An Overview of Advances in Tellurium Mineralization in Telluride-Rich Gold Deposits
-
摘要: 碲(Te)属于稀散元素,是我国的战略性关键矿产资源之一,富碲化物金矿床是碲元素的重要载体.将富碲化物金矿床划分为3种成因类型,分别为造山型金矿床、浅成中-低温热液型金矿床以及与碱性岩浆岩有关的金矿床.富碲化物金矿床可以形成于岛弧、大陆边缘、弧后盆地、绿岩带等多种构造环境,常受区域性断裂构造控制,其围岩专属性不强,矿床中存在大量碲化物,与自然金和硫化物伴生产出.成矿作用常可划分为3个阶段:石英-黄铁矿阶段、石英-多金属硫化物-碲化物阶段、石英-碳酸盐阶段,其中金和碲主要在第二阶段发生沉淀富集.成矿流体一般为中-低温、中-低盐度,呈弱酸性-中性,具有较高的fTe2.富碲化物金矿床中的碲主要来源于地幔、岩浆热液和赋矿围岩.碲在流体中可以呈碲氯络合物、碲硫络合物、碲氢络合物等形式迁移,也可呈气态迁移.引起碲发生沉淀的因素主要为温度或/和压力的变化、水岩反应、流体混合、流体不混溶(沸腾)、含碲气体的冷凝以及多因素的叠加.在碲的成矿作用研究中,应重视碲化物结构和成分的微区原位分析、碲同位素分析以及热力学分析.Abstract: Tellurium (Te) belongs to dispersed elements, and is one of the strategic key mineral resources in China. Telluride-rich gold deposits are important carriers of tellurium. In this study, telluride-rich gold deposits are divided into three genetic types: orogenic gold deposits, epithermal gold deposits, and alkaline magmatic rock-related gold deposits. Telluride-rich gold deposits are developed in island arc, continental margin, back-arc basin, greenstone belt and other tectonic environments, usually restricted by regional faults. The wall rocks show a lot of varieties. Different types of tellurides coexist with natural gold and sulfides. The Au-Te mineralization process can be usually divided into three stages: quartz-pyrite stage, quartz-polymetallic sulfide-telluride stage, and quartz-carbonate stage. Gold and tellurium are mainly enriched in the second stage. The ore-forming fluids are characterized by medium-low temperature, medium-low salinity, weakly acidic to neutral, with high fTe2. Tellurium is mainly originated from the mantle, magmatic hydrothermal solutions, and host rocks. Tellurium can migrate in the form of Te-Cl, Te-S, and Te-H complexes in fluids as well as vapors. Precipitation of telluride can be resulted from the change of temperature or/and pressure, water-rock reaction, fluid mixing, fluid immiscibility (boiling), condensation of Te-bearing gases, and the superposition of multiple factors. In-situ micro-analysis of the structure and composition of tellurides, Te isotopic analysis, and thermodynamic analysis are prospective ways to study the mineralization of tellurium.
-
Key words:
- telluride-rich gold deposit /
- telluride /
- dispersed element /
- metallogenesis /
- research progress /
- mineral deposit
-
图 1 在25 ℃和300 ℃条件下,自然碲和水溶液中碲化物的pH‒氧逸度稳定范围
据Grundler et al.(2013).矿物代号:Py.黄铁矿;Po.磁黄铁矿;Mt.磁铁矿;Hm.赤铁矿
Fig. 1. Solubility of native tellurium and predominance fields of aqueous Te species as a function of pH and oxygen fugacity at 25 and 300 ℃
-
[1] Afifi, A. M., Kelly, W. C., Essene, E. J., 1988. Phase Relations among Tellurides, Sulfides, and Oxides; I, Thermochemical Data and Calculated Equilibria. Economic Geology, 83(2): 377-394. https://doi.org/10.2113/gsecongeo.83.2.377 [2] Ahmad, M., Solomon, M., Walshe, J. L., 1987. Mineralogical and Geochemical Studies of the Emperor Gold Telluride Deposit, Fiji. Economic Geology, 82(2): 345-370. https://doi.org/10.2113/gsecongeo.82.2.345 [3] Bi, S. J., Li, J. W., Zhou, M. F., et al., 2011. Gold Distribution in As-Deficient Pyrite and Telluride Mineralogy of the Yangzhaiyu Gold Deposit, Xiaoqinling District, Southern North China Craton. Mineralium Deposita, 46(8): 925-941. https://doi.org/10.1007/s00126-011-0359-2 [4] Brugger, J., Etschmann, B. E., Grundler, P. V., et al., 2012. XAS Evidence for the Stability of Polytellurides in Hydrothermal Fluids up to 599℃, 800 Bar. American Mineralogist, 97(8/9): 1519-1522. https://doi.org/10.2138/am.2012.4167 [5] Chen, C.H., Cao, Z.M., Hou, X.P., et al., 1999. The Distributive Law and Main Minerogenic Conditions of Gold-Telluride Deposits in the World. Journal of Chengdu University of Technology (Science & Technology Edition), 26(3): 241-248 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG903.007.htm [6] Chen, J.J., Leng, C.B., Xu, D.R., et al., 2020. Analytical Techniques for Tellurium Stable Isotopes and Their Geological Applications: A Review. Acta Geologica Sinica, 94(5): 1655-1663 (in Chinese with English abstract). [7] Chen, Y.C., Mao, J.W., Luo, Y.N., 1996. Geology and Geochemistry of the Dashuigou Te (Au) Deposit in Dashuigou, Sichuan Province. Atomic Energy Press, Beijing, 1-106 (in Chinese). [8] Cook, N. J., Ciobanu, C. L., Mao, J. W., 2009. Textural Control on Gold Distribution in As-Free Pyrite from the Dongping, Huangtuliang and Hougou Gold Deposits, North China Craton (Hebei Province, China). Chemical Geology, 264(1/2/3/4): 101-121. http://www.sciencedirect.com/science/article/pii/s0009254109001065 [9] Cooke, D. R., McPhail, D. C., 2001. Epithermal Au-Ag-Te Mineralization, Acupan, Baguio District, Philippines: Numerical Simulations of Mineral Deposition. Economic Geology, 96(1): 109-131. https://doi.org/10.2113/gsecongeo.96.1.109 [10] Evans, K. A., Phillips, G. N., Powell, R., 2006. Rock-Buffering of Auriferous Fluids in Altered Rocks Associated with the Golden Mile-Style Mineralization, Kalgoorlie Gold Field, Western Australia. Economic Geology, 101(4): 805-818. doi: 10.2113/gsecongeo.101.4.805 [11] Fan, H.R., Li, X. H., Zuo, Y.B., et al., 2018. In-Situ LA-(MC)-ICPMS and (Nano) SIMS Trace Elements and Sulfur Isotope Analyses on Sulfides and Application to Confine Metallogenic Process of Ore Deposit. Acta Petrologica Sinica, 34(12): 3479-3496 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201812002.htm [12] Fehr, M. A., Rehkämper, M., Halliday, A. N., 2004. Application of MC-ICPMS to the Precise Determination of Tellurium Isotope Compositions in Chondrites, Iron Meteorites and Sulfides. International Journal of Mass Spectrometry, 232(1): 83-94. doi: 10.1016/j.ijms.2003.11.006 [13] Fornadel, A. P., Spry, P. G., Haghnegahdar, M. A., et al., 2017. Stable Te Isotope Fractionation in Tellurium-Bearing Minerals from Precious Metal Hydrothermal Ore Deposits. Geochimica et Cosmochimica Acta, 202: 215-230. https://doi.org/10.1016/j.gca.2016.12.025 [14] Fornadel, A. P., Spry, P. G., Jackson, S. E., 2019. Geological Controls on the Stable Tellurium Isotope Variation in Tellurides and Native Tellurium from Epithermal and Orogenic Gold Deposits: Application to the Emperor Gold-Telluride Deposit, Fiji. Ore Geology Reviews, 113: 103076. https://doi.org/10.1016/j.oregeorev.2019.103076 [15] Fornadel, A. P., Spry, P. G., Jackson, S. E., et al., 2014. Methods for the Determination of Stable Te Isotopes of Minerals in the System Au-Ag-Te by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(4): 623-637. https://doi.org/10.1039/C3JA50237F [16] Grundler, P.V., Brugger, J., Etschmann, B.E., et al., 2013. Speciation of Aqueous Tellurium (Ⅳ) in Hydrothermal Solutions and Vapors, and the Role of Oxidized Tellurium Species in Te Transport and Gold Deposition. Geochimica et Cosmochimica Acta, 120: 298-325. https://doi.org/10.1016/j.gca.2013.06.009 [17] Guo, W., Lin, X., Hu, S.H., 2020. Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications. Earth Science, 45(4): 1362-1374 (in Chinese with English abstract). [18] Harris, C. R., Pettke, T., Heinrich, C. A., et al., 2013. Tethyan Mantle Metasomatism Creates Subduction Geochemical Signatures in Non-Arc Cu-Au-Te Mineralizing Magmas, Apuseni Mountains (Romania). Earth and Planetary Science Letters, 366: 122-136. https://doi.org/10.1016/j.epsl.2013.01.035 [19] Hu, R.Z., Wen, H.J., Su, W.C., et al., 2014. Some Advances in Ore Deposit Geochemistry in Last Decade. Bulletin of Mineralogy, Petrology and Geochemistry, 33(2): 127-144 (in Chinese with English abstract). [20] Hu, X. L., Gong, Y. J., Zeng, G. P., et al., 2018. Multistage Pyrite in the Getang Sediment-Hosted Disseminated Gold Deposit, Southwestern Guizhou Province, China: Insights from Textures and In Situ Chemical and Sulfur Isotopic Analyses. Ore Geology Reviews, 99: 1-16. https://doi.org/10.1016/j.oregeorev.2018.05.020 [21] Hu, X.L., He, M.C., Yao, S. Z., 2013a. New Understanding of the Source of Ore-Forming Material and Fluid in the Shanggong Gold Deposit, East Qinling. Acta Geologica Sinica, 87(1): 91-100 (in Chinese with English abstract). doi: 10.1111/1755-6724.12033 [22] Hu, X.L., Yao, S.Z., He, M. C., et al., 2013b. Metallogenic Thermodynamic Conditions and Ore-Forming Mechanism of Shanggong Gold Deposit, Henan Province. Journal of Central South University (Science and Technology), 44(12): 4962-4971 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=ZNGD201312027&dbcode=CJFD&year=2013&dflag=pdfdown [23] Huang, F.R., 1998. Concentration and Geochemical Behaviour of Tellurium in Guantian Pyrite Deposit. Acta Geoscientia Sinica, 19(1): 50-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB801.006.htm [24] Jiang, S.Y., Wen, H.J., Xu, C., et al., 2019. Earth Sphere Cycling and Enrichment Mechanism of Critical Metals: Major Scientific Issues for Future Research. Bulletin of National Natural Science Foundation of China, 33(2): 112-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZKJJ201902003.htm [25] Keith, M., Smith, D. J., Doyle, K., et al., 2020. Pyrite Chemistry: A New Window into Au-Te Ore-Forming Processes in Alkaline Epithermal Districts, Cripple Creek, Colorado. Geochimica et Cosmochimica Acta, 274: 172-191. https://doi.org/10.1016/j.gca.2020.01.056 [26] Kelley, K. D., Romberger, S. B., Beaty, D. W., et al., 1998. Geochemical and Geochronological Constraints on the Genesis of Au-Te Deposits at Cripple Creek, Colorado. Economic Geology, 93(7): 981-1012. https://doi.org/10.2113/gsecongeo.93.7.981 [27] Li, B.L., Zhang, H., 2010. Some Advances in the Research of Epithermal Gold Deposits. Acta Mineralogica Sinica, 30(1): 90-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201001013.htm [28] Li, J.W., Zhao, X.F., Deng, X.D., et al., 2019. An Overview of the Advance on the Study of China's Ore Deposits during the Last Seventy Years. Science in China (Series D: Earth Sciences), 49(11): 1720-1771 (in Chinese). [29] Li, L., Li, S.R., Santosh, M., et al., 2018. Early Jurassic Decratonic Gold Metallogenesis in the Eastern North China Craton: Constraints from S-Pb-C-D-O Isotopic Systematics and Pyrite Rb-Sr Geochronology of the Guilaizhuang Te-Au Deposit. Ore Geology Reviews, 92: 558-568. https://doi.org/10.1016/j.oregeorev.2017.12.009 [30] Liu, J.J., Zhai, D.G., Liu, X.H., et al., 2011. Super-Enrichment of Selenium and Tellurium in Gold Deposits: An Overview. Acta Mineralogica Sinica, 31(S1): 267-269 (in Chinese). [31] Liu, J.J., Zhai, D.G., Wang, D.Z., et al., 2020. Classification and Mineralization of the Au-(Ag)-Te-Se Deposits. Earth Science Frontiers, 27(2): 79-98 (in Chinese with English abstract). [32] Luo, Z.K., Guan, K., Wang, M.Z., et al., 1999. The Features of Telluride in Some Gold Deposits, China. Gold Geology, (3): 69-75 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJDZ199903012.htm [33] Mao, J. W., Wang, Y. T., Ding, T. P., et al., 2002. Dashuigou Tellurium Deposit in Sichuan Province, China: S, C, O, and H Isotope Data and Their Implications on Hydrothermal Mineralization. Resource Geology, 52(1): 15-23. https://doi.org/10.1111/j.1751-3928.2002.tb00113.x [34] Mao, J.W., Yuan, S.D., Xie, G.Q., et al., 2019. New Advances on Metallogenic Studies and Exploration on Critical Minerals of China in 21st Century. Mineral Deposits, 38(5): 935-969 (in Chinese with English abstract). [35] McPhail, D.C., 1995. Thermodynamic Properties of Aqueous Tellurium Species between 25℃ and 250℃. Geochimica et Cosmochimica Acta, 59(5): 851-866. https://doi.org/10.1016/0016-7037(94)00353-X [36] Mueller, A. G., Muhling, J. R., 2020. Early Pyrite and Late Telluride Mineralization in Vanadium-Rich Gold Ore from the Oroya Shoot, Paringa South Mine, Golden Mile, Kalgoorlie: 3. Ore Mineralogy, Pb-Te (Au-Ag) Melt Inclusions, and Stable Isotope Constraints on Fluid Sources. Mineralium Deposita, 55(4): 733-766. https://doi.org/10.1007/s00126-019-00876-6 [37] Pals, D. W., Spry, P. G., 2003. Telluride Mineralogy of the Low-Sulfidation Epithermal Emperor Gold Deposit, Vatukoula, Fiji. Mineralogy and Petrology, 79(3/4): 285-307. https://doi.org/10.1007/s00710-003-0013-5 [38] Pokrovski, G. S., Borisova, A. Y., Bychkov, A. Y., 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors. Reviews in Mineralogy and Geochemistry, 76(1): 165-218. https://doi.org/10.2138/rmg.2013.76.6 [39] Ren, F.G., Li, S.B., Zhao, J.N., et al., 2000. Exploring Gold Deposits in the Volcanic Rocks of the Xiong'er Group Using Tellurium (Selenium) Geochemical Information. Bulletin of Mineralogy, Petrology and Geochemisty, 19(4): 401-402 (in Chinese). [40] Ruan, L.S., 2013. The Metallogenic Regularity of Dashuigou Tellurium Deposit, Shimian, Sichuan Province and the Origination of Prospecting (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [41] Shackleton, J. M., Spry, P. G., Bateman, R., 2003. Telluride Mineralogy of the Golden Mile Deposit, Kalgoorlie, Western Australia. The Canadian Mineralogist, 41(6): 1503-1524. https://doi.org/10.2113/gscanmin.41.6.1503 [42] Simon, G., Essene, E. J., 1996. Phase Relations among Selenides, Sulfides, Tellurides, and Oxides; I, Thermodynamic Properties and Calculated Equilibria. Economic Geology, 91(7): 1183-1208. https://doi.org/10.2113/gsecongeo.91.7.1183 [43] Tombros, S., Seymour, K.S.T., Williams-Jones, A.E., et al., 2007. The Genesis of Epithermal Au-Ag-Te Mineralization, Panormos Bay, Tinos Island, Cyclades, Greece. Economic Geology, 102: 1269-1294. https://doi.org/10.2113/gsecongeo.102.7.1269 [44] Tu, G.C., 2000. A Preliminary Discussion on the Mineralization of Tellurium. Bulletin of Mineralogy, Petrology and Geochemisty, 19(4): 211-214 (in Chinese). [45] Tu, G.C., Gao, Z.M., Hu, R.Z., et al., 2004. The Geochemistry and Metallogenic Mechanism of Dispersed Elements. Geological Publishing House, Beijing, 1-288 (in Chinese). [46] Voudouris, P. C., Melfos, V., Spry, P. G., et al., 2011. Mineralogy and Geochemical Environment of Formation of the Perama Hill High-Sulfidation Epithermal Au-Ag-Te-Se Deposit, Petrota Graben, NE Greece. Mineralogy and Petrology, 103(1-4): 79-100. https://doi.org/10.1007/s00710-011-0160-z [47] Voudouris, P., Tarkian, M., Arikas, K., 2006. Mineralogy of Telluride-Bearing Epithermal Ores in the Kassiteres-Sappes Area, Western Thrace, Greece. Mineralogy and Petrology, 87(1/2): 31-52. https://doi.org/10.1007/s00710-005-0119-z [48] Wang, L., Liu, J.J., Zhu, W.B., et al., 2016. Mineral Association and Mechanism of Mineral Precipitation of Lianzigou Gold-Telluride Deposit in Xiaoqinling Gold Orefield, Shaanxi Province. Mineral Deposits, 35(3): 456-474 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201603002.htm [49] Wang, P., Jian, W., Mao, J. W., et al., 2020. Geochronology and Fluid Source Constraints of the Songligou Gold-Telluride Deposit, Western Henan Province, China: Analysis of Genetic Implications. Resource Geology, 70(2): 169-187. https://doi.org/10.1111/rge.12228 [50] Wang, Y.T., 2011. On the Geochemical Process of Mineralization of Telliurium Deposit in Dashuigou of Shimian County in Sichuan Province (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [51] Xie, H.L., Jiao, Y.Q., Liu, Z.Y., et al., 2020. Occurrence and Enrichment Mechanism of Uranium Ore Minerals from Sandstone-Type Uranium Deposit, Northern Ordos Basin. Earth Science, 45(5): 1531-1543 (in Chinese with English abstract). [52] Xu, W. G., Fan, H. R., Hu, F. F., et al., 2014. Gold Mineralization in the Guilaizhuang Deposit, Southwestern Shandong Province, China: Insights from Phase Relations among Sulfides, Tellurides, Selenides and Oxides. Ore Geology Reviews, 56: 276-291. https://doi.org/10.1016/j.oregeorev.2013.06.010 [53] Yu, X.F., Li, D.P., Li, Z.S., et al., 2019. Research on Geochemical Process of Te-Au Elements in Guilaizhuang Gold Deposit of Western Shandong. Mineral Deposits, 38(2): 277-290 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201902004.htm [54] Zhai, D.G., 2014. Geological and Geochemical Characteristics and Ore Genesis of the Sadaowanzi Gold-Telluride Deposit in Heilongjiang Province, NE China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [55] Zhai, D. G., Williams-Jones, A. E., Liu, J. J., et al., 2018. Mineralogical, Fluid Inclusion, and Multiple Isotope (H-O-S-Pb) Constraints on the Genesis of the Sandaowanzi Epithermal Au-Ag-Te Deposit, NE China. Economic Geology, 113(6): 1359-1382. https://doi.org/10.5382/econgeo.2018.4595 [56] Zhai, M.G., Wu, F.Y., Hu, R.Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, 33(2): 106-111 (in Chinese with English abstract). [57] Zhang, P. H., 2000. Geochemistry of Tellurium in the Dongping-Type Gold Deposits in Northern China (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract). [58] Zhang, X. M., Spry, P. G., 1994. Petrological, Mineralogical, Fluid Inclusion, and Stable Isotope Studies of the Gies Gold-Silver Telluride Deposit, Judith Mountains, Montana. Economic Geology, 89(3): 602-627. https://doi.org/10.2113/gsecongeo.89.3.602 [59] Zhang, Z. C., Li, Z. N., 1994. A Type of Important Gold Deposit-Tellurides. Journal of Precious Metallic Geology, 3(1): 59-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD401.006.htm [60] Zhang, Z. C., Li, Z. N., 1997. Physicochemical Conditions for the Formation of Telluride-Rich Gold Deposits as Exemplified by the Shuiquangou Gold Ore Field. Mineral Deposits, 16(1): 42-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ701.004.htm [61] Zimmer, K., Zhang, Y. L., Lu, P., et al., 2016. SUPCRTBL: A Revised and Extended Thermodynamic Dataset and Software Package of SUPCRT92. Computers & Geosciences, 90: 97-111. https://doi.org/10.1016/j.cageo.2016.02.013 [62] 陈翠华, 曹志敏, 侯秀萍, 等, 1999. 全球金-碲化物型矿床的分布规律和主要成矿条件. 成都理工大学学报(自然科学版), 26(3): 241-248. doi: 10.3969/j.issn.1671-9727.1999.03.008 [63] 陈加杰, 冷成彪, 许德如, 等, 2020. 碲同位素研究进展及其地质应用展望. 地质学报, 94(5): 1655-1663. doi: 10.3969/j.issn.0001-5717.2020.05.021 [64] 陈毓川, 毛景文, 骆耀南, 1996. 四川大水沟碲(金)矿床地质和地球化学. 北京: 原子能出版社, 1-106. [65] 范宏瑞, 李兴辉, 左亚彬, 等, 2018. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程. 岩石学报, 34(12): 3479-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm [66] 郭伟, 林贤, 胡圣虹, 2020. 单个流体包裹体LA-ICP-MS分析及应用进展. 地球科学, 45(4): 1362-1374. doi: 10.3799/dqkx.2019.199 [67] 胡瑞忠, 温汉捷, 苏文超, 等, 2014. 矿床地球化学近十年若干研究进展. 矿物岩石地球化学通报, 33(2): 127-144. doi: 10.3969/j.issn.1007-2802.2014.02.016 [68] 胡新露, 何谋惷, 姚书振, 2013a. 东秦岭上宫金矿成矿流体与成矿物质来源新认识. 地质学报, 87(1): 91-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201301009.htm [69] 胡新露, 姚书振, 何谋惷, 等, 2013b. 河南省上宫金矿成矿热力学条件及成矿机制. 中南大学学报(自然科学版), 44(12): 4962-4971. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201312027.htm [70] 黄富荣, 1998. 碲在官田黄铁矿矿床中的聚集及地球化学. 地球学报, 19(1): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB801.006.htm [71] 蒋少涌, 温汉捷, 许成, 等, 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向. 中国科学基金, 33(2): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902003.htm [72] 李碧乐, 张晗, 2010. 浅成低温热液型金矿床研究的某些进展. 矿物学报, 30(1): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201001013.htm [73] 李建威, 赵新福, 邓晓东, 等, 2019. 新中国成立以来中国矿床学研究若干重要进展. 中国科学(D辑: 地球科学), 49(11): 1720-1771. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201911003.htm [74] 刘家军, 翟德高, 刘新会, 等, 2011. 金矿床中硒、碲超常富集研究现状. 矿物学报, 31(S1): 267-269. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1136.htm [75] 刘家军, 翟德高, 王大钊, 等, 2020. Au-(Ag)-Te-Se成矿系统与成矿作用. 地学前缘, 27(2): 79-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002007.htm [76] 罗镇宽, 关康, 王曼祉, 等, 1999. 中国某些金矿床中碲化物的特征. 黄金地质, (3): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ199903012.htm [77] 毛景文, 袁顺达, 谢桂青, 等, 2019.21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质, 38(5): 935-969. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905001.htm [78] 任富根, 李双保, 赵嘉农, 等, 2000. 应用碲(硒)地球化学信息探寻熊耳群火山岩系中的金矿床. 矿物岩石地球化学通报, 19(4): 401-402. doi: 10.3969/j.issn.1007-2802.2000.04.072 [79] 阮林森, 2013. 四川石棉县大水沟碲矿床成矿规律与找矿方向(博士学位论文). 武汉: 中国地质大学. [80] 涂光炽, 2000. 初论碲的成矿问题. 矿物岩石地球化学通报, 19(4): 211-214. doi: 10.3969/j.issn.1007-2802.2000.04.001 [81] 涂光炽, 高振敏, 胡瑞忠, 等, 2004. 分散元素地球化学及成矿机制. 北京: 地质出版社, 1-288. [82] 王雷, 刘家军, 朱文兵, 等, 2016. 陕西小秦岭镰子沟碲金矿床物质组成特征及矿质沉淀机理研究. 矿床地质, 35(3): 456-474. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201603002.htm [83] 王玉婷, 2011. 四川石棉大水沟碲矿床成矿地球化学过程研究(博士学位论文). 成都: 成都理工大学. [84] 谢惠丽, 焦养泉, 刘章月, 等, 2020. 鄂尔多斯盆地北部铀矿床铀矿物赋存状态及富集机理. 地球科学, 45(5): 1531-1543. doi: 10.3799/dqkx.2019.164 [85] 于学峰, 李大鹏, 李增胜, 等, 2019. 鲁西归来庄金矿田碲金元素地球化学过程研究. 矿床地质, 38(2): 277-290. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201902004.htm [86] 翟德高, 2014. 黑龙江省三道湾子碲化物型金矿床地质地球化学特征与成矿机制(博士学位论文). 北京: 中国地质大学. [87] 翟明国, 吴福元, 胡瑞忠, 等, 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902002.htm [88] 张佩华, 2000. 东坪式金矿床碲的元素地球化学(博士学位论文). 广州: 中国科学院广州地球化学研究. [89] 张招崇, 李兆鼐, 1994. 一个值得重视的金矿类型——碲化物型. 贵金属地质, 3(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD401.006.htm [90] 张招崇, 李兆鼐, 1997. 富碲化物型金矿形成的物理化学条件——以水泉沟金矿田为例. 矿床地质, 16(1): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ701.004.htm