X., et al., 2009. Distribution and Genesis of Manganese in Groundwater in the Pearl River Delta. Geology in China, 36: 899-906(in Chinese).
      [20] Liang, X., Zhang, J. W., Lan, K., et al., 2020. Hydrochemical Characteristics of Groundwater and Analysis of Groundwater Flow Systems in Jianghan Plain. Bulletin of Geological Science and Technology, 39(1): 21-33(in Chinese with English abstract).
      [21] Ma, T., Shen, S., Deng, Y. M., et al., 2020. Theoretical Approaches of Survey on Earth's Critical Zone in Basin: An Example from Jianghan Plain, Central Yangtze River. Earth Science, 45(12): 4498-4511(in Chinese with English abstract).
      [22] Marin, C., Tudorache, A., Moldovan, O. T., et al., 2010. Assessing the Contents of Arsenic and of some Heavy Metals in Surface Flows and in the Hyporheic Zone of the Arieş Stream Catchment Area, Romania. Carpathian Journal of Earth and Environmental Sciences, 5(1): 13-24.
      [23] Nathalie, T., Joseph, N. R., Menachem, E., 2002. The Promise of Bank Filtration. Environmental Science & Technology, 36(21): 422-428. https://doi.org/10.1021/es022441j
      [24] Packman, A. I., Brooks, N. H., 2001. Hyporheic Exchange of Solutes and Colloids with Moving Bed Forms. Water Resources Research, 37(10): 2591-2605. https://doi.org/10.1029/2001WR000477
      [25] Ren, J. F., 2017. Distribution Characteristics and Cause Analysis of Manganese Content in Groundwater of Dezhou City. Groundwater, 39(1): 37-38(in Chinese).
      [26] Singer, D. M., Jefferson, A. J., Traub, E. L., et al., 2018. Mineralogical and Geochemical Variation in Stream Sediments Impacted by Acid Mine Drainage is Related to Hydro-Geomorphic Setting. Elem Sci Anth, 6(1): 31. https://doi.org/10.1525/elementa.286
      [27] Spangler, A. H., Spangler, J. G, 2009. Groundwater Manganese and Infant Mortality Rate by County in North Carolina: an Ecological Analysis. EcoHealth, 6(4): 596-600. https://doi.org/10.1007/s10393-010-0291-4
      [28] Su, D., Su, X.S., Zhang, L. H., 2016. Redox Zonation in the Process of River Water Infiltration in the Huangjia Riverside Well Field, Shenyang City. China Environmental Science, 36(7): 2043-2050(in Chinese with English abstract).
      [29] Triska, F. J., Kennedy, V. C., Avanzino, R. J., et al., 1989. Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California: Hyporheic Processes. Ecology, 70(6): 1893-1905. https://doi.org/10.2307/1938120
      [30] Wang, L. X., 2020. Analysis of Origin of Groundwater in Jianghan Plain Based on Typical Drillings. Earth Science, 45(2): 701-710(in Chinese with English abstract).
      [31] Williams, D. D., 1993. Nutrient and Flow Vector Dynamics at the Hyporheic/Groundwater Interface and Their Effects on the Interstitial Fauna. Hydrobiologia, 251(1/2/3): 185-198. https://doi.org/10.1007/BF00007178
      [32] Winter, T. C., Harvey, J. W., Franke, O. L., et al. 1998. Ground Water and Surface Water A Single Resource. U.S. Geological Survey, 1139: 1-79.
      [33] Zeng, S. H., Cai, W. X., Zhang, Z. L., 2004. Migration and Enrichment of Manganese in Groundwater and Its Controlling Factors. Resources Environment & Engineering, (4): 39-42(in Chinese).
      [34] Zhou, S. B., Yuan, X. Z., Peng, S. C., et al., 2014. Groundwater-Surface Water Interactions in the Hyporheic Zone under Climate Change Scenarios. Environmental Science and Pollution Research, 21(24): 13943-13955. https://doi.org/10.1007/s11356-014-3255-3
      [35] Zielinski, P., Jekatierynczuk-Rudczyk, E., 2010. Dissolved Organic Matter Transformation in the Hyporheic Zone of a Small Lowland River. Oceanological and Hydrobiological Studies, 39(2): 97-103. https://doi.org/10.2478/v10009-010-0021-9
      [36] 蔡玲, 胡成, 陈植华, 等, 2019. 江汉平原东北部地区高铁锰地下水成因与分布规律. 水文地质工程地质, 46(4): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904004.htm
      [37] 董志国, 张连昌, 王长乐, 等, 2020. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题. 矿床地质, 39(2): 237-255. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002003.htm
      [38] 蓝坤, 梁杏, 李静, 2020. 江汉平原汉江带地下水水化学特征分析. 安全与环境工程, 27(5): 1-9, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202005001.htm
      [39] 梁国玲, 孙继朝, 黄冠星, 等, 2009. 珠江三角洲地区地下水锰的分布特征及其成因. 中国地质, 36: 899-906. doi: 10.3969/j.issn.1000-3657.2009.04.018
      [40] 梁杏, 张婧玮, 蓝坤, 等, 2020. 江汉平原地下水化学特征及水流系统分析. 地质科技通报, 39(1): 21-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001004.htm
      [41] 马腾, 沈帅, 邓娅敏, 等, 2020. 流域地球关键带调查理论方法: 以长江中游江汉平原为例. 地球科学, 45(12): 4498-4511. doi: 10.3799/dqkx.2020.274
      [42] 任金峰, 2017. 德州市地下水锰含量的分布特征及成因分析. 地下水, 39(1): 37-38. doi: 10.3969/j.issn.1004-1184.2017.01.012
      [43] 苏东, 苏小四, 张丽华, 等, 2016. 沈阳黄家傍河水源地河水入渗过程中氧化还原分带规律. 中国环境科学, 36(7): 2043-2050. doi: 10.3969/j.issn.1000-6923.2016.07.020
      [44] 王露霞, 梁杏, 李静, 等, 2020. 基于典型钻孔的江汉平原地下水成因分析. 地球科学, 45(2): 701-710. doi: 10.3799/dqkx.2018.363
      [45] 曾昭华, 蔡伟娣, 张志良, 2004. 地下水中锰元素的迁移富集及其控制因素. 资源环境与工程, (4): 39-42. doi: 10.3969/j.issn.1671-1211.2004.04.008
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  335
    • HTML全文浏览量:  64
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-13
    • 刊出日期:  2022-02-25

    目录

      /

      返回文章
      返回