Basin-Scale Structure of Pu'an Pb-Zn Deposit Area, Southwest Guizhou, China
-
摘要:
贵州省普安铅锌矿区位于华南褶皱带西北缘的黔西南坳陷,矿体主要赋存在石炭系的白云质灰岩和白云岩中,构造控矿特征显著. NW-SE走向的二维地震剖面横穿了铅锌矿区,清晰地揭示了矿区的地层和NE向构造格架. 从浅层的泥盆系至深层的新元古界,共标定了3个反射层和3个反射单元,据两个重要角度不整合面,矿区呈现为双层基底、单层盖层的“2+1”盆地地层格架,为讨论黔西南的大地构造属性提供了新佐证. 矿区盆地构造格架呈现为2条主控逆冲断层夹多种构造样式的次一级逆冲断层和褶皱,对地震剖面显示的断层露头及其派生构造进行了野外观察和几何学、运动学解析,解剖了4个矿床的控矿断层,发现挤压逆冲断层活动时间与成矿年代息息相关. 基于剖面解释的构造格架,详细分析了各个构造要素在成矿过程中的作用,2条深切基底的一级断裂是来自大气降水和盆地深部的流体通道,广西运动不整合面(下称“广西面”)则是成矿流体侧向运输通道,刺穿下-中泥盆统火烘组(D1-2h)(不透水层)的盖层断裂是矿液上升至石炭系成矿的渠道;结合典型矿床的构造控矿特性,构建了普安铅锌矿区的盆地尺度构造控矿模型.
Abstract:Pu'an Pb-Zn deposit area in Guizhou Province is situated in the Southwest Guizhou Depression on the northwest edge of South China fold belt. The ore bodies occur in the Carboniferous dolomitic limestone and dolomite, with significant characteristics of structural ore-control. Two-dimension (2D) seismic profile of the NW-SE striking passes through the Pb-Zn mine area, clearly revealing the stratum and NE-SW trending structural framework of the research area. From the shallow Devonian to the deep Neoproterozoic, a total of 3 seismic reflectors and 3 reflecting units are labeled. Based on recognition of two crucial surfaces of angular unconformity, the "2+1" basin stratigraphic framework consisting of double basement and single sedimentary cover is clearly represented, which provides new evidence for the tectonic attribute of Southwest Guizhou. The basin structural framework in the mining area is composed of two controlling thrust faults with secondary reverse faults and folds. Field observation and structural analysis of the fault outcrops and its secondary structures shown in the seismic profile were conducted, moreover the ore-controlling faults of 4 deposits were dissected. It is proposed that the Indosinian compressional deformation would be related to the ore-forming age. Based on the structural framework of the seismic interpretation, the role of each structural factor is detailed analysis in the mineralization process. The two deep-cut basement faults (first-order fault) would be fluid migration channels from atmospheric water and deep basin. The Guangxi unconformity would act as a lateral migration pathway. The thin-skin faults that cut across the Lower-Middle Devonian Huohong Formation (aquifuge) acted as a vertical migration conduit for ore-forming liquid to upward-rise to the Carboniferous mineralization. Combined with the structural ore-controlling characteristics of representative deposits, a model of basin-scale structural ore-controlling of the Pu'an lead-zinc study area was established.
-
图 1 普安铅锌矿区地质(a)及大地构造略图(b)
a. 据马力等(2004)修改. 结合带:①师宗‒弥勒带;②金沙‒墨江带;③垭都‒紫云‒罗甸带;④八布‒Phu-Ngu带;⑤溆浦‒四堡带;⑥儋县‒屯昌带;⑦萍乡‒郴州‒博白带;⑧长乐‒南澳带;⑨绍兴‒萍乡带. 二级构造单元:Ⅰ1. 黔中‒滇东隆起;Ⅰ2. 黔南坳陷;Ⅰ3. 雪峰基底拆离造山带;Ⅱ1. 黔西南坳陷;Ⅱ2. 罗甸断坳;Ⅱ3. 南盘江坳陷. b. P3ch. 长兴组;P3l.龙潭组;P2‒3em.峨眉山组;P2m.茅口组;P2q.栖霞组;P2l.梁山组;(C2‒P1)m.马平组;C2h.黄龙组;C1‒2w.威宁组;C1‒2n.南丹组;C1dw.打屋坝组;C1m.睦化组;C1b.摆佐组;C1d.大塘组
Fig. 1. Tectonic map (a) and simplified geologic map (b) of the research area
图 2 黔西南普安铅锌矿区地层柱状简图
据张德明等(2014)和Hu et al. (2017)修改
Fig. 2. The simplified stratigraphic sequences of Pu'an Pb-Zn deposit area, Southwest Guizhou, China
图 3 NW-SE向横穿铅锌矿区地震剖面解释
时‒深(时间‒深度)转换数据来源于南盘江坳陷秧1井TP反射层(二叠系底部)的时间‒速度模板曲线. 地层单元:T1-T2. 下‒中三叠统;P3. 上二叠统;D-P2. 泥盆系‒中二叠统;D3s-T2g. 上泥盆统桑郎组‒中二叠统关岭组;D3s-P1. 上泥盆统桑郎组‒下二叠统;D1-2h. 下‒中泥盆统火烘组;D1-D1-2g. 下泥盆统‒下中泥盆统罐子窑组;S.志留系;∈-O.寒武系‒奥陶系;Pt2. 中元古界;Pt3. 新元古界;An∈. 前寒武纪地层
Fig. 3. Interpretation of the NW-SE-striking seismic profile across the Pb-Zn deposit
图 5 赋存在虚脱部位的对门坡矿床(O-1)
a.据杨德传等(2017)修改;b.褶皱虚脱空间形成示意图;c.F3及其派生构造示意图
Fig. 5. Duimenpo Pb-Zn ore body (O-1) occurring in the secondary folds
图 8 受F4控制赋存在层间破碎带中的莲花山矿体(O-2)
据杨光龙(2007)修改
Fig. 8. Lianhuashan ore body (O-2) in the interlayer fracture zone controlled by F4
图 11 铅厂矿床(O-3)勘探剖面及露头滑脱构造素描图
图a据曾广乾等(2017)修改
Fig. 11. Exploration profiles and outcrop sketch of detachment structure of Qianchang deposit (O-3)
表 1 反射层(单元)地震属性
Table 1. Attributes of seismic reflectors (reflective units)
代号 反射层
(反射单元)同相
轴数地震反射基本属性 振幅 视频率 连续性 RU1 火烘组 3~4 中‒强 中频 好 TD 下泥盆统底 2~3 弱‒中 中频 差 TS 下志留统底 2~3 中‒强 中频 中 T∈ 下寒武统底 3~5 中‒强 高频 好 RU2 震旦系 5~6 中‒强 高频 好 RU3 TB1 南华系、青白口系 4~5 强 中频 好 TB2 8~10 强 高频 好 表 2 地震线穿过的主要构造
Table 2. Main structures cut by seismic profile
代号 名称 地表及深部特征 F1 格所河逆冲断层 倾向近W,倾角65°左右,落差约1 200 m,断开了S-C2;走向近SN,破碎带宽20~40 m F2 高棉‒马场逆冲断层 走向NE,延伸30 km左右,倾向NW,倾角60°~70°,断距达到6 000 m,错断了Pt3-T2 F3 苏子坡逆冲断层 走向NEE,延长15 km,倾向SSE,倾角78°,可见断层引起上盘A1核部变宽效应,控制了对门坡矿床 F4 新寨逆冲断层 走向SN,倾向E,断距120 m左右. 控莲花山矿床 F5 罐子窑逆冲断层 走向NE,长度18.2 km,倾向NW,倾角30°~50°,可划分为南段、中段、北段. 控铅厂矿床 F6 苏子坪逆冲断层 走向NE,倾向NW,倾角50°,断距50~300 m. 控双峰山矿床 A1 格所河背斜 近SN向展布,轴面倾向W,枢纽弯曲起伏且向S倾伏,被F3和F4错断,核部地层为D2h,倒转强烈 A2 代家菁背斜 近SN向展布,轴面倾向W,被一条NW向断层错断,核部地层为D1-2g A3 丁头山背斜 在约0.3 km2范围内岩层产状变化为350°~25°∠70°~25°,有向SW倾伏的趋势,核部地层为C1dw 注:据张德明等(2014)和杨德传等(2017). -
[1] Chen, M.H., Huang, Q.W., Hu, Y., et al., 2009. Genetic Types of Phyllosilicate (Micas) and Its 39Ar-40Ar Dating in Lannigou Gold Deposit, Guizhou Province, China. Acta Mineralogica Sinica, 29(3): 353-362 (in Chinese with English abstract). [2] Chen, M.H., Mao, J. W., Li, C., et al., 2015. Re-Os Isochron Ages for Arsenopyrite from Carlin-like Gold Deposits in the Yunnan-Guizhou-Guangxi "Golden Triangle", Southwestern China. Ore Geology Reviews, 64: 316-327. https://doi.org/10.1016/j.oregeorev.2014.07.019 [3] Chen, S.J., 1986. Research on the Genesis of Lead-Zinc Ore-Deposits in Western Guizhou and Northeastern Yunnan. Guizhou Geology, (3): 211-222 (in Chinese with English abstract). [4] Chen, X.M., 2009. Analyses on the Wrench Structure in West Guizhou. Guizhou Geology, 26(1): 13-18, 78 (in Chinese with English abstract). [5] Dou, X.Z., 2012. Tectonic Evolution and Its Control on Coalbed Methane Reservoiring in Western Guizhou (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). [6] Du, D.Q., 1995. A Study on the Thrust and Nappe Tectonics in the Facies Change Belt of Triassic Period in Southwestern Guizhou and Nanpan Jiang Area. Journal of Guizhou Institute of Technology, 24(5): 34-39 (in Chinese with English abstract). [7] Du, Y.S., Huang, H.W., Huang, Z.Q., et al., 2009. Basin Translation from Late Palaeozoic to Triassic of Youjiang Basin and Its Tectonic Significance. Geological Science and Technology Information, 28(6): 10-15 (in Chinese with English abstract). [8] Guizhou Geological Survey Institute, 2017. Regional Geology of China (Guizhou Province). Geological Publishing House, Beijing (in Chinese). [9] Hu, Y. Z., Liu, W. H., Wang, J. J., et al., 2017. Basin-Scale Structure Control of Carlin-Style Gold Deposits in Central Southwestern Guizhou, China: Insights from Seismic Reflection Profiles and Gravity Data. Ore Geology Reviews, 91: 444-462. https://doi.org/10.1016/j.oregeorev.2017.09.011 [10] Jenkins, A. P., Torvela, T., 2020. Basin Analysis Using Seismic Interpretation as a Tool to Examine the Extent of a Basin Ore 'Play'. Ore Geology Reviews, 125: 103698. https://doi.org/10.1016/j.oregeorev.2020.103698 [11] Jin, X.Y., 2017. Geology, Mineralization and Genesis of the Nibao, Shuiyindong and Yata Gold Deposits in SW Guizhou Province, China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [12] Jin, Z.G., 2006. Research on the Ore-Controlling Factors, Metallogenic Regularity and and Prediction of Lead-Zinc Ore District in Northwest, Guizhou (Dissertation). Central South University, Changsha (in Chinese with English abstract). [13] Li, D.X., Tan, Y.A., 2019. Structural Synthesis Analysis of S-Shaped Anticline in Tongguanshan. Earth Science, 44(5): 1511-1525 (in Chinese with English abstract). [14] Liu, G. F., Meng, X. H., Ni, J. H., et al., 2018. Evaluation of the 2D Reflection Seismic Method toward the Exploration of Thrust-Controlled Mineral Deposits in Southwestern Fujian Province, China. Geophysics, 83(4): B209-B220. https://doi.org/10.1190/geo2017-0289.1 [15] Liu, N., He, L., Luo, L., 2018. Sequence Stratigraphic Division and Tectonic Setting of the Qingbaikouan Yanmenzhai Formation and Nanhuan Changan Formation in the Southeastern Margin of the Yangtze Block. Journal of Stratigraphy, 42(1): 1-8 (in Chinese with English abstract). [16] Ma, L., Chen, H.J., Gan, K.W., et al., 2004. Geotectonics and Marine Petroleum Geology in South China. Geological Publishing House, Beijing (in Chinese). [17] Malehmir, A., Bellefleur, G., Koivista, E., et al., 2017. Pros and Cons of 2D vs 3D Seismic Mineral Exploration Surveys. First Break, 35(8): 49-55. https://doi.org/10.3997/1365-2397.35.8.89805 [18] Manzi, M.S.D., Hein, K.A.A., King, N., et al., 2013. Neoarchaean Tectonic History of the Witwatersrand Basin and Ventersdorp Supergroup: New Constraints from High-Resolution 3D Seismic Reflection Data. Tectonophysics, 590: 94-105. https://doi.org/10.1016/j.tecto.2013.01.014 [19] Mao, J.Q., Du, D.Q., Pan, N.X., et al., 1990. Analysis of Detachment and Gold Ore Deposit in Southwestern Guizhou. Journal of Guizhou Institute of Technology, 19(3): 44-49 (in Chinese with English abstract). [20] Mei, M.X., Li, Z.Y., 2004. Sequence-Stratigraphic Succession and Sedimentary-Basin Evolution from Late Paleozoic to Triassic in the Yunnan-Guizhou-Guangxi Region. Geoscience, (4): 555-563 (in Chinese with English abstract). [21] Mei, M.X., Ma, Y.S., Deng, J., et al., 2005. Tectonic Palaeogeographic Changes Resulting from the Caledonian Movement and the Formation of the Dianqiangui Basin: Discussion on the Deep Exploration Potential of Oil and Gas in the Dianqiangui Basin. Earth Science Frontiers, 12(3): 227-236 (in Chinese with English abstract). [22] Ou, J.X., 1996. Geological Characteristics and Ore-Control Geological Conditions of Qingshan Lead-Zinc Deposit, Guizhou. Journal of Guilin Institute of Technology, 16(3): 277-282 (in Chinese with English abstract). [23] Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1-28 (in Chinese with English abstract). [24] Pi, Q. H., Hu, R. Z., Xiong, B., et al., 2017. In Situ SIMS U-Pb Dating of Hydrothermal Rutile: Reliable Age for the Zhesang Carlin-Type Gold Deposit in the Golden Triangle Region, SW China. Mineralium Deposita, 52(8): 1179-1190. https://doi.org/10.1007/s00126-017-0715-y [25] Place, J., Malehmir, A., 2016. Using Supervirtual First Arrivals in Controlled-Source Hardrock Seismic Imaging-Well Worth the Effort. Geophysical Journal International, 206(1): 716-730. https://doi.org/10.1093/gji/ggw176 [26] Pretorius, C. C., Muller, M. R., Larroque, M., et al., 2003. A Review of 16 Years of Hardrock Seismics on the Kaapvaal Craton. In: Hardrock Seismic Exploration. Society of Exploration Geophysicists, Tulsa. [27] Wang, Y., Rong, J.Y., Tang, P., et al., 2021. Characteristics of Major Hiatus in Middle Paleozoic Rocks of South China and Their Significance of Geotectonics. Scientia Sinica Terrae, 51(2): 218-240 (in Chinese). doi: 10.1360/SSTe-2020-0079 [28] Xu, X.S., Liu, W., Men, Y, P., et al., 2012. Probe into the Tectonic Nature of Neoproterozoic Southern Hunan-Northern Guangxi Marine Basin. Acta Geologica Sinica, 86(12): 1890-1904 (in Chinese with English abstract). [29] Yang, D.C., Wang, L., Li, Z.Y., 2017. Application of Induced Polarization Intermediate Gradient Survey in Prospecting for Lead-Zinc Deposit in Dingtou Mountain of Qinglong. Geological Survey of China, 4(6): 89-98 (in Chinese with English abstract). [30] Yang, G.L., 2007. Analyses on Geologic Characteristic and Ore-Controlling Factors in the Longyin Lead-Zinc Deposit, Pu'an County. Guizhou Geology, 24(2): 97-100, 160 (in Chinese with English abstract). [31] Yang, K.G., He, L.L., Liu, Y., et al., 2020. The Thrust- Decollement Structure in Western Guizhou and Its Control of Pb-Zn Deposit. Bulletin of Geological Science and Technology, 39(1): 149-156 (in Chinese with English abstract). [32] Yang, K.G., Li, X.G., Dai, C.G., et al., 2012. Superimposition Deformation Controlled and Adjusted by Faults: An Example from Yanshanian Structural Deformation in Guizhou Province. Geological Science and Technology Information, 31(5): 50-56 (in Chinese with English abstract). [33] Yao, S.Z., Ding, Z.J., Zhou, Z.G., et al., 2020. Ore- Accumulating Structural System and Mineral Exploration. Earth Science, 45(12): 4389-4398 (in Chinese with English abstract). [34] Yu, K.F., Wang, S.D., 1995. Duyun Movement in South Guizhou Province and Its Paleostructure, and Their Significance in Petroleum Geology. Guzhou Geology, 12(3): 225-232 (in Chinese with English abstract). [35] Zeng, G.Q., He, L.L., Zhang, D.M., et al., 2017. Pb Isotopic Composition of Guanziyao Lead-Zinc Ore Deposits in West Guizhou and Its Geological Implications. Geotectonica et Metallogenia, 41(2): 305-314 (in Chinese with English abstract). [36] Zhang, D.M., He, L.L., Zeng, G.Q., et al., 2014. Superimposed Deformation and Its Controlling Effect on Pb-Zn Deposits of Guanziyao Region in West Guizhou. Guizhou Geology, 31(4): 241-251 (in Chinese with English abstract). [37] Zhao, M.J., Zhang, S.C., Zhao, L., et al., 2006. Geochemistry and Genesis of Bitumen in Paleo-Oil Reservoir in the Nanpanjiang Basin, China. Acta Geologica Sinica, 80(6): 893-901, 926 (in Chinese with English abstract). [38] Zhen, S.M., 2013. Research on Metallization of Devonian Mississippi Valley-Type Lead-Zinc Deposits of Nanling Region, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [39] Zheng, S., Hu, Y.Z., Guan, S.J., et al., 2020. Structural Deformation and Evolution of the Lannigou Gold Orefield in Southwestern Guizhou. Geological Review, 66(5): 1431-1445 (in Chinese with English abstract). [40] Zhou, J. X., Huang, Z. L., Bao, G. P., et al., 2013. Sources and Thermo-Chemical Sulfate Reduction for Reduced Sulfur in the Hydrothermal Fluids, Southeastern SYG Pb-Zn Metallogenic Province, SW China. Journal of Earth Science, 24(5): 759-771. https://doi.org/10.1007/s12583-013-0372-8 [41] Zhou, J. X., Huang, Z. L., Lü, Z. C., et al., 2014. Geology, Isotope Geochemistry and Ore Genesis of the Shanshulin Carbonate-Hosted Pb-Zn Deposit, Southwest China. Ore Geology Reviews, 63: 209-225. https://doi.org/10.1016/j.oregeorev.2014.05.012 [42] 陈懋弘, 黄庆文, 胡瑛, 等, 2009. 贵州烂泥沟金矿层状硅酸盐矿物及其39Ar-40Ar年代学研究. 矿物学报, 29(3): 353-362. doi: 10.3321/j.issn:1000-4734.2009.03.013 [43] 陈士杰, 1986. 黔西滇东北铅锌矿成因探讨. 贵州地质, (3): 211-222. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ198603000.htm [44] 陈学敏, 2009. 论贵州西部扭动构造. 贵州地质, 26(1): 13-18, 78. doi: 10.3969/j.issn.1000-5943.2009.01.003 [45] 窦新钊, 2012. 黔西地区构造演化及其对煤层气成藏的控制(博士学位论文). 徐州: 中国矿业大学. [46] 杜定全, 1995. 黔西南及南盘江地区三迭纪相变带的逆冲推覆构造研究. 贵州工学院学报, 24(5): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GZGX505.005.htm [47] 杜远生, 黄宏伟, 黄志强, 等, 2009. 右江盆地晚古生代‒三叠纪盆地转换及其构造意义. 地质科技情报, 28(6): 10-15. doi: 10.3969/j.issn.1000-7849.2009.06.002 [48] 贵州省地质调查院, 2017. 中国区域地质志(贵州志). 北京: 地质出版社. [49] 靳晓野, 2017. 黔西南泥堡、水银洞和丫他金矿床的成矿作用特征与矿床成因研究(博士学位论文). 武汉: 中国地质大学. [50] 金中国, 2006. 黔西北地区铅锌矿控矿因素、成矿规律与找矿预测研究(博士学位论文). 长沙: 中南大学. [51] 李东旭, 谭以安, 2019. 铜官山S状背斜构造综合解析. 地球科学, 44(5): 1511-1525. doi: 10.3799/dqkx.2019.974 [52] 刘南, 贺良, 罗来, 2018. 扬子地块东南缘青白口系岩门寨组‒南华系长安组层序地层划分及构造背景讨论. 地层学杂志, 42(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201801001.htm [53] 马力, 陈焕疆, 甘克文, 等, 2004. 中国南方大地构造和海相油气地质. 北京: 地质出版社. [54] 毛健全, 杜定全, 潘年勋, 等, 1990. 滑脱构造与黔西南地区金矿浅析. 贵州工学院学报, 19(3): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GZGX199003005.htm [55] 梅冥相, 李仲远, 2004. 滇黔桂地区晚古生代至三叠纪层序地层序列及沉积盆地演化. 现代地质, (4): 555-563. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200404023.htm [56] 梅冥相, 马永生, 邓军, 等, 2005. 加里东运动构造古地理及滇黔桂盆地的形成——兼论滇黔桂盆地深层油气勘探潜力. 地学前缘, 12(3): 227-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503031.htm [57] 欧锦秀, 1996. 贵州水城青山铅锌矿床的成矿地质特征. 桂林工学院学报, 16(3): 277-282. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX603.013.htm [58] 潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901004.htm [59] 王怿, 戎嘉余, 唐鹏, 等, 2021. 华南古生代中期地层界面的特征与大地构造意义. 中国科学: 地球科学, 51(2): 218-240. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202102004.htm [60] 许效松, 刘伟, 门玉澎, 等, 2012. 对新元古代湘桂海盆及邻区构造属性的探讨. 地质学报, 86(12): 1890-1904. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201212004.htm [61] 杨德传, 汪磊, 李再勇, 2017. 激电中梯测量在晴隆丁头山铅锌矿找矿中的应用. 中国地质调查, 4(6): 89-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201706013.htm [62] 杨光龙, 2007. 普安县龙吟铅锌矿地质特征及控矿因素分析. 贵州地质, 24(2): 97-100, 160. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200702003.htm [63] 杨坤光, 何良伦, 刘雨, 等, 2020. 黔西逆冲滑脱构造及其对铅锌矿床的控制. 地质科技通报, 39(1): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001018.htm [64] 杨坤光, 李学刚, 戴传固, 等, 2012. 断层调整与控制作用下的叠加构造变形: 以贵州地区燕山期构造为例. 地质科技情报, 31(5): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205008.htm [65] 姚书振, 丁振举, 周宗桂, 等. 2020. 聚矿构造系统与找矿. 地球科学, 45(12): 4389-4398. doi: 10.3799/dqkx.2020.337 [66] 余开富, 王守德, 1995. 贵州南部的都匀运动及其古构造特征和石油地质意义. 贵州地质, 12(3): 225-232. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ503.004.htm [67] 曾广乾, 何良伦, 张德明, 等, 2017. 黔西罐子窑铅锌矿床Pb同位素研究及地质意义. 大地构造与成矿学, 41(2): 305-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201702007.htm [68] 张德明, 何良伦, 曾广乾, 等, 2014. 黔西罐子窑地区叠加变形及其对铅锌矿床的控制作用. 贵州地质, 31(4): 241-251. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ201404001.htm [69] 赵孟军, 张水昌, 赵陵, 等, 2006. 南盘江盆地古油藏沥青地球化学特征及成因. 地质学报, 80(6): 893-901, 926. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200606011.htm [70] 甄世民, 2013. 南岭地区泥盆系密西西比河谷型(MVT)铅锌矿床成矿特征研究(博士学位论文). 北京: 中国地质大学. [71] 郑爽, 胡煜昭, 管申进, 等, 2020. 黔西南烂泥沟金矿田构造变形及演化分析. 地质论评, 66(5): 1431-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202005028.htm