Tectonic Relationship between Upper and Lower Lithosphere in Guangxi Area: A Comprehension from Lithospheric Density and Magnetic Structures
-
摘要: 广西地处华南地块、印支地块与西太平洋板块的汇合部位,因特殊的构造部位,广西区内大地构造单元归属、构造单元边界等许多基础地质问题一直存在争议.自新生代以来的板块构造运动对岩石圈的改造,广西地壳与上地幔在地震波速度及温度结构方面具有显著差异.应用卫星重、磁异常数据以及区域重力和航磁资料对广西地区岩石圈密度和磁化率结构及其与上地壳构造的关系开展了研究,结果显示广西地区地壳密度和上地壳磁性结构与现今地表构造较为契合,但下地壳密度结构与上地幔存在不连续现象;此外,岩石圈磁化率结构指示中下地壳存在不同范围和程度的解耦.对广西岩石圈密度与磁性结构的解读认为,在中生代以来岩石圈被大规模改造的背景下,幔源物质上侵至上地壳的规模和范围都有限,这可能是整个广西地区上地幔结构与地壳构造不对应的主要原因.Abstract: Guangxi is located in the convergent region among South China block, Indo-Chinese block and West Pacific plate. Due to its special tectonic position, there have been disputed on several basic geological problems in Guangxi region, such as the ascription and boundaries of tectonic units. Because the lithosphere has been reconstructed by the plate tectonic movements since the Cenozoic, the crust and upper mantle beneath Guangxi area have obvious differences in seismic wave velocity and temperature structures. It employs satellite gravity and magnetic data as well as regional gravity and aeromagnetic survey data to investigate the relationship between lithospheric density and magnetic susceptibility structure and upper crust structure in Guangxi area. Results suggest that the crustal density and upper-crust susceptibility structures coincide with the surface geological structures, and the density structures of the lower crust and the upper mantle are discontinuous beneath Guangxi area. Susceptibility structure implies that different extents of mid-lower crust decoupling had caused in different parts in Guangxi area. As a result, the scale and scope of mantle-derived materials into the upper crust were limited under the background of large-scale lithospheric reconstruction since Mesozoic. It may be the main reason why the upper mantle structure in Guangxi area is not corresponding to that of the crust. The mid-lower crust decoupling results in that the magmatic activity in Guangxi area is obviously weaker than that in the surrounding area since Cretaceous, especially in the northern region of the Pingxiang-Dali fault zone.
-
Key words:
- Guangxi area /
- gravity and magnetic anomalies /
- lithosphere /
- density structure /
- magnetic structure /
- geophysics.
-
图 1 广西及邻区卫星重、磁异常及主要区域断裂构造
a.卫星(布格)重力异常;b.卫星重力异常垂直导数;c.卫星磁异常;d.广西区域断裂构造分布图(根据新版广西区域地质志:广西主要区域断裂构造简图汇编),图中红色虚线为推断深大断裂. 图中所列区域断裂分别为:①南丹-昆仑关断裂带;②凭祥-大黎断裂带;③右江断裂带;④峒中-小董断裂带;⑤宜州-柳城断裂带;⑥田林-八马隐伏断裂带;⑦博白-梧州断裂带;⑧桂林-来宾断裂带;⑨那坡断裂带;⑩灵山-藤县断裂带;⑪黑水河断裂带;⑫下雷-灵马断裂带;⑬陆川-岑溪断裂带;⑭栗木-马江断裂带;⑮上思-在妙断裂带;⑯池洞-摩天岭断裂带;⑰和睦-老堡断裂带;⑱资源-溶江断裂带
Fig. 1. Satellite gravity and magnetic anomalies and main regional faults
图 4 广西地区岩石圈不同深度的磁化率异常及估算的居里面深度(CPD数据源于Zhi et al., 2018)
图中红色线段为主要区域断裂,黑色线段为垂向切片剖面位置
Fig. 4. Magnetic susceptibility anomalies of the lithosphere in different depths and the estimated depth of Curie point depth (CPD) in Guangxi region (CPD data from Zhi et al., 2018)
图 5 反演的岩石圈磁化率异常剖面
图a~d分别为图 4i中AA',BB',CC'和DD'剖面上的磁化率异常分布
Fig. 5. Inverted magnetic susceptibility anomalies of the lithosphere in sections
-
[1] Chen, J.L., Zhang, Y., Chen, C., 2010a. Satellite Gravity Anomalies and Regional Geological Characteristics in the Guangxi Area. Progress in Geophysics, 25(4): 1233-1239 (in Chinese with English abstract). [2] Chen, J.L., Zhang, Y., Chen, C., 2010b. Satellite Magnetic Anomaly and Regional Geological Characteristics in Guangxi Area. Chinese Journal of Engineering Geophysics, 7(3): 327-332(in Chinese with English abstract). [3] Guo, F.X., 1994. Geotectonic Units of Guangxi. Journal of Guilin College of Geology, 14(3): 233-243(in Chinese with English abstract). [4] Guo, L.H., Gao, R., 2018. Potential-Field Evidence for the Tectonic Boundaries of the Central and Western Jiangnan Belt in South China. Precambrian Research, 309: 45-55. https://doi.org/10.1016/j.precamres.2017.01.028 [5] Guo, L.H., Gao, R., Shi, L., et al., 2019. Crustal Thickness and Poisson's Ratios of South China Revealed from Joint Inversion of Receiver Function and Gravity Data. Earth and Planetary Science Letters, 510: 142-152. https://doi.org/10.1016/j.epsl.2018.12.039 [6] Hu, R.G., Zhao, Y.L., Cai, Y.F., et al., 2020. Characteristics of Biotite in the Granite Porphyry and Its Significance for Petrogenesis and Mineralization of Dachang Sn-Polymetallic Ore Deposit, Guangxi. Earth Science, 45(4): 1213-1226 (in Chinese with English abstract). [7] Huang, Q.X., 2000. The Characteristics of Some Important Basic Geology in Guangxi. Guangxi Geology, 13(3): 3-12(in Chinese with English abstract). [8] Kaban, M.K., Stolk, W., Tesauro, M., et al., 2016. 3D Density Model of the Upper-Mantle of Asia Based on Inversion of Gravity and Seismic Tomography Data. Geochemistry, Geophysics, Geosystems, 17: 4457-4477. doi: 10.1002/2016GC006458 [9] Lesur, V., Hamoudi, M., Choi, Y., et al., 2016. Building the Second Version of the World Digital Magnetic Anomaly Map (WDMAM). Earth, Planets and Space, 68(1): 27. https://doi.org/10.1186/s40623-016-0404-6 [10] Liang, Q., Chen, C., Kaban, M.K., et al., 2019. Upper-Mantle Density Structure in the Philippine Sea and Adjacent Region and Its Relation to Tectonics. Geophysical Journal International, 219(2): 945-957. https://doi.org/10.1093/gji/ggz335 [11] Lin, J.H., Luo, Y.Y., Shu, G., et al., 2015. Regional Ore-Forming Regularity and Division of Minerogenetic Series in Guangxi. Mineral Deposits, 34(6): 1270-1294 (in Chinese with English abstract). [12] Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1-28, 255 (in Chinese with English abstract). [13] Schaeffer, A. J., Lebedev, S., 2013. Global Shear Speed Structure of the Upper Mantle and Transition Zone. Geophysical Journal International, 194(1): 417-449. https://doi.org/10.1093/gji/ggt095 [14] Wan, T.F., 2013. A New Asian Tectonic Unit Map. Geology in China, 40(5): 1351-1365 (in Chinese with English abstract). [15] Wang, Y., Cheng, S.H., 2012. Lithospheric Thermal Structure and Rheology of the Eastern China. Journal of Asian Earth Sciences, 47: 51-63 doi: 10.1016/j.jseaes.2011.11.022 [16] Xin, H.L., Zhang, H.J., Kang, M., et al., 2019. High-Resolution Lithospheric Velocity Structure of Continental China by Double-Difference Seismic Travel-Time Tomography. Seismological Research Letters, 90(1): 229-241. https://doi.org/10.1785/0220180209 [17] Xu, H.Z., 2001. Satellite Gravity Missions—New Hotpoint in Geodesy. Developments in Surveying and Mapping, 26(3): 1-3 (in Chinese with English abstract). [18] Xu, X.B., Liang, C.H., Chen, J.J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of the Nanling Tectonic Belt. Earth Sciences, 1-26[2021-03-25]. http://kns.cnki.net/kcms/detail/42.1874.P.20200617.1745.006.html (in Chinese with English abstract). [19] Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2011. On the Tectonics of the India-Asia Collision. Acta Geologica Sinica, 85(1): 1-33 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2011.00375.x [20] Yang, M.G., Huang, S.B., Lou, F.S., et al., 2009. Lithospheric Structure and Large-Scale Metallogenic Process in Southeast China Continental Area. Geology in China, 36(3): 528-543 (in Chinese with English abstract). [21] Yang, X.Y., Li, Y.H., 2021. Crustal Thicknesses and VP/VS Ratios beneath South China Estimated from Receiver Function Analysis and Their Geological Implications. Chinese Journal of Geophysics, 64(1): 146-156(in Chinese with English abstract). [22] Yuan, Y.S., Ma, Y.S., Hu, S.B., et al., 2006. Present-Day Geothermal Characteristics in South China. Chinese Journal of Geophysics, 49(4): 1118-1126(in Chinese with English abstract). [23] Zhang, C.D., 2003. Deduction of Magnetic Characteristics of Lithosphere in China from Results on Satellite and Aeromagnetic Measurements. Progress in Geophysics, 18(1): 103-110 (in Chinese with English abstract). [24] Zhi, J.L., Liang, Q., Liu, Y.M., et al., 2018. Curie Point Depth Estimates Based on Spectrum Analysis from Aeromagnetic Data in Guangxi Province, China SEG Technical Program Expanded Abstracts 2018. Anaheim, California. Society of Exploration Geophysicists, 14-19. https://doi.org/10.1190/segam2018-2998449.1 [25] Zhang, R.F., Liu, B.S., Luo, S.W., et al., 2017. Discussion of Tectonic Problem in the West and South of Guangxi. Mineral Resources and Geology, 31(1): 69-74 (in Chinese with English abstract). [26] 陈家联, 张毅, 陈超, 2010a. 广西地区卫星重力异常与区域地质特征. 地球物理学进展, 25(4): 1233-1239. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201004012.htm [27] 陈家联, 张毅, 陈超, 2010b. 广西地区卫星磁异常与区域地质特征. 工程地球物理学报, 7(3): 327-332. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201003014.htm [28] 郭福祥, 1994. 广西大地构造单元. 桂林冶金地质学院学报, 14(3): 233-243. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX403.003.htm [29] 胡荣国, 赵义来, 蔡永丰, 等, 2020. 广西大厂花岗斑岩黑云母成分特征及其成岩成矿意义. 地球科学, 45(4): 1213-1226. doi: 10.3799/dqkx.2019.130 [30] 黄启勋, 2000. 广西若干重大基础地质特征. 广西地质, 13(3): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ200003001.htm [31] 林建辉, 罗允义, 树皋, 等, 2015. 广西区域成矿规律综述及成矿系列划分. 矿床地质, 34(6): 1270-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201506014.htm [32] 潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-28, 255. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901004.htm [33] 万天丰, 2013. 新编亚洲大地构造区划图. 中国地质, 40(5): 1351-1365. doi: 10.3969/j.issn.1000-3657.2013.05.002 [34] 许厚泽, 2001. 卫星重力研究: 21世纪大地测量研究的新热点. 测绘科学, 26(3): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200103000.htm [35] 徐先兵, 梁承华, 陈家驹, 等, 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学: 1-26[2021-03-25]. http://kns.cnki.net/kcms/detail/42.1874.P.20200617.1745.006.html [36] 许志琴, 杨经绥, 李海兵, 等, 2011. 印度-亚洲碰撞大地构造. 地质学报, 85(1): 1-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101001.htm [37] 杨明桂, 黄水保, 楼法生, 等, 2009. 中国东南陆区岩石圈结构与大规模成矿作用. 中国地质, 36(3): 528-543. doi: 10.3969/j.issn.1000-3657.2009.03.004 [38] 杨晓瑜, 李永华, 2021. 中国华南地区地壳厚度与波速比分布特征及其地质意义. 地球物理学报, 64(1): 146-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202101010.htm [39] 袁玉松, 马永生, 胡圣标, 等, 2006. 中国南方现今地热特征. 地球物理学报, 49(4): 1118-1126. doi: 10.3321/j.issn:0001-5733.2006.04.025 [40] 张昌达, 2003. 由卫星和航空磁测成果推断中国岩石圈的磁性特征. 地球物理学进展, 18(1): 103-110. doi: 10.3969/j.issn.1004-2903.2003.01.017 [41] 张如放, 刘炳胜, 罗寿文, 等, 2017. 桂西、桂南地区大地构造问题探讨. 矿产与地质, 31(1): 69-74. doi: 10.3969/j.issn.1001-5663.2017.01.011