• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海南岛西北部早古生代安山岩的识别及其大地构造意义

    周云 赵永山 杜宇晶 蔡永丰 冯佐海 刘希军 宋宏星

    周云, 赵永山, 杜宇晶, 蔡永丰, 冯佐海, 刘希军, 宋宏星, 2021. 海南岛西北部早古生代安山岩的识别及其大地构造意义. 地球科学, 46(11): 3850-3860. doi: 10.3799/dqkx.2021.012
    引用本文: 周云, 赵永山, 杜宇晶, 蔡永丰, 冯佐海, 刘希军, 宋宏星, 2021. 海南岛西北部早古生代安山岩的识别及其大地构造意义. 地球科学, 46(11): 3850-3860. doi: 10.3799/dqkx.2021.012
    Zhou Yun, Zhao Yongshan, Du Yujing, Cai Yongfeng, Feng Zuohai, Liu Xijun, Song Hongxing, 2021. Identification of Early Paleozoic Andesite in Northwestern Hainan Island and Its Geotectonic Significances. Earth Science, 46(11): 3850-3860. doi: 10.3799/dqkx.2021.012
    Citation: Zhou Yun, Zhao Yongshan, Du Yujing, Cai Yongfeng, Feng Zuohai, Liu Xijun, Song Hongxing, 2021. Identification of Early Paleozoic Andesite in Northwestern Hainan Island and Its Geotectonic Significances. Earth Science, 46(11): 3850-3860. doi: 10.3799/dqkx.2021.012

    海南岛西北部早古生代安山岩的识别及其大地构造意义

    doi: 10.3799/dqkx.2021.012
    基金项目: 

    国家自然科学基金项目 41503021

    广西自然科学基金创新研究团队项目 2020GXNSFGA297003

    详细信息
      作者简介:

      周云(1988-), 女, 副教授, 博士, 主要从事岩石地球化学研究.ORCID: 0000-0001-9688-6659.E-mail: zhouyun@glut.edu.cn

    • 中图分类号: P597

    Identification of Early Paleozoic Andesite in Northwestern Hainan Island and Its Geotectonic Significances

    • 摘要: 为阐明海南岛西北部早古生代构造演化特征,对海南岛西北部邦溪-晨星地区出露的安山岩展开了详细的岩相学和锆石U-Pb年代学分析.安山岩的主要矿物组成为斜长石、角闪石、黑云母和玻璃质.LA-ICP-MS锆石U-Pb定年结果表明,两个代表性的安山岩样品给出了452±8 Ma和453±8 Ma的形成年龄,暗示海南岛西北部存在早古生代火山作用.这些安山岩的形成时代与冈瓦纳大陆北缘各微陆块记录的早古生代岩浆活动信息相似,在时空上与金沙江-点苍山-哀牢山构造带和印支地块分布的早古生代岩浆岩具有耦合性.综合研究认为,点苍山-哀牢山、Truong Son、Tam Ky-Phuoc Son、Kontum和海南岛等地区可能发育原特提斯洋的支洋盆.

       

    • 图  1  海南岛地质简图

      Fig.  1.  Simplified geological map of Hainan Island

      图  2  海南岛西北部邦溪‒西昌安山岩野外照片(a, b, d)和显微照片(c, e)

      a.岩石表面风化较严重;b.新鲜面为斑状结构;d.块状构造;c,e.斑晶主要为斜长石和角闪石. Pl. 斜长石;Hb. 角闪石;Bt. 黑云母;Qtz. 石英

      Fig.  2.  Field photos (a, b, d) and photomicrographs (c, e) of the representative andesites from Bangxi-Xichang, northwestern Hainan Island

      图  3  海南岛西北部邦溪‒西昌安山岩锆石U-Pb年龄谐和图和代表性锆石CL图像

      Fig.  3.  Zircon U-Pb concordia diagrams and CL images of the andesites from Bangxi-Xichang, northwestern Hainan Island

      图  4  冈瓦纳大陆北缘各微陆块新元古代晚期‒早古生代岩浆活动年龄信息

      年龄数据来自Okay et al.(2008)等近百篇文献,不逐一列出

      Fig.  4.  Late Neoproterozoic-Early Paleozoic igneous rocks of different micro-continents along the northern Gondwana

      图  5  东南亚原特提斯洋构造格局简图

      改编自Nie et al.(2015)Wang et al.(2021a);年龄数据来自Guynn et al.(2012)等近百篇文献,不逐一列出

      Fig.  5.  Sketched tectonic framework of Proto-Tethys Ocean in SE Asia

      表  1  海南岛西北部邦溪-西昌安山岩锆石U-Pb同位素测试结果

      Table  1.   Zircon U-Pb dating results of the andesites from Bangxi-Xichang, northwestern Hainan Island

      点号 含量(10-6) Th/U 同位素比值 年龄(Ma)
      232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
      样品CX1621
      CX1621-01 96 424 0.23 0.090 0 0.004 5 2.991 7 0.163 4 0.238 0 0.009 6 1 428 96 1 406 42 1 376 50
      CX1621-02 201 482 0.42 0.050 8 0.003 3 0.521 3 0.033 2 0.073 9 0.002 8 232 152 426 22 459 17
      CX1621-03 117 322 0.36 0.052 3 0.003 2 0.539 5 0.033 5 0.074 5 0.002 7 298 141 438 22 463 16
      CX1621-04 206 246 0.84 0.050 4 0.004 6 0.500 6 0.044 9 0.072 2 0.002 9 213 200 412 30 449 18
      CX1621-05 223 247 0.90 0.053 9 0.004 6 0.522 5 0.053 0 0.070 3 0.003 4 369 194 427 35 438 20
      CX1621-06 364 453 0.80 0.060 8 0.003 3 0.616 1 0.034 7 0.072 9 0.002 6 632 117 487 22 453 16
      CX1621-07 183 359 0.51 0.054 4 0.003 6 0.545 1 0.036 8 0.072 4 0.002 9 391 148 442 24 451 18
      CX1621-08 243 409 0.59 0.065 2 0.003 6 0.835 4 0.045 7 0.092 4 0.003 2 789 119 617 25 570 19
      CX1621-09 626 868 0.72 0.056 9 0.003 0 0.575 7 0.031 5 0.072 6 0.002 7 487 117 462 20 452 16
      CX1621-10 162 297 0.54 0.058 6 0.003 4 0.578 4 0.035 1 0.070 6 0.002 6 550 126 463 23 440 16
      CX1621-11 162 255 0.64 0.062 3 0.006 0 0.607 9 0.058 8 0.070 7 0.002 9 683 208 482 37 440 17
      CX1621-12 283 575 0.49 0.055 2 0.002 8 0.563 2 0.028 4 0.072 6 0.002 5 420 115 454 18 452 15
      CX1621-13 400 1 356 0.30 0.087 3 0.003 9 2.889 5 0.130 9 0.236 3 0.008 0 1 369 86 1 379 34 1 367 42
      CX1621-14 73 173 0.42 0.072 3 0.004 4 2.021 6 0.114 1 0.201 9 0.008 2 994 118 1 123 38 1 186 44
      CX1621-15 230 340 0.68 0.050 7 0.003 5 0.511 9 0.037 2 0.072 5 0.002 7 233 159 420 25 451 16
      CX1621-16 87 185 0.47 0.050 6 0.004 4 0.494 1 0.040 6 0.071 4 0.003 0 233 202 408 28 444 18
      CX1621-17 222 464 0.48 0.050 5 0.002 9 0.514 3 0.029 6 0.073 5 0.002 7 217 135 421 20 457 16
      CX1621-18 186 421 0.44 0.055 3 0.003 4 0.570 3 0.036 0 0.074 8 0.002 8 433 144 458 23 465 17
      CX1621-19 590 712 0.83 0.049 6 0.002 4 0.503 0 0.024 8 0.073 9 0.003 0 176 113 414 17 460 18
      CX1621-20 487 586 0.83 0.056 3 0.002 7 0.568 4 0.029 8 0.073 4 0.002 8 461 107 457 19 456 17
      样品CX1624
      CX1624-01 318 790 0.40 0.060 3 0.002 7 0.621 5 0.028 8 0.074 7 0.002 5 613 94 491 18 464 15
      CX1624-02 65 89 0.73 0.110 9 0.006 1 4.680 6 0.253 1 0.307 7 0.011 0 1 814 100 1 764 45 1 729 54
      CX1624-03 259 392 0.66 0.064 8 0.003 6 0.672 2 0.040 5 0.074 5 0.002 6 769 112 522 25 463 16
      CX1624-04 112 179 0.63 0.092 0 0.010 4 3.188 8 0.439 2 0.245 8 0.008 6 1 533 219 1 454 107 1 417 45
      CX1624-05 725 659 1.10 0.055 9 0.003 6 0.575 9 0.037 0 0.074 2 0.002 5 456 146 462 24 461 15
      CX1624-06 45 66 0.68 0.052 4 0.013 5 0.508 4 0.117 2 0.071 3 0.004 1 306 500 417 79 444 25
      CX1624-07 74 152 0.49 0.056 7 0.004 7 0.569 0 0.044 4 0.074 2 0.002 6 480 183 457 29 461 15
      CX1624-08 90 147 0.61 0.114 8 0.005 3 5.225 1 0.248 5 0.330 0 0.010 8 1 877 84 1 857 41 1 838 52
      CX1624-09 81 230 0.35 0.055 7 0.003 9 0.560 0 0.038 2 0.073 9 0.002 6 443 157 452 25 460 16
      CX1624-10 116 163 0.72 0.053 7 0.007 9 0.513 0 0.067 5 0.070 6 0.002 9 367 294 420 45 440 18
      CX1624-11 271 730 0.37 0.053 8 0.002 7 0.533 5 0.026 0 0.072 1 0.002 6 365 108 434 17 449 16
      CX1624-12 232 674 0.34 0.056 1 0.002 8 0.539 0 0.027 1 0.069 3 0.002 3 454 109 438 18 432 14
      CX1624-13 312 476 0.66 0.058 6 0.003 2 0.585 8 0.030 8 0.073 0 0.002 4 550 119 468 20 454 15
      CX1624-14 109 323 0.34 0.057 0 0.003 0 0.582 4 0.031 9 0.074 0 0.003 0 500 121 466 20 460 18
      CX1624-15 277 292 0.95 0.055 4 0.006 6 0.534 8 0.063 2 0.069 4 0.002 9 432 267 435 42 432 17
      CX1624-16 181 149 1.21 0.095 0 0.005 1 3.417 7 0.181 0 0.257 0 0.008 7 1 528 102 1 508 42 1 475 45
      CX1624-17 230 408 0.56 0.062 6 0.004 6 0.626 0 0.041 3 0.072 9 0.002 8 694 158 494 26 454 17
      CX1624-18 187 696 0.27 0.055 2 0.003 1 0.586 5 0.032 0 0.075 5 0.002 6 420 121 469 20 469 15
      CX1624-19 135 182 0.74 0.055 7 0.004 7 0.556 2 0.044 3 0.072 3 0.002 7 439 187 449 29 450 16
      CX1624-20 40 163 0.24 0.112 9 0.005 1 5.131 5 0.233 9 0.323 6 0.010 6 1 846 83 1 841 39 1 807 52
      下载: 导出CSV
    • [1] Bureau of Geology and Mineral Resources of Guangdong Province, 1988. Regional Geology of Guangdong Province. Geological Publishing House, Beijing (in Chinese).
      [2] Cawood, P.A., Johnson, M.R.W., Nemchin, A.A., 2007. Early Palaeozoic Orogenesis along the Indian Margin of Gondwana: Tectonic Response to Gondwana Assembly. Earth and Planetary Science Letters, 255: 70-84. https://doi.org/10.1016/j.epsl.2006.12.006
      [3] Ding, H.X., Zhang, Z.M., Dong, X., et al., 2015. Cambrian Ultrapotassic Rhyolites from the Lhasa Terrane, South Tibet: Evidence for Andean-Type Magmatism along the Northern Active Margin of Gondwana. Gondwana Research, 27(4): 1616-1629. https://doi.org/10.1016/j.gr.2014.02.003
      [4] Ding, S.J., Xu, C.H., Long, W.G., et al., 2002. Tectonic Attribute and Geochronology of Meta-Volcanic Rocks, Tunchang, Hainan Island. Acta Petrologica Sinica, 18(1): 83-90 (in Chinese with English abstract).
      [5] Fergusson, C. L., Colquhoun, G. P., 1996. Early Palaeozoic Quartz Turbidite Fan and Volcaniclastic Apron, Mudgee District, Northeastern Lachlan Fold Belt, New South Wales. Australian Journal of Earth Sciences, 43(5): 497-507. https://doi.org/10.1080/08120099608728272
      [6] Gou, Q.Y., Qian, X., He, H.Y., et al., 2019. Geochronological and Geochemical Constraints on Lizhigou Middle Triassic Felsic Volcanic Rocks in Hainan and Its Tectonic Implications. Earth Science, 44(4): 1357-1370 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904022.htm
      [7] Guynn, J., Kapp, P., Gehrels, G.E., et al., 2012. U-Pb Geochronology of Basement Rocks in Central Tibet and Paleogeographic Implications. Journal of Asian Earth Sciences, 43: 23-50. https://doi.org/10.1016/j.jseaes.2011.09.003
      [8] He, H. Y., Wang, Y. J., Zhang, Y. H., et al., 2018. Fingerprints of the Paleotethyan Back-Arc Basin in Central Hainan, South China: Geochronological and Geochemical Constraints on the Carboniferous Metabasites. International Journal of Earth Sciences, 107(2): 553-570. https://doi.org/10.1007/s00531-017-1508-3
      [9] Hosseini, S.H., Sadeghian, M., Zhai, M., et al., 2015. Petrology, Geochemistry and Zircon U-Pb Dating of Band-e-Hezarchah Metabasites (NE Iran): An Evidence for Back-Arc Magmatism along the Northern Active Margin of Gondwana. Geochemistry, 75: 207-218. https://doi.org/10.1016/j.chemer.2015.02.002
      [10] Jian, P., Liu, D.Y., Kröner, A., et al., 2009. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (Ⅱ): Insights from Zircon Ages of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. Lithos, 113 (3-4): 767-784. https://doi.org/10.1016/j.lithos.2009.04.006
      [11] Li, G.J., Wang, Q.F., Huang, Y.H., et al., 2016. Petrogenesis of Middle Ordovician Peraluminous Granites in the Baoshan Block: Implications for the Early Paleozoic Tectonic Evolution along East Gondwana. Lithos, 245: 76-92. https://doi.org/10.1016/j.lithos.2015.10.012
      [12] Li, S. B., He, H. Y., Qian, X., et al., 2018a. Carboniferous Arc Setting in Central Hainan: Geochronological and Geochemical Evidences on the Andesitic and Dacitic Rocks. Journal of Earth Science, 29(2): 265-279. https://doi.org/10.1007/s12583-017-0936-0
      [13] Li, S.Z., Zhao, S.J., Liu, X., et al., 2018b. Closure of the Proto-Tethys Ocean and Early Paleozoic Amalgamation of Microcontinental Blocks in East Asia. Earth-Science Reviews, 186: 37-75. https://doi.org/10.1016/j.earscirev.2017.01.011
      [14] Li, S.Z., Zhao, S.J., Li, X.Y., et al., 2016. Proto-Tehtys Ocean in East Asia (Ⅰ): Northern and Southern Border Faults and Subduction Polarity. Acta Petrologica Sinica, 32(9): 2609-2627 (in Chinese with English abstract).
      [15] Li, X.H., Zhou, H.W., Ding, S.J., et al., 2000. Sm-Nd Isotopic Constraints on the Age of the Bangxi-Chenxing Ophiolite in Hainan Island: Implications for the Tectonic Evolution of Eastern Paleo-Tethys. Acta Petrologica Sinica, 16(3): 425-432 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98200003016
      [16] Li, Z.X., Li, X.H., Li, W.X., et al., 2008. Was Cathaysia Part of Proterozoic Laurentia? New Data from Hainan Island, South China. Terra Nova, 20(2): 154-164. https://doi.org/10.1111/j.1365-3121.2008.00802.x
      [17] Lin, Y.L., Yeh, M.W., Lee, T.Y., et al., 2013. First Evidence of the Cambrian Basement in Upper Peninsula of Thailand and Its Implication for Crustal and Tectonic Evolution of the Sibumasu Terrane. Gondwana Research, 24: 1031-1037. https://doi.org/10.1016/j.gr.2013.05.014
      [18] Liu, G.C., Sun, Z.B., Zeng, W.T., et al., 2017. The Age of Wanhe Ophiolitic Mélange from Mengku Area, Shuangjiang County, Western Yunnan Province, and Its Geological Significance. Acta Petrologica et Mineralogica, 36(2): 163-174 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201702003.htm
      [19] Liu, H.C., Xia, X.P., Lai, C.K., et al., 2018. Break-away of South China from Gondwana: Insights from the Silurian High-Nb Basalts and Associated Magmatic Rocks in the Diancangshan-Ailaoshan Fold Belt (SW China). Lithos, 318-319: 194-208. https://doi.org/10.1016/j.lithos.2018.08.014
      [20] Nie, X.M., Feng, Q.L., Qian, X., et al., 2015. Magmatic Record of Prototethyan Evolution in SW Yunnan, China: Geochemical, Zircon U-Pb Geochronological and Lu-Hf Isotopic Evidence from the Huimin Metavolcanic Rocks in the Southern Lancangjiang Zone. Gondwana Research, 28(2): 757-768. https://doi.org/10.1016/j.gr.2014.05.011
      [21] Okay, A.I., Bozkurt, E., Satır, M., et al., 2008. Defining the Southern Margin of Avalonia in the Pontides: Geochronological Data from the Late Proterozoic and Ordovician Granitoids from NW Turkey. Tectonophysics, 461(1-4): 252-264. https://doi.org/10.1016/j.tecto.2008.02.004
      [22] Peng, Z. M., Geng, Q. R., Pan, G. T., et al., 2014. Zircon SHRIMP Geochronology and Nd-Pb Isotopic Characteristics of the Meta-Basalt in the Central Part of Tibetan Plateau's Qiangtang Region. Science China Earth Sciences, 57(3): 428-438. https://doi.org/10.1007/s11430-013-4693-3
      [23] Rossetti, F., Nozaem, R., Lucci, F., et al., 2015. Tectonic Setting and Geochronology of the Cadomian (Ediacaran-Cambrian) Magmatism in Central Iran, Kuh-e-Sarhangi Region (NW Lut Block). Journal of Asian Earth Sciences, 102: 24-44. https://doi.org/10.1016/j.jseaes.2014.07.034
      [24] Sajid, M., Andersen, J., Rocholl, A., et al., 2018. U-Pb Geochronology and Petrogenesis of Peraluminous Granitoids from Northern Indian Plate in NW Pakistan: Andean Type Orogenic Signatures from the Early Paleozoic along the Northern Gondwana. Lithos, 318-319: 340-356. https://doi.org/10.1016/j.lithos.2018.08.024
      [25] von Raumer, J.F., Stampfli, G.M., 2008. The Birth of the Rheic Ocean-Early Palaeozoic Subsidence Patterns and Subsequent Tectonic Plate Scenarios. Tectonophysics, 461(1-4): 9-20. https://doi.org/10.1016/j.tecto.2008.04.012
      [26] Wang, B. D., Wang, L. Q., Pan, G. T., et al., 2013a. U-Pb Zircon Dating of Early Paleozoic Gabbro from the Nantinghe Ophiolite in the Changning-Menglian Suture Zone and Its Geological Implication. Chinese Science Bulletin, 58(8): 920-930. https://doi.org/10.1007/s11434-012-5481-8
      [27] Wang, Y.J., Xing, X.W., Cawood, P.A., et al., 2013b. Petrogenesis of Early Paleozoic Peraluminous Granite in the Sibumasu Block of SW Yunnan and Diachronous Accretionary Orogenesis along the Northern Margin of Gondwana. Lithos, 182: 67-85. https://doi.org/10.1016/j.lithos.2013.09.010
      [28] Wang, Y.J., Zhang, Y.Z., Qian, X., et al., 2021a. Early Paleozoic Accretionary Orogenesis in the Northeastern Indochina and Implications for the Paleogeography of East Gondwana: Constraints from Igneous and Sedimentary Rocks. Lithos, 382-383: 105921. https://doi.org/10.1016/j.lithos.2020.105921
      [29] Wang, Y.J., Zhang, Y.Z., Qian, X., et al., 2021b. Ordo-Silurian Assemblage in the Indochina Interior: Geochronological, Elemental, and Sr-Nd-Pb-Hf-O Isotopic Constraints of Early Paleozoic Granitoids in South Laos. Geological Society of America Bulletin, 133(1-2): 325-346. https://doi.org/10.1130/B35605.1
      [30] Wu, Z., Wang, B.D., Wang, D.B., et al., 2020. Zircon U-Pb Dating of Early Paleozoic Adakites from Nantinghe Ophiolitic Mélange in Changning-Menglian Suture Zone and Its Geological Implications. Earth Sciences, 45(8): 3003-3013 (in Chinese with English abstract).
      [31] Xie, C.F., Zhu, J.C., Ding, S.J., et al., 2006. Age and Petrogenesis of the Jianfengling Granite and Its Relationship to Metallogenesis of the Baolun Gold Deposit, Hainan Island. Acta Petrologica Sinica, 22(10): 2493-2508 (in Chinese with English abstract).
      [32] Xu, C., Wang, Y.J., Qian, X., et al., 2020. Geochronological and Geochemical Characteristics of Early Silurian S-Type Granitic Gneiss in Takengon Area of Northern Sumatra and Its Tectonic Implications. Earth Science, 45(6): 2077-2090 (in Chinese with English abstract).
      [33] Yang, X., Xu, X.H., Deng, S., et al., 2020. Proto-Tethys Tectonic Evolution from Ordovician to Devonian in Southwestern Margin of Tarim Block, NW China. Earth Science, 45(11): 4153-4175 (in Chinese with English abstract).
      [34] Yang, X.J., Jia, X.C., Xiong, C.L., et al., 2012. LA-ICP-MS Zircon U-Pb Age of Metamorphic Basic Volcanic Rock in Gongyanghe Group of Southern Gaoligong Mountain, Western Yunnan Province, and Its Geological Significance. Geological Bulletin of China, 31(2): 264-276 (in Chinese with English abstract).
      [35] Zhang, L.M., Wang, Y.J., Zhang, Y.Z., et al., 2017. Age of Paleozoic Strata in Northern Hainan Island: Constraints from the Detrital Zircon U-Pb Geochronology. Journal of Jilin University (Earth Science Edition), 47(4): 1187-1206 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201704019.htm
      [36] Zhang, Y.M., Fu, J.M., Zhao, Z.J., et al., 1998. Petrographic Characteristics and Sm-Nd Isotopic Dating of the Metamorphic Basic Volcanic Rocks in Western Part of Hainan Island. Journal of Mineralogy and Petrology, 18(1): 80-85 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS801.013.htm
      [37] Zhao, S.W., Lai, S.C., Qin, J.F., et al., 2016. Tectono-Magmatic Evolution of the Gaoligong Belt, Southeastern Margin of the Tibetan Plateau: Constraints from Granitic Gneisses and Granitoid Intrusions. Gondwana Research, 35: 238-256. https://doi.org/10.1016/j.gr.2015.05.007
      [38] Zhong, D.L., 1998. Paleotethysides in West Yunnan and Sichuan, China. Science Press, Beijing, 1-231 (in Chinese).
      [39] Zhou, Y., Liang, X.Q., Kröner, A., et al., 2015. Late Cretaceous Lithospheric Extension in SE China: Constraints from Volcanic Rocks in Hainan Island. Lithos, 232: 100-110. https://doi.org/10.1016/j.lithos.2015.06.028
      [40] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328: 290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024
      [41] 广东省地质矿产局, 1988. 广东省区域地质志. 北京: 地质出版社.
      [42] 丁式江, 许长海, 龙文国, 等, 2002. 海南屯昌变火山岩构造属性及其年代学研究. 岩石学报, 18(1): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200201008.htm
      [43] 芶琪钰, 钱鑫, 何慧莹, 等, 2019. 海南荔枝沟中三叠世酸性火山岩年代学、地球化学特征及其构造意义. 地球科学, 44(4): 1357-1370. doi: 10.3799/dqkx.2018.161
      [44] 李三忠, 赵淑娟, 李玺瑶, 等, 2016. 东亚原特提斯洋(Ⅰ): 南北边界和俯冲极性. 岩石学报, 32(9): 2609-2627. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201609002.htm
      [45] 李献华, 周汉文, 丁式江, 等, 2000. 海南岛"邦溪-晨星蛇绿岩片"的时代及其构造意义: Sm-Nd同位素制约. 岩石学报, 16(3): 425-432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200003016.htm
      [46] 刘桂春, 孙载波, 曾文涛, 等, 2017. 滇西双江县勐库地区湾河蛇绿混杂岩的形成时代、岩石地球化学特征及地质意义. 岩石矿物学杂志, 36(2): 163-174. doi: 10.3969/j.issn.1000-6524.2017.02.003
      [47] 吴喆, 王保弟, 王冬兵, 等, 2020. 昌宁-孟连缝合带南汀河早古生代埃达克岩锆石U-Pb年龄及其地质意义. 地球科学, 45(8): 3003-3013. doi: 10.3799/dqkx.2020.141
      [48] 谢才富, 朱金初, 丁式江, 等, 2006. 海南尖峰岭花岗岩体的形成时代、成因及其与抱伦金矿的关系. 岩石学报, 22(10): 2493-2508. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610009.htm
      [49] 徐畅, 王岳军, 钱鑫, 等, 2020. 苏门答腊岛北部Takengon早志留世S型花岗片麻岩年代学、地球化学特征及构造意义. 地球科学, 45(6): 2077-2090. doi: 10.3799/dqkx.2020.030
      [50] 杨鑫, 徐旭辉, 邓尚, 等, 2020. 塔里木西南大陆边缘原特提斯洋构造演化. 地球科学, 45(11): 4153-4175. doi: 10.3799/dqkx.2019.287
      [51] 杨学俊, 贾小川, 熊昌利, 等, 2012. 滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 31(2): 264-276. doi: 10.3969/j.issn.1671-2552.2012.02.009
      [52] 张立敏, 王岳军, 张玉芝, 等, 2017. 海南岛北部古生界时代: 碎屑锆石U-Pb年代学约束. 吉林大学学报(地球科学版), 47(4): 1187-1206. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201704019.htm
      [53] 张业明, 付建明, 赵子杰, 等, 1998. 海南岛西部变基性火山岩的岩石特征及Sm-Nd同位素定年. 矿物岩石, 18(1): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS801.013.htm
      [54] 钟大赉, 1998. 滇川西部古特提斯造山带. 北京: 科学出版社, 1-231.
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  574
    • HTML全文浏览量:  285
    • PDF下载量:  91
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-01-03
    • 网络出版日期:  2021-12-04
    • 刊出日期:  2021-11-30

    目录

      /

      返回文章
      返回