Light Hydrocarbon Geochemical Characteristics and Geological Significance of Buried Hill Condensate Oil in Bozhong 19-6 Structural Belt
-
摘要: 为了明确渤海湾盆地渤中19-6大气田的地化特征和成因,选取研究区潜山凝析气藏7个凝析油样品进行全油色谱分析,剖析其轻烃组成特征,探讨轻烃参数在该区的地质应用.结果表明:渤中19-6凝析油的Mango轻烃参数K1和K2值相对稳定,表明研究区原油成因类型基本一致.C6~C8组成中正构烷烃具显著优势,甲基环己烷指数平均为39%;庚烷值与异庚烷值,正庚烷/甲基环己烷(F)比值较高,反映它们较高成熟度;轻烃参数计算原油生成温度为125.8~128.1 ℃,其相对偏低,可能与取样过程中凝析油的相态变化有关;2-甲基戊烷/3-甲基戊烷,2-甲基己烷/3-甲基己烷比值高,K2值低;凝析油正构烷烃摩尔浓度呈三段式分布,甲苯/正庚烷和原油蜡含量随深度而增加.结合饱和烃参数以及金刚烷参数揭示渤中19-6潜山油气为湖相腐泥Ⅱ1型母质在高成熟阶段(Ro=1.05%~1.30%)的产物,气藏形成后发生一定程度分馏造成油气组分调整.Abstract: In order to clarify the geochemical characteristics and genesis of Bozhong 19-6 gas field in Bohai Bay basin, seven condensate oil samples from buried hill condensate gas reservoir in the study area are selected to conduct the whole-oil GC-MS test, and the light hydrocarbon composition characteristics are analyzed, and the geological application of light hydrocarbon parameters in the area were discussed. The results show that the Mango light hydrocarbon parameters K1 and K2 of Bozhong19-6 condensate oil are relatively stable, indicating that the genetic types of crude oil in the study area have good consistency. The C6-C8 compound component n-alkane has significant advantages, and the average methylcyclohexane index is 39%. Heptane value, isoheptane value and the ratio of n-heptane/methylcyclohexane (F) corresponds to high maturity. According to light hydrocarbon temperature parameters, the hydrocarbon generation temperature is 125.8-128.1 ℃, lower than the actual value maybe due to the phase change of condensate during sampling. The ratio of 2MP/3MP and 2MH/3MH in condensate oil is relatively high, while the K2 value is low. The molar concentration of n-paraffins in condensate oil is distributed in three stages, and the content of toluene/n-heptane and crude oil wax increases with depth. Furthermore, combined with the saturated hydrocarbon parameters and adamantane parameters, it is revealed that the oil and gas in Bozhong 19-6 buried hill were formed in the high mature stage (Ro=1.05%-1.30%) of lacustrine sapropel type Ⅱ1, which is adjusted by fractionation.
-
Key words:
- light hydrocarbons /
- crude oil /
- organic matter input /
- maturity /
- alteration /
- Bozhong sag /
- hydrocarbon
-
图 5 渤中19-6太古界原油Pr/nC17和Ph/nC18关系图(据吴小奇等, 2019修改)(a)与Pr/Ph和Pr/nC17和Ph/nC18三角图(底图据王铁冠等,1995)(b)
Fig. 5. Correlation diagram of Pr/nC17 and Ph/nC18 of Archaean crude oil from Bozhong 19-6 (a) and ternary of Pr/Ph-Pr/nC17-Ph/nC18 (b)
表 1 渤中19-6构造带凝析油C6-C8轻烃化合物组成相对含量
Table 1. Relative contents of light hydrocarbon compounds in condensate oil C6-C8 of Bozhong 19-6 structural belt
井号 层位 深度(m) C6组成(%) C7组成(%) C8组成(%) 碳环优势指数RP(%) nC6 iC6 CyC6 nC7 MCH ∑DMCP nC8 iC8 C8环 3-RP 5-RP 6-RP BZ19-6-A Ar - 45.05 18.12 36.83 46.33 39.00 14.67 40.31 22.39 37.3 22.88 13.66 63.46 BZ19-6-B Ar 3 998.65 46.19 18.39 35.43 47.23 38.65 14.12 40.87 22.47 36.66 23.05 13.13 63.83 BZ19-6-C Ar 4 499.80 45.34 18.34 36.32 47.48 38.79 13.73 41.52 22.19 36.29 22.84 12.58 64.57 BZ19-6-D Ar 3 566.00 45.23 18.69 36.08 45.28 39.46 15.26 38.47 22.34 39.19 22.89 14.88 62.24 BZ19-6-E Ar 4 817.00 43.54 19.27 37.19 44.5 40.76 14.74 40.81 22.14 37.06 22.47 13.20 64.33 BZ19-6-F Ar 5 079.00 44.85 18.68 36.47 43.76 41.68 14.56 40.68 21.74 37.58 22.07 13.17 64.76 BZ19-6-E Ar 5 500.00 44.78 17.90 37.32 44.74 40.76 14.50 40.69 22.24 37.06 22.11 13.04 64.85 注:nC6. 正己烷;iC6. 异己烷;CyC6.环己烷;nC7.正庚烷;MCH.甲基环己烷;∑DMCP.二甲基环戊烷;nC8.正辛烷;iC8.异构辛烷;C8环. 环辛烷;3-RP.异构烷烃;5-RP.环戊烃;6-RP.环己烷. 表 2 渤中19-6潜山原油部分饱和烃参数
Table 2. Partially saturated hydrocarbon parameters of Bozhong 19-6 buried hill crude oil
井号 层位 深度(m) Pr/nC17 Ph/nC18 Pr/Ph(%) Pr/nC17 (%) Ph/nC18(%) MAI MDI BZ19-6-A Ar - 0.30 0.25 70.43 16.15 13.42 0.62 0.37 BZ19-6-B Ar 3 998.65 0.27 0.22 72.64 15.13 12.24 0.62 0.35 BZ19-6-C Ar 4 499.80 0.28 0.23 71.39 15.72 12.89 0.61 0.35 BZ19-6-D Ar 3 566.00 0.34 0.25 71.19 16.53 12.28 0.61 0.34 BZ19-6-E Ar 4 817.00 0.29 0.23 72.05 15.72 12.23 0.60 0.38 BZ19-6-F Ar 5 079.00 0.31 0.24 71.21 16.24 12.55 0.61 0.38 BZ19-6-E Ar 5 500.00 0.31 0.24 71.42 16.03 12.55 0.61 0.37 注:MAI(%)=1/(1+2)-甲基单金刚烷;MDI(%)=4-甲基双金刚烷/(3+4+1)-甲基双金刚烷. 表 3 渤中19-6构造带原油成熟作用及次生作用相关参数
Table 3. The related parameters of crude oil maturation and secondary action in Bozhong 19-6 structural belt
井号 层位 深度(m) I H(%) Ctemp(℃) 2MP/3MP 2MH/3MH F Tol/nC7 BZ19-6-A Ar - 1.77 33.51 126.85 1.69 0.93 1.19 0.85 BZ19-6-B Ar 3 998.65 1.86 34.12 126.97 1.70 0.93 1.22 0.85 BZ19-6-C Ar 4 499.80 1.92 34.43 128.12 1.69 0.94 1.22 0.88 BZ19-6-D Ar 3 566.00 1.6 32.95 126.18 1.71 0.92 1.15 0.75 BZ19-6-E Ar 4 817.00 1.78 31.95 125.79 1.67 0.9 1.09 0.94 BZ19-6-F Ar 5 079.00 1.77 31.53 126.71 1.64 0.92 1.05 0.93 BZ19-6-E Ar 5 500.00 1.81 32.29 127.08 1.64 0.93 1.10 0.95 注:I为庚烷值;H为异庚烷值;F为正庚烷/甲基环己烷;Tol/nC7为苯/正庚烷. -
[1] Bement, W., Levey, R., Mango, F., 1995. The Temperature of Oil Generation as Defined with a C7 Chemistry Maturity Parameter (2, 4-DMP/2, 3-DMP Ratio). Organic Geochemistry: Development and Application to Energy, Climate, Environment and Human History, 32(1): 505-507 [2] Bray, E. E., Evans, E.D., 1961. Distribution of N-Paraffins as a Clue to Recognition of Source Beds. Geochimica et Cosmochimica Acta, 22(1): 2-15. https://doi.org/10.1016/0016-7037(61)90069-2 [3] Chen, J.H., Fu, J.M., Sheng, G.Y., et al., 1996. Diamondoid Hydrocarbon Ratios: Novel Maturity Indices for Highly Mature Crude Oils. Organic Geochemistry, 25(3/4): 179-190. https://doi.org/10.1016/S0146-6380(96)00125-8 [4] Hou, M.C., Cao, H.Y., Li, H.Y., et al., 2019. Characteristics and Controlling Factors of Deep Buried-Hill Reservoirs in the BZ19-6 Structural Belt, Bohai Sea Area. Natural Gas Industry, 39(1): 33-44(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854019300646?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Natural_Gas_Industry_B_TrendMD_1 [5] Hu, A.W., Niu, C.M., Wang, D.Y., et al., 2020. The Characteristics and Formation Mechanism of Condensate Oil and Gas in Bozhong19-6 Structure, Bozhong Sag, Bohai Bay Basin. Acta Petrolei Sinica, 41(4): 403-411(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB202004005.htm [6] Hu, G.Y., Li, J., Li, J., et al., 2007. Investigate the Causes of Subconsciousness Indicators of Light Hydrocarbon Gas. Science in China (Series D), 37(S2): 111-117(in Chinese). [7] Hu, G.Y., Peng, W.L., Yu, C., 2017. Insight into the C8 Light Hydrocarbon Compositional Differences between Coal-Derived and Oil-Associated Gases. Journal of Natural Gas Geoscience, 2(3): 157-163. https://doi.org/10.1016/j.jnggs.2017.08.001 [8] Hu, G.Y., Wang, W.S., Liao, F.R., 2012. Geochemical Characteristics and Its Influencing Factors of Light Hydrocarbon in Coal-Derived Gas: A Case Study of Sichuan Basin. Acta Petrologica Sinica, 28(3): 905-916(in Chinese with English abstract). http://www.oalib.com/paper/1475495 [9] Hu, T.L., Ge, B.X., Zhang, Y.G., et al., 1990. The Development and Application of Fingerprint Parameters for Hydrocarbons Absorbed by Source Rocks and Light Hydrocarbons in Natural Gas. Petroleum Geology & Expeximent, 12(4): 375-394, 450(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD199004004.htm [10] Huang, G.H., Li, B., Xu, Y.D., et al., 2010. The Distributing Characteristics of Mole Concentration of n-Alkanes in Crude Oil in the Northern Tarim Basin and Its Geochemistry Meanings. Journal of Oil and Gas Technology, 32(3): 13-17, 37(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX201003005.htm [11] Kissin, Y. V., 1987. Catagenesis and Composition of Petroleum: Origin of n-Alkanes and Isoalkanes in Petroleum Crudes. Geochimica et Cosmochimica Acta, 51(9): 2445-2457. https://doi.org/10.1016/0016-7037(87)90296-1 [12] Leythaeuser, D., Schaefer, R.G., Weiner, B., 1979. Generation of Low Molecular Weight Hydrocarbons from Organic Matter in Source Beds as a Function of Temperature and Facies. Chemical Geology, 25(1/2): 95-108. https://doi.org/10.1016/0009-2541(79)90086-X [13] Mango, F.D., 1987. An Invariance in the Isoheptanes of Petroleum. Science, 237(4814): 514-517. https://doi.org/10.1126/science.237.4814.514 [14] Mango, F.D., 1994. The Origin of Light Hydrocarbons in Petroleum: Ring Preference in the Closure of Carbocyclic Rings. Geochimica et Cosmochimica Acta, 58(2): 895-901. https://doi.org/10.1016/0016-7037(94)90513-4 [15] Mango, F.D., 1990. The Origin of Light Cycloalkanes in Petroleum. Geochimica et Cosmochimica Acta, 54(1): 23-27. https://doi.org/10.1016/0016-7037(90)90191-M [16] Mango, F. D., 1997. The Light Hydrocarbons in Petroleum: A Critical Review. Organic Geochemistry, 26(7/8): 417-440. https://doi.org/10.1016/S0146-6380(97)00031-4 [17] Meng, Q., Wang, X.F., Wang, X.Z., et al., 2018. Biodegradation of Light Hydrocarbon(C5-C8) in Shale Gases from the Triassic Yanchang Formation, Ordos Basin, China. Journal of Natural Gas Science and Engineering, 51: 183-194. https://doi.org/10.1016/j.jngse.2018.01.002 [18] Peng, W.L., Hu, G.Y., Wang, Y.W., et al., 2018. Geochemical Characteristics of Light Hydrocarbons and Their Influencing Factors in Natural Gases of the Kuqa Depression, Tarim Basin, NW China. Geological Journal, 53(6): 2863-2873. https://doi.org/10.1002/gj.3125 [19] Qin, J.Z., Qian, Z.H., Cao, Y., et al., 2005. New Techniques in Oil and Gas Geochemical Exploration. Petroleum Geology & Experiment, 27(5): 519-528(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200505015.htm [20] Ren, Y.J., Lü, L., Liu, S., et al., 2014. Geochemical Characteristics of Light Hydrocarbons in Banqiao Sag. Natural Gas Geoscience, 25(8): 1218-1225, 1274(in Chinese with English abstract). http://www.researchgate.net/publication/287475605_Geochemical_characteristics_of_light_hydrocarbons_in_Banqiao_Sag [21] Shen, P., Chen, J.F., Peng, Y.S., 1992. The Relationship between Sedimentary Environments and Characteristics of Series of Fluorene and C6 Compounds in Light Hydrocarbon. Acta Sedimentologica Sinica, 10(1): 68-75(in Chinese with English abstract). http://www.researchgate.net/publication/292380601_The_relationship_between_sedimentary_environments_and_characteristics_of_series_of_fluorene_and_C6_compounds_in_light_hydrocarbon [22] Shi, H.S., Wang, Q.B., Wang, J., et al., 2019. Discovery and Exploration Significance of Large Condensate Gas Fields in BZ19-6 Structure in Deep Bozhong Sag. China Petroleum Exploration, 24(1): 36-45(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KTSY201901006.htm [23] Snowdon, L.R., Powell, T.G., 1982. Immature Oil and Condensate: Modification of Hydrocarbon Generation Model for Terrestrial Organic Matter. AAPG Bulletin, 66(6): 755-788. https://doi.org/10.1306/03b5a313-16d1-11d7-8645000102c1865d [24] Ten Haven, H.L., 1996. Applications and Limitations of Mango's Light Hydrocarbon Parameters in Petroleum Correlation Studies. Organic Geochemistry, 24(10/11): 957-976. https://doi.org/10.1016/S0146-6380(96)00091-5 [25] Thompson, K. F. M., 1983. Classification and Thermal History of Petroleum Based on Light Hydrocarbons. Geochimica et Cosmochimica Acta, 47(2): 303-316. https://doi.org/10.1016/0016-7037(83)90143-6 [26] Thompson, K. F. M., 1987. Fractionated Aromatic Petroleums and the Generation of Gas-Condensates. Organic Geochemistry, 11(6): 573-590. https://doi.org/10.1016/0146-6380(87)90011-8 [27] Thompson, K.F.M., 1979. Light Hydrocarbons in Subsurface Sediments. Geochimica et Cosmochimica Acta, 43(5): 657-672. https://doi.org/10.1016/0016-7037(79)90251-5 [28] Walters, C. C., Isaksen, G. H., Peters, K. E., 2003. Applications of Light Hydrocarbon Molecular and Isotopic Compositions in Oil and Gas Exploration. Analytical Advances for Hydrocarbon Research, Springer US. https://doi.org/10.1007/978-1-4419-9212-3_10 [29] Wang, G.Z., Xia, Q.L., 2009. Natural Gas Distribution, Main Controls over Accumulation and Exploration Targets in Bohai Sea. China Offshore Oil and Gas, 21(1): 15-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD200901004.htm [30] Wang, P.R., Xu, G.J., Zhang, D.J., et al., 2010. Problems with Application of Heptane and Isoheptane Values as Light Hydrocarbon Parameters. Petroleum Exploration and Development, 37(1): 121-128(in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60020-1 [31] Wang, Q., Zou, H.Y., Zhou, X.H., et al., 2017. Gas Potential of Source Rocks and Origin of Natural Gases in Bohai Sea. Geological Journal of China Universities, 23(2): 304-314(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253563662.html [32] Wang, T.G., Zhong, N.N., Hou, D.J., et al., 1995. GeneticMechanism and Occurrence of Immature Hydrocarbon. Petroleum Industry Press, Beijing (in Chinese). [33] Wu, X.Q., Chen, Y.B., Liu, Q.Y., et al., 2019. Molecular Geochemical Characteristics of Source Rocks in the 5th Member of Upper Triassic Xujiahe Formation, Xinchang Gas Field, West Sichuan Depression. Earth Science, 44(3): 859-871(in Chinese with English abstract). [34] Xu, C.G., Yu, H.B., Wang, J., et al., 2019. Formation Conditions and Accumulation Characteristics of Bozhong 19-6 Large Condensate Gas Field in Offshore Bohai Bay Basin. Petroleum Exploration and Development, 46(1): 27-40. https://doi.org/10.1016/S1876-3804(19)30003-5 [35] Xue, Y.A., Li, H.Y., 2018. Large Condensate Gas Field in Deep Archean Metamorphic Buried Hill in Bohai Sea: Discovery and Geological Significance. China Offshore Oil and Gas, 30(3): 1-9(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZHSD201803001.htm [36] Xue, Y.A., Wang, Q., Niu, C.M., et al., 2020. Hydrocarbon Charging and Accumulation of BZ 19-6 Gas Condensate Field in Deep Buried Hills of Bozhong Depression, Bohai Sea. Oil & Gas Geology, 41(5): 891-902(in Chinese with English abstract). [37] Yang, L., Zhang, C.M., Li, M.J., et al., 2016. Application of Mango's Light Hydrocarbon Parameters in Dawanqi Oilfield, Tarim Basin, China. Natural Gas Geoscience, 27(8): 1524-1531(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TDKX201608019.htm [38] Zhang, Y.Z., Gan, J., Xu, X.D., et al., 2019. The Source and Natural Gas Lateral Migration Accumulation Model of Y8-1 Gas Bearing Structure, East Deep Water in the Qiongdongnan Basin. Earth Science, 44(8): 2609-2618(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908006.htm [39] Zhu, Y.M., Zhang, C. M, 1999. Application of Mango's Light Hydrocarbon Parameters in Classification of Oils from Tarim Basin. Geochimica, 28(1): 26-33(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQHX901.003&dbcode=CJFD&year=1999&dflag=pdfdown [40] 侯明才, 曹海洋, 李慧勇, 等, 2019. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素. 天然气工业, 39(1): 33-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901005.htm [41] 胡安文, 牛成民, 王德英, 等, 2020. 渤海湾盆地渤中凹陷渤中19-6构造凝析油气特征与形成机制. 石油学报, 41(4): 403-411. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004005.htm [42] 胡国艺, 李剑, 李谨, 等, 2007. 判识天然气成因的轻烃指标探讨. 中国科学(D辑: 地球科学), 37(增刊2): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S2013.htm [43] 胡国艺, 汪为胜, 廖凤蓉, 2012. 煤成气轻烃地球化学特征及其影响因素: 以四川盆地须家河组为例. 岩石学报, 28(3): 905-916. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203020.htm [44] 胡惕麟, 戈葆雄, 张义纲, 等, 1990. 源岩吸附烃和天然气轻烃指纹参数的开发和应用. 石油实验地质, 12(4): 375-394, 450. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199004004.htm [45] 黄光辉, 李碧, 徐阳东, 等, 2010. 塔北地区原油正构烷烃摩尔浓度分布特征及意义. 石油天然气学报, 32(3): 13-17, 37. doi: 10.3969/j.issn.1000-9752.2010.03.003 [46] 秦建中, 钱志浩, 曹寅, 等, 2005. 油气地球化学新技术新方法. 石油实验地质, 27(5): 519-528. doi: 10.3969/j.issn.1001-6112.2005.05.016 [47] 任拥军, 吕琳, 柳飒, 等, 2014. 板桥凹陷原油轻烃地球化学特征. 天然气地球科学, 25(8): 1218-1225, 1274. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201408013.htm [48] 沈平, 陈践发, 彭韵硕, 1992. 轻烃中C6族组成和芴系化合物与沉积环境的关系. 沉积学报, 10(1): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199201008.htm [49] 施和生, 王清斌, 王军, 等, 2019. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义. 中国石油勘探, 24(1): 36-45. doi: 10.3969/j.issn.1672-7703.2019.01.005 [50] 王根照, 夏庆龙, 2009. 渤海海域天然气分布特点、成藏主控因素与勘探方向. 中国海上油气, 21(1): 15-18. doi: 10.3969/j.issn.1673-1506.2009.01.003 [51] 王培荣, 徐冠军, 张大江, 等, 2010. 常用轻烃参数正、异庚烷值应用中的问题. 石油勘探与开发, 37(1): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201001021.htm [52] 王奇, 邹华耀, 周心怀, 等, 2017. 渤海海域烃源岩的生气潜力与天然气成因分析. 高校地质学报, 23(2): 304-314. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201702013.htm [53] 王铁冠, 钟宁宁, 侯读杰, 等, 1995. 低熟油气形成机理与分布. 北京: 石油工业出版社 [54] 吴小奇, 陈迎宾, 刘全有, 等, 2019. 川西坳陷新场气田须家河组五段烃源岩分子地球化学特征. 地球科学, 44(3): 859-871. doi: 10.3799/dqkx.2018.236 [55] 薛永安, 李慧勇, 2018. 渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义. 中国海上油气, 30(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201803001.htm [56] 薛永安, 王奇, 牛成民, 等, 2020. 渤海海域渤中凹陷渤中19-6深层潜山凝析气藏的充注成藏过程. 石油与天然气地质, 41(5): 891-902. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005002.htm [57] 杨禄, 张春明, 李美俊, 等, 2016. Mango轻烃参数在塔里木盆地大宛齐油田中的应用. 天然气地球科学, 27(8): 1524-1531. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201608019.htm [58] 张迎朝, 甘军, 徐新德, 等, 2019. 琼东南盆地深水东区Y8-1含气构造天然气来源及侧向运聚模式. 地球科学, 44(8): 2609-2618. doi: 10.3799/dqkx.2019.159 [59] 朱扬明, 张春明, 1999. Mango轻烃参数在塔里木原油分类中的应用. 地球化学, 28(1): 26-33. doi: 10.3321/j.issn:0379-1726.1999.01.004