Miocene Tidal Control System and Its Exploration Significance of Lithologic Trap in Yangjiang Sag, Pearl River Mouth Basin
-
摘要: 阳江凹陷作为珠江口盆地西北部浅水边缘盆地珠三坳陷内次级负向构造单元,具有周缘隆起带及局部凸起障壁环境,中新世时期(19.1~13.8 Ma)阳江-一统断裂带两侧火山活动发育,研究区发育港湾状地貌限定下半封闭潮控海岸-河口湾背景.珠三坳陷勘探成熟的多为构造圈闭,而对于岩性圈闭的识别刻画研究尚处在起步阶段,其中阳江凹陷已发现6个含油构造,并部署19口钻井,具有良好的资料基础,中新统缺乏岩性潜力系统研究认识,地层岩性圈闭搜索、排序及优选亟待开展.应用钻测井资料、岩心资料和新采集三维地震资料,基于区域构造-火山活动背景,在高精度层序格架搭建和沉积充填序列框架上,聚焦于阳江凹陷潮控体系沉积特征、沉积相展布及演化规律,进而解剖潮控体系下潮汐砂坝的识别标志、分布规律及岩性圈闭发育特征.研究表明:阳江东凹中新统发育潮控河口湾-潮控三角洲沉积体系,有利岩性圈闭叠合区恩平2-8构造储集砂体为潮汐砂坝,对于珠江口盆地浅水区域潮控体系及岩性圈闭预测具重要理论与勘探意义,并为其他浅水边缘盆地岩性圈闭研究提供了参考借鉴.Abstract: Yangjiang sag, as a secondary negative structural unit in Zhu Ⅲ depression, a shallow water marginal basin in the northwest of Pearl River Mouth Basin, has peripheral apophysis belt and local uplift barrier environment. Volcanic activities developed on both sides of Yangjiang-Yitong fault zone during Miocene (19.1-13.8 Ma), developing the background of the semi-closed tidal-controlled coastal-estuary restricted by the harbour geomorphology in the study area. Most of the mature explorations in Zhu Ⅲ depression are structural traps, but the research on the identification and characterization of lithologic traps is still in its infancy. Six oil-bearing structures were found in Yangjiang sag, and 19 wells were deployed, which has a good data base. There is a lack of systematic study on lithologic potential in Miocene series, meanwhile, the search, sorting and optimization of stratigraphic lithologic traps have not been carried out urgently. Moreover, the favorable oil accumulation zones are unknown. Therefore, the research and prediction significance of tidal sand dam are also major feature of this paper. Therefore, based on the regional tectonic volcanic activity background, in this paper, it focuses on the development and sedimentary characteristics of tidal control system, plane distribution and evolution law of sedimentary facies in Yangjiang sag based on the regional tectonic volcanic activity background, focusing on the development and sedimentary characteristics of tidal control system, the plane distribution and evolution of sedimentary facies, and then studies the lithosphere under the tidal control system. At the same time, it is found that several sets of reservoir sandbodies in EP20-8 traps identified in this paper are isolated tidal sand dam. The development and identification of closures, especially the predictive significance of tidal sand dam, are expected to provide reference for the identification and exploration of lithologic traps in shallow water area of Pearl River Mouth basin. It also provides a reference for the study of lithologic traps in other shallow marginal basins.
-
Key words:
- Yangjiang sag /
- Miocene series /
- tidal control system /
- tidal sand dam /
- lithologic trap /
- hydrocarbon
-
图 1 阳江凹陷区域(a)及构造位置图(b)(据杨海长等, 2011)
Fig. 1. Regional (a) and structural location (b) maps of the Yangjiang sag (modified by Yang et al., 2011)
图 2 阳江凹陷中新统古地貌图(a)及地层综合柱状图(b)(海平面变化曲线据朱锐等, 2015, 有改动)
Fig. 2. Miocene paleogeomorphologic map (a) and comprehensive stratigraphic column map (b) in the Yangjiang sag
图 3 阳江凹陷珠江组一韩江组高频层序天文响应及井一震结合(剖面位置见图 2a)
Fig. 3. The well-seismic calibration and astronomical response of high frequency sequence of Zhujiang-Hanjiang Formation in Yangiang sag
表 1 恩平2-8构造带岩性圈闭要素
Table 1. Lithologic trap elements in the Enping 2-8 structural belt
圈闭名称 层位 圈闭类型 圈闭面积时间(km2) 闭合幅度时间(ms) 高点埋深时间(ms) 最低圈闭线时间(ms) 厚度(m) 落实情况 EP2-8 ZJ21A 潮汐砂坝型 6.15 65 1 635 1 700 4~8 落实 HJ51A 9.06 35 1 385 1 420 4~8 落实 ZJ31A 12.2 90 1 685 1 775 4~8 较落实 -
[1] Bao, Y.C., Liu, Q.H., Du, X.F., et al., 2021. Division of Glutenite Lithofacies Based on the Trielement of Gravel-Matrix-Fracture. Earth Science, 46(6): 2157-2171(in Chinese with English abstract). [2] Cai, J., Lv, X. X., Jiao, W.W., et al., 2012. Internal-Wave and Internal Tide Deposits and Implications for Hydrocarbon Exploration in Deep Water. Xinjiang Petroleum Geology, 32(1): 52-57(in Chinese with English abstract). [3] Fan, C. Y., Xia, S. H., Cao, J. H., et al., 2019. Lateral Crustal Variation and Post-Rift Magmatism in the Northeastern South China Sea Determined by Wide-Angle Seismic Data. Marine Geology, 410: 70-87. https://doi.org/10.1016/j.margeo.2018.12.007 [4] Fan, C. Y., Xia, S. H., Zhao, F., et al., 2017. New Insights into the Magmatism in the Northern Margin of the South China Sea: Spatial Features and Volume of Intraplate Seamounts. Geochemistry, Geophysics, Geosystems, 18(6): 2216-2239. https://doi.org/10.1002/2016gc006792 [5] Ge, J.W., Zhu, X.M., Wu, C.B.J., et al., 2019. Sedimentary Characteristics and Genetic Difference of Braided Delta: A Case Study of Enping Formation in Lufeng Sag, Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 139-152(in Chinese with English abstract). [6] Ge, J.W., Zhu, X.M., Zhang, X.T., et al., 2018. Tectono-Sedimentation Model of the Eocene Wenchang Formation in the Lufeng Depression, Pearl River Mouth Basin. Journal of China University of Mining & Technology, 47(2): 308-322(in Chinese with English abstract). [7] Huang, C. J., Hesselbo, S. P., Hinnov, L., 2010. Astrochronology of the Late Jurassic Kimmeridge Clay (Dorset, England) and Implications for Earth System Processes. Earth and Planetary Science Letters, 289(1/2): 242-255. https://doi.org/10.1016/j.epsl.2009.11.013 [8] Lalande, C., Dunlop, K., Renaud, P. E., et al., 2020. Seasonal Variations in Downward Particle Fluxes in Norwegian Fjords. Estuarine, Coastal and Shelf Science, 241: 106811. https://doi.org/10.1016/j.ecss.2020.106811 [9] Li, C. X., Zhang, J. Q., Fan, D. D., et al., 2001. Holocene Regression and the Tidal Radial Sand Ridge System Formation in the Jiangsu Coastal Zone, East China. Marine Geology, 173(1-4): 97-120. https://doi.org/10.1016/S0025-3227(00)00169-9 [10] Li, S.L., Xu, L., Yu, X.H., et al., 2018. Marine Transgressions and Characteristics of Tide-Dominated Sedimentary Systems in the Oligocene, Xihu Sag, East China Sea Shelf Basin. Journal of Palaeogeography, 20(6): 1023-1032(in Chinese with English abstract). [11] Li, Z. Y., Liu, Q. H., Zhu, H. T., et al., 2021. Compositional Relationship between the Source-to-Sink Segments and Their Sedimentary Response to Diverse Geomorphology Types in the Intrabasinal Lower Uplift of Continental Basins. Marine and Petroleum Geology, 123: 104716. https://doi.org/10.1016/j.marpetgeo.2020.104716 [12] Liang, W., Li, X.P., 2020. Lithological Exploration and Potential in Mixed Siliciclastic-Carbonate Depositional Area of Eastern Pearl River Mouth Basin. Earth Science, 45(10): 3870-3884(in Chinese with English abstract). [13] Liu, Z. H., Huang, C. J., Algeo, T. J., et al., 2018. High-Resolution Astrochronological Record for the Paleocene-Oligocene (66-23 Ma) from the Rapidly Subsiding Bohai Bay Basin, Northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 510: 78-92. https://doi.org/10.1016/j.palaeo.2017.10.030 [14] Mao, Q.Y., Shang, K., Lü, H.T., et al., 2014. Depositional Characteristics of Tidal Deposits for Lower Member of Kepingtage Formation in Southwestern Manjiaer Depression. Fault-Block Oil and Gas Field, 21(4): 420-423(in Chinese with English abstract). [15] Mao, X.L., Xu, S.L., Liu, X.Y., 2019. Late Cenozoic High Resolution Bio-Stratigraphy and Its Bearing on Sea-Level Fluctuation in the Western Pearl River Mouth Basin. Marine Geology & Quaternary Geology, 39(3): 40-50(in Chinese with English abstract). [16] Mi, L.J., 2018. Continuous Breakthroughs on Petroleum Exploration of the Eastern South China Sea with Innovative Understanding: Review of Recent Exploration Progress. China Offshore Oil and Gas, 30(1): 1-10(in Chinese with English abstract). [17] Mi, L.J., Zhang, X.T., Pang, X., et al., 2019. Formation Mechanism and Petroleum Geology of Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 1-10(in Chinese with English abstract). [18] Nnafie, A., Wolf, T. B. J., de Swart, H. E., 2020. Tidal Sand Ridges on the Shelf: A Numerical Study of Their Natural Morphodynamic Evolution and Response to Interventions. Continental Shelf Research, 205: 104195. https://doi.org/10.1016/j.csr.2020.104195 [19] Peng, G.R., Zhang, X.T., Xu, X.M., et al., 2019. Important Discoveries and Understandings of Oil and Gas Exploration in Yangjiang Sag of the Pearl River Mouth Basin, Northern South China Sea. China Petroleum Exploration, 24(3): 267-279(in Chinese with English abstract). [20] Peng, Y., Olariu, C., Steel, R. J., 2020. Recognizing Tide- and Wave-Dominated Compound Deltaic Clinothems in the Rock Record. Geology, 48(12): 1149-1153. https://doi.org/10.1130/g47767.1 [21] Prokoph, A., Villeneuve, M., Agterberg, F. P., et al., 2001. Geochronology and Calibration of Global Milankovitch Cyclicity at the Cenomanian-Turonian Boundary. Geology, 29(6): 523. https://doi.org/10.1130/0091-7613(2001)0290523:gacogm>2.0.co;2 doi: 10.1130/0091-7613(2001)0290523:gacogm>2.0.co;2 [22] Qin, G.Q., 2002. Late Cenozoic Sequence Stratigraphy and Sea-Level Changes in Pearl River Mouth Basin, South China Sea. China Offshore Oil and Gas (Geology), 16(1): 1-10, 18(in Chinese with English abstract). [23] Shi, G.P., 1989. Subaqueous Tidal Delta of Zhujiang Basin in the Early Lower Miocene. Acta Sedimentologica Sinica, 7(1): 135-142(in Chinese with English abstract). [24] Tian, L.X., Zhang, X.T., Peng, G.R., et al., 2020. Petroleum Geological Characteristics and Main Controlling Factors of the Yangjiang Sag in Pearl River Mouth Basin. China Offshore Oil and Gas, 32(1): 13-22(in Chinese with English abstract). [25] Tong, X.G., Zhang, G.Y., Wang, Z.M., et al., 2018. Distribution and Potential of Global Oil and Gas Resources. Petroleum Exploration and Development, 45(4): 727-736(in Chinese with English abstract). [26] Trottier, A. P., Brouard, E., Lajeunesse, P., et al., 2021. The Morphosedimentary Record of Glacial to Postglacial Environmental Changes in Fjord-Lake Mékinac and Adjacent Areas (Southeastern Canadian Shield). Geomorphology, 376: 107565. https://doi.org/10.1016/j.geomorph.2020.107565 [27] Wang, Y., Zhang, Y. Z., Zou, X. Q., et al., 2012. The Sand Ridge Field of the South Yellow Sea: Origin by River-Sea Interaction. Marine Geology, 291/292/293/294: 132-146. https://doi.org/10.1016/j.margeo.2011.01.001 [28] Xie, Y.H., Gao, Y.D., 2020. Recent Domestic Exploration Progress and Direction of CNOOC. China Petroleum Exploration, 25(1): 20-30(in Chinese with English abstract). [29] Yang, H.Z., Xu, J.Y., Wu, A.J., et al., 2011. Structural Features and Impact on Hydrocarbon Accumulation in Yangjiang Sag of Zhu Ⅲ Depression. Offshore Oil, 31(2): 20-24(in Chinese with English abstract). [30] Yang, J.J., 1989. Tidal Sediment, Earthquake Sequence, Precursory Semi-Monthly Period, Tuning and Resonance. Recent Developments in World Seismology, 19(6): 11-13(in Chinese with English abstract). [31] Yin, Y., Zou, X. Q., Zhu, D. K., et al., 2008. Sedimentary Facies of the Central Part of Radial Tidal Sand Ridge System of the Eastern China Coast. Frontiers of Earth Science in China, 2(4): 408-417. https://doi.org/10.1007/s11707-008-0053-6 [32] Yu, H. B., 2012. Tide-Influenced Delta Sediment of Neogene in Huizhou Depression, Pearl River Mouth Basin. Yangtze University, Jingzhou (in Chinese with English abstract). [33] Yu, H.B., Du, J.Y., 2011. Tide-Influenced Delta Deposits of Wellblock a in Lower Zhujiang Formation of Pearl River Mouth Basin. Journal of Yangtze University (Natural Science Edition), 8(1): 64-66(in Chinese with English abstract). [34] Zhang, X. T., Du, J. Y., Ding, L., et al., 2019. Sedimentary Response of Sand Body and Formation Models of Lithologic Traps under Different Hydrodynamic Conditions. Acta Petrolei Sinica, 40(S1): 105-114 (in Chinese with English abstract). [35] Zhong, Z.H., Xu, W.X., Liu, F., et al., 2018. Sedimentary Evolution of Zhujiang Formation in Zhu Ⅲ Depression, West Pearl River Mouth Basin. Global Geology, 37(4): 1122-1136, 1166(in Chinese with English abstract). [36] Zhou, H., Huang, J.X., Feng, W.J., et al., 2020. Analysis on Formation Factors and Development Characteristics of Sand Bar in Tide-Dominated Estuaries: A Case Study Based on Qiantang River. Geological Review, 66(1): 101-112(in Chinese with English abstract). [37] Zhu, M., Chen, W.T., Du, J.Y., et al., 2019. Formation Conditions and Development Types of Neogene Lithologic Traps in Southwestern Huizhou Area, Pearl River Mouth Basin. Petroleum Geology and Recovery Efficiency, 26(6): 62-69(in Chinese with English abstract). [38] Zhu, R., Zhang, C.M., Du, J.Y., et al., 2015. Controls of Neogene Sea Level Change on Sand Bodies in the Pearl River Mouth Basin. Geological Journal of China Universities, 21(4): 685-693(in Chinese with English abstract). [39] 鲍怡晨, 刘强虎, 杜晓峰, 等, 2021. 基于砾石-基质-裂缝三元素的砂砾岩岩相划分. 地球科学, 46(6): 2157-2171. doi: 10.3799/dqkx.2020.284 [40] 蔡俊, 吕修祥, 焦伟伟, 等, 2012. 内波和内潮汐沉积对深水油气勘探的意义. 新疆石油地质, 33(1): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201201014.htm [41] 葛家旺, 朱筱敏, 吴陈冰洁, 等, 2019. 辫状河三角洲沉积特征及成因差异: 以珠江口盆地陆丰凹陷恩平组为例. 石油学报, 40(S1): 139-152. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1012.htm [42] 葛家旺, 朱筱敏, 张向涛, 等, 2018. 珠江口盆地陆丰凹陷文昌组构造-沉积演化模式. 中国矿业大学学报, 47(2): 308-322. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201802012.htm [43] 李顺利, 许磊, 于兴河, 等, 2018. 东海陆架盆地西湖凹陷渐新世海侵作用与潮控体系沉积特征. 古地理学报, 20(6): 1023-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201806010.htm [44] 梁卫, 李小平, 2020. 珠江口盆地东部碎屑岩-碳酸盐混合沉积区岩性油气藏形成地质条件与潜力. 地球科学, 45(10): 3870-3884. doi: 10.3799/dqkx.2020.174 [45] 毛庆言, 尚凯, 吕海涛, 等, 2014. 满加尔坳陷西南部柯坪塔格组下段潮汐沉积特征. 断块油气田, 21(4): 420-423. [46] 毛雪莲, 徐守立, 刘新宇, 2019. 珠江口盆地西部新近纪高分辨率生物地层及海平面变化分析. 海洋地质与第四纪地质, 39(3): 40-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201903004.htm [47] 米立军, 2018. 认识创新推动南海东部海域油气勘探不断取得突破: 南海东部海域近年主要勘探进展回顾. 中国海上油气, 30(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201801001.htm [48] 米立军, 张向涛, 庞雄, 等, 2019. 珠江口盆地形成机制与油气地质. 石油学报, 40(增刊1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1001.htm [49] 彭光荣, 张向涛, 许新明, 等, 2019. 南海北部珠江口盆地阳江凹陷油气勘探重要发现与认识. 中国石油勘探, 24(3): 267-279. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201903001.htm [50] 秦国权, 2002. 珠江口盆地新生代晚期层序地层划分和海平面变化. 中国海上油气(地质), 16(1): 1-10, 18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200201000.htm [51] 石国平, 1989. 珠江口盆地下中新早期的水下潮汐三角洲. 沉积学报, 7(1): 135-142. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198901015.htm [52] 田立新, 张向涛, 彭光荣, 等, 2020. 珠江口盆地阳江凹陷石油地质特征及成藏主控因素. 中国海上油气, 32(1): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202001002.htm [53] 童晓光, 张光亚, 王兆明, 等, 2018. 全球油气资源潜力与分布. 石油勘探与开发, 45(4): 727-736. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804020.htm [54] 谢玉洪, 高阳东, 2020. 中国海油近期国内勘探进展与勘探方向. 中国石油勘探, 25(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001003.htm [55] 杨海长, 徐建永, 武爱俊, 等, 2011. 珠三坳陷阳江凹陷构造特征及其对油气成藏的影响. 海洋石油, 31(2): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY201102006.htm [56] 杨建军, 1989. 潮控沉积·地震序列·前兆半月周期·调制与共振. 国际地震动态, 19(6): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT198906003.htm [57] 余海波, 2012. 珠江口盆地惠州地区新近系潮汐影响的三角洲沉积(博士学位论文). 荆州: 长江大学. [58] 余海波, 杜家元, 2011. 珠江口盆地A井区珠江组下段潮汐作用对三角洲沉积影响的研究. 长江大学学报(自然版), 8(1): 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201101023.htm [59] 张向涛, 杜家元, 丁琳, 等, 2019. 不同水动力机制下砂体沉积响应及岩性圈闭形成模式. 石油学报, 40(S1): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1009.htm [60] 钟泽红, 徐万兴, 刘芳, 等, 2018. 珠江口盆地西部珠三坳陷珠江组沉积演化. 世界地质, 37(4): 1122-1136, 1166. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201804013.htm [61] 周涵, 黄继新, 冯文杰, 等, 2020. 潮控河口湾砂坝发育特征及形成因素分析: 以钱塘江为例. 地质论评, 66(1): 101-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202001008.htm [62] 朱明, 陈维涛, 杜家元, 等, 2019. 珠江口盆地惠西南地区新近系岩性圈闭形成条件及发育类型. 油气地质与采收率, 26(6): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201906008.htm [63] 朱锐, 张昌民, 杜家元, 等, 2015. 珠江口盆地新近纪海平面升降过程及其对砂体的控制. 高校地质学报, 21(4): 685-693. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201504013.htm