Brine Temperature of Early Eocene Salt Formation Period in Kuqa Basin and Its Significance
-
摘要: 古气候和古卤水温度条件与盐湖成钾有着密切的联系,定量化重建库车盆地早始新世成盐期古卤水温度演化特征对评价盆地成钾潜力具有重要的科学意义.因此,首次以库车盆地西部QL1井下始新统石盐岩为研究对象,在详细的岩相学研究的基础上,开展石盐原生流体包裹体均一温度的定量分析工作.分析结果显示,来自钻孔不同深度的6个样品共有135个均一温度数据,介于21.2~57.8℃,平均值为31.8℃,剖面垂向上自底向顶整体上呈现一个稍微升温的趋势.本研究测定的温度范围、平均温度以及最高温度特征均与同时期特提斯海水温度数据吻合,进一步说明温度数据的可靠性和合理性.另外,高温条件有利于水体发生强烈的蒸发浓缩作用,这点与库车盆地始新世初期沉积的巨厚蒸发岩系和钾盐矿物相符.Abstract: Paleoclimate and paleobrine temperature conditions are closely related to potassium formation in salt lakes. Quantitatively reconstructing evolution characteristics of paleobrine temperature during Early Eocene salt-forming period of the Kuqa basin has important scientific significance for evaluating the potash potential of the basin. In this paper it takes Lower Eocene rock salt of core QL1 which is located in the western Kuqa basin as research object for the first time. Based on the detailed petrographic research, the test and analysis of homogenization temperature of primary fluid inclusions of halite were carried out. The analysis results show that a total of 135 homogenization temperature data were obtained from six samples with different depths of the borehole, ranging from 21.2 to 57.8℃, with an average value of 31.8℃, the profile shows a slight warming trend from bottom to top in the vertical direction. The characteristics of homogenization temperature range, average homogenization temperature, and maximum homogenization temperature measured in this paper are consistent with the temperature data of the Tethys seawater in the same period, which further indicates reliability and rationality of homogenization temperature data. In addition, the high temperature condition is conducive to strong evaporation and concentration of water bodies, which is in good agreement with the thick evaporite series and potassium minerals deposited in the Early Eocene of the Kuqa basin.
-
Key words:
- brine temperature /
- halite fluid inclusion /
- Early Eocene /
- Kuqa basin /
- Tethys realm /
- environmental geology
-
图 1 库车盆地简要地质图(Xu et al., 2019)
Fig. 1. Simplified geological map of the Kuqa basin (Xu et al., 2019)
表 1 库车盆地QL1井下始新统石盐原生流体包裹体Th(℃)
Table 1. Homogenization temperatures (℃) of Lower Eocene halite primary fluid inclusions from core QL1, Kuqa basin
序号 深度(m) Th /直径(μm) ThMAX ThMIN ThAVG ThRANGE S1 5 545 38.3 34.3 36.4 FIA 1 34.4/12; 34.5/10; 34.7/15; 36.1/16; 36.5/18; 37.2/12; 37.7/13; 38.1/15; 38.3/16 3.9 S2 5 572 52.6 22.3 31.8 FIA 1 28.2/23; 28.8/22; 28.9/22; 29.3/16; 29.5/16; 29.8/17; 29.9/15; 30.2/24; 30.6/20; 31.4/22; 31.6/22; 31.7/23; 31.7/18; 32.0/19; 4.8 FIA 2 22.3/28; 24.5/32; 24.7/30; 24.8/28; 25.1/16; 25.2/18; 25.2/17; 25.6/14; 25.8/14; 26.1/17; 26.2/18; 27.2/17; 27.3/17; 27.6/21; 27.9/22; 28.2/14; 28.4/14; 28.5/13; 28.6/13; 29.1/18; 29.1/18; 29.2/32; 29.2/34; 29.3/34 7.0 FIA 3 31.2/30; 31.6/30; 32.1/28; 32.2/26; 33.5/32; 35.4/27; 36.7/22; 37.8/23; 39.4/18; 40.5/18 9.3 FIA 4 47.2/24; 48.3/23; 48.9/23; 50.6/25; 50.8/19; 52.6/18 5.4 S3 5 596 32.7 24.2 28.8 FIA 1 24.2/13; 25.9/12; 26.3/13; 26.4/12; 26.7/15; 27.7/16; 28.5/14; 28.6/14 4.4 FIA 2 27.8/18; 28.1/28; 28.3/29;30.1/26; 30.2/26; 31.3/27; 31.3/24; 31.5/17; 32.4/8; 32.7/12 4.9 S4 5 612 57.8 21.2 37.3 FIA 1 21.2/10; 25.4/12; 26.7/13; 27.1/8; 27.5/7; 27.6/8; 27.8/13; 28.0/24; 28.2/18; 28.4/28 7.2 FIA 2 34.9/27; 36.8/28; 39.7/24; 41.3/15; 42.1/16; 44.6/24 9.7 FIA 3 47.3/22; 48.2/25; 50.8/26; 54.2/20; 55.9/21; 57.8/23 10.5 S5 5 638 35.8 22.4 29.2 FIA 1
FIA 222.4/14; 22.8/16; 22.8/16; 23.1/15; 28.7/15; 28.9/13; 29.3/26; 30.8/18
29.8/24; 30.4/22; 31.6/16; 32.2/18; 34.5/19; 35.1/15; 35.8/228.4
6.0S6 5 674 34.5 22.8 28.1 FIA 1 22.8/24; 23.2/28; 24.2/27; 26.2/24; 27.6/26; 28.1/28 5.3 FIA 2 27.8/32; 27.9/30; 27.9/28; 28.3/15; 28.3/17; 28.5/16 0.7 FIA 3 29.1/19; 30.4/20; 30.8/24; 32.6/19; 34.5/22 5.4 注:ThMAX代表最高均一温度,ThMIN代表最低均一温度,ThAVG代表平均均一温度,ThRANGE代表均一温度范围. -
[1] Benison, K. C., Goldstein, R. H., 1999. Permian Paleoclimate Data from Fluid Inclusions in Halite. Chemical Geology, 154(1-4): 113-132. doi: 10.1016/S0009-2541(98)00127-2 [2] Bosboom, R., Dupontnivet, G., Grothe, A., et al., 2014. Linking Tarim Basin Sea Retreat (West China) and Asian Aridification in the Late Eocene. Basin Research, 26(5): 621-640. doi: 10.1111/bre.12054 [3] Bougeois, L., Rafélis, M. D., Reichart, G. J., et al., 2016. Mg/Ca in Fossil Oyster Shells as Palaeotemperature Proxy, an Example from the Palaeogene of Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 611-626. doi: 10.1016/j.palaeo.2015.09.052 [4] Cao, Y. T., Liu, C. L., Yang, H. J., et al., 2010. Identification and Correlation of the Paleogene and Neogene Evaporites Sedimentary Cycles in Kuqa Basin, Xinjiang. Journal of Palaeogeography, 12(1): 31-41 (in Chinese with English abstract). [5] Carrapa, B., De Celles, P. G., Wang, X., et al., 2015. Tectono-Climatic Implications of Eocene Paratethys Regression in the Tajik Basin of Central Asia. Earth and Planetary Science Letters, 424: 168-178. doi: 10.1016/j.epsl.2015.05.034 [6] Chen, X., Chen, H., Lin, X., et al., 2018. Arcuate Pamir in the Paleogene? Insights from a Review of Stratigraphy and Sedimentology of the Basin Fills in the Foreland of NE Chinese Pamir, Western Tarim Basin. Earth-Science Reviews, 180: 1-16. doi: 10.1016/j.earscirev.2018.03.003 [7] Goldstein, R. H., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM Society for Sedimentary Geology, Tulsa, 31. [8] Hao, Y. C., 1982. Late Cretaceous and Tertiary Strata and Foraminifera in Western Talimu Basin. Earth Science, 2: 119-146 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DQKX198202006&dbcode=CJFD&year=1982&dflag=pdfdown [9] Huang, F., Xu, J. F., Wang, B. D., et al., 2020. Density of Neo-Tethyan Lithosphere during India-Asia Collision. Earth Science, 45(8): 2785-2804 (in Chinese with English abstract). [10] Huyghe, D., Lartaud, F., Emmanuel, L., et al., 2015. Palaeogene Climate Evolution in the Paris Basin from Oxygen Stable Isotope (δ18O) Compositions of Marine Molluscs. Journal of the Geological Society, 172(5): 576-587. doi: 10.1144/jgs2015-016 [11] Inglis, G. N., Farnsworth, A., Lunt, D., et al., 2015. Descent toward the Icehouse: Eocene Sea Surface Cooling Inferred from GDGT Distributions. Paleoceanography and Paleoclimatology, 30(7): 1000-1020. http://adsabs.harvard.edu/abs/2015PalOc..30.1000I [12] Li, Z., Wang, Q. C., Wang, D. X., et al., 2003. Depositional Record Constraints on Late Cenozoic Uplift of Tianshan and Tectonic Transformation in Kuqa Depression, West China. Acta Sedimentologica Sinica, 21(1): 38-45 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200301006.htm [13] Liu, C.L., Chen, Y.Z., Chen, W.S., et al., 2006. Studies of Fluid Inclusions in Glauberite of Middle-Upper Pleistocene Strata and Their Paleoclimatic Significance in Lop Nur Salty Lake, Xinjiang, NW China. Acta Mineralogica Sinica, 26(1): 93-98 (in Chinese with English abstract). [14] Liu, C. L., Jiao, P. C., Xuan, Z. Q., et al., 2013. Research Progress of Potash Minerals in Paleogene Evaporites in Kuqa Basin. Geological Review, 59(2): 233-234 (in Chinese with English abstract). [15] Liu, C.L., Xuan, Z.Q., Cao, Y.T., et al., 2015. Research on Potash Exploration at China Land Mass-Potash Alteration and Pattern of Eastern Tethys Ocean, China. Geology of Chemical Minerals, 37(4): 193-197 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HGKC201504001.htm [16] Liu, Q., Chen, Y. H., Li, Y. C., et al., 1987. Meso-Cenozoic Terrigenous Clastic Rock-Chemical Rock Salt Deposits in China. Beijing Science and Technology Press, Beijing, 15-17 (in Chinese). [17] Liu, X.Q., Ni, P., Dong, H.L., et al., 2007. Homogenization Temperature and Its Significance for Primary Fluid Inclusion in Halite Formed in Chaka Salt Lake, Qardam Basin. Acta Petrologica Sinica, 23(1): 113-116 (in Chinese with English abstract). http://www.ysxb.ac.cn/cjstp/ch/reader/create_pdf.aspx?file_no=20070113&flag=1&journal_id=cjstp [18] Losey, A. B., Benison, K. C., 2000. Silurian Paleoclimate Data from Fluid Inclusions in the Salina Group Halite Michigan Basin. Carbonates Evaporites, 15: 28-36. doi: 10.1007/BF03175646 [19] Lowenstein, T. K., Li, J. R., Brown, C. B., 1998. Paleotemperatures from Fluid Inclusions in Halite: Method Verification and a 100, 000 Year Paleotemperature Record, Death Valley, CA. Chemical Geology, 150(3-4): 223-245. doi: 10.1016/S0009-2541(98)00061-8 [20] Mcinerney, F. A., Wing, S. L., 2011. The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future. Earth and Planetary Science Letters, 39(39): 489-516. http://www.researchgate.net/profile/Cole_Pazar/post/Do_you_think_the_climate_change_has_only_to_do_with_human_society_or_is_it_also_occuring_naturally/attachment/59d651e679197b80779aa4af/AS%3A509648437301248%401498521064475/download/58+Ma+thermal+maximum.pdf [21] Nicolo, M. J., Dickens, G. R., Hollis, C. J., et al., 2007. Multiple Early Eocene Hyperthermals: Their Sedimentary Expression on the New Zealand Continental Margin and in the Deep Sea. Geology, 35(8): 699-702. doi: 10.1130/G23648A.1 [22] Pagani, M., Zachos, J. C., Freeman, K. H., et al., 2005. Marked Decline in Atmospheric Carbon Dioxide Concentrations during the Paleogene. Science, 309(5734): 600-603. doi: 10.1126/science.1110063 [23] Roberts, S. M., Spence, R. J., 1995. Paleotemperatures Preserved in Fluid Inclusions in Halite. Geochimica et Cosmochimica Acta, 59(19): 3929-3942. doi: 10.1016/0016-7037(95)00253-V [24] Roedder, E., 1984. The Fluids in Salt. American Mineralogist, 69: 413-439. http://ci.nii.ac.jp/naid/80002063184 [25] Sexton, P. F., Norris, R. D., Wilson, P. A., et al., 2011. Eocene Global Warming Events Driven by Ventilation of Oceanic Dissolved Organic Carbon. Nature, 471(7338): 349-352. doi: 10.1038/nature09826 [26] Sun, J. M., Liu, W. G., Liu, Z. H., et al., 2017. Effects of the Uplift of the Tibetan Plateau and Retreat of Neotethys Ocean on the Stepwise Aridification of Mid-Latitude Asian Interior. Bulletin of the Chinese Academy of Sciences, (9): 39-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYYX201709010.htm [27] Sun, J. M., Windley, B. F., Zhang, Z. L., et al., 2016. Diachronous Seawater Retreat from the Southwestern Margin of the Tarim Basin in the Late Eocene. Journal of Asian Earth Sciences, 116: 222-231. doi: 10.1016/j.jseaes.2015.11.020 [28] Tang, M., Cao, Y. T., Jiao, P. C., et al., 2016. Spatial Distribution on Halite in the Kuqa Depression in Paleogene and Signification of Potash Survey. Geology of Chemical Minerals, 38(3): 129-135 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGKC201603001.htm [29] Teng, Z. H., Yue, L. P., He, D. F., et al., 1997. Magnetostratigraphic Research of Cenozoic Section of Kuche River Area, South Xinjiang. Journal of Stratigraphy, 21(1): 55-62 (in Chinese with English abstract). [30] Xu, Y., Liu, C. L., Cao, Y. T., et al., 2019. Quantitative Temperature Recovery from Middle Eocene Halite Fluid Inclusions in the Easternmost Tethys Realm. International Journal of Earth Sciences, 108(1): 173-182. doi: 10.1007/s00531-018-1648-0 [31] Yin, A., Harrison, M. T., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(28): 211-280. doi: 10.1146/annurev.earth.28.1.211 [32] Zeng, Q. G., Wang, B. D., Xiluo, L. J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763 (in Chinese with English abstract). [33] Zhang, H., Liu, C. L., Zhao, Y. J., et al., 2015. Quantitative Temperature Records of Mid Cretaceous Hothouse: Evidence from Halite Fluid Inclusions. Palaeogeography, Palaeoclimatology, Palaeoecology, 437: 33-41. doi: 10.1016/j.palaeo.2015.07.022 [34] Zhang, H., Lü, F. L., Mischke, S., et al., 2017. Halite Fluid Inclusions and the Late Aptian Sea Surface Temperatures of the Congo Basin, Northern South Atlantic Ocean. Cretaceous Research, 71: 85-95. doi: 10.1016/j.cretres.2016.11.008 [35] Zhang, Y. M., He, G. Z., Wang, Z. R., 1982. Analysis of the Tertiary Salt Rock System and Potassium Fertilizer in Kuqa Basin. Northwestern Geology, 4: 44-52 (in Chinese with English abstract). [36] Zhao, Y. J., Liu, C. L., Zhang, H., et al., 2015. The Control of Paleotemperature on Potassium Salt Precipitation in Ancient Salt Lakes. Acta Petrologica Sinica, 31(9): 2751-2756 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201509022.htm [37] Zheng, H., Tada, R., Jia, J., et al., 2010. Cenozoic Sediments in the Southern Tarim Basin: Implications for the Uplift of Northern Tibet and Evolution of the Taklimakan Desert. Geological Society, London, Special Publications, 342(1): 67-78. doi: 10.1144/SP342.6 [38] Zheng, M., Meng, Z. F., 2006. Magnetostratigraphy of Tertiary System in Baicheng, Xinjiang. Acta Sedimentologica Sinica, 24(5): 650-656 (in Chinese with English abstract). [39] 曹养同, 刘成林, 杨海军, 等, 2010. 新疆库车盆地古近系-新近系蒸发岩沉积旋回识别及对比. 古地理学报, 12(1): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201001005.htm [40] 郝诒纯, 1982. 塔里木盆地西部晚白垩世-第三纪地层及有孔虫. 地球科学, 2: 119-146. https://d.wanfangdata.com.cn/conference/283239 [41] 黄丰, 许继峰, 王保弟, 等, 2020. 印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运. 地球科学. 45(8): 2785-2804. doi: 10.3799/dqkx.2020.180 [42] 李忠, 王清晨, 王道轩, 等, 2003. 晚新生代天山隆升与库车坳陷构造转换的沉积约束. 沉积学报, 21(1): 38-45. doi: 10.3969/j.issn.1000-0550.2003.01.007 [43] 刘成林, 陈永志, 陈伟十, 等, 2006. 罗布泊盐湖更新世晚期沉积钙芒硝包裹体特征及古气候意义探讨. 矿物学报, 26(1): 93-98. doi: 10.3321/j.issn:1000-4734.2006.01.017 [44] 刘成林, 焦鹏程, 宣之强, 等, 2013. 库车盆地古近系蒸发岩中钾盐矿物研究进展. 地质论评, 59(2): 233-234. doi: 10.3969/j.issn.0371-5736.2013.02.006 [45] 刘成林, 宣之强, 曹养同, 等, 2015. 探索中国陆块找钾-中国东特提斯域成钾作用及模式. 化工矿产地质, 37(4): 193-197. doi: 10.3969/j.issn.1006-5296.2015.04.001 [46] 刘群, 陈郁华, 李银彩, 等, 1987. 中国中、新生代陆源碎屑岩-化学岩型盐类沉积. 北京: 北京科学技术出版社, 15-17. [47] 刘兴起, 倪培, 董海良, 等, 2007. 内陆盐湖石盐流体包裹体均一温度指示意义的现代过程研究. 岩石学报, 23(1): 113-116. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200701015.htm [48] 孙继敏, 刘卫国, 柳中晖, 等, 2017. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响. 中国科学院院刊, (9): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201709010.htm [49] 唐敏, 曹养同, 焦鹏程, 等, 2016. 库车坳陷古近纪石盐岩空间展布及找钾意义. 化工矿产地质, 38(3): 129-135. doi: 10.3969/j.issn.1006-5296.2016.03.001 [50] 滕志宏, 岳乐平, 何登发, 等, 1997. 南疆库车河新生界剖面磁性地层研究. 地层学杂志, 21(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ701.005.htm [51] 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152 [52] 张义民, 贺光正, 王佐仁, 1982. 新疆库车盆地第三纪含盐岩系和成钾条件的分析. 西北地质, 4: 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI198204006.htm [53] 赵艳军, 刘成林, 张华, 等, 2015. 古盐湖卤水温度对钾盐沉积的控制作用探讨. 岩石学报, 31(9): 2751-2756. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201509022.htm [54] 郑民, 孟自芳, 2006. 新疆拜城古近系磁性地层划分. 沉积学报, 24(5): 650-656. doi: 10.3969/j.issn.1000-0550.2006.05.005