• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黔西南普安铅锌矿区盆地尺度构造

    周亮 胡煜昭 谭笑林 李丕优 程涌

    周亮, 胡煜昭, 谭笑林, 李丕优, 程涌, 2022. 黔西南普安铅锌矿区盆地尺度构造. 地球科学, 47(1): 368-386. doi: 10.3799/dqkx.2021.001
    引用本文: 周亮, 胡煜昭, 谭笑林, 李丕优, 程涌, 2022. 黔西南普安铅锌矿区盆地尺度构造. 地球科学, 47(1): 368-386. doi: 10.3799/dqkx.2021.001
    Zhou Liang, Hu Yuzhao, Tan Xiaolin, Li Piyou, Cheng Yong, 2022. Basin-Scale Structure of Pu'an Pb-Zn Deposit Area, Southwest Guizhou, China. Earth Science, 47(1): 368-386. doi: 10.3799/dqkx.2021.001
    Citation: Zhou Liang, Hu Yuzhao, Tan Xiaolin, Li Piyou, Cheng Yong, 2022. Basin-Scale Structure of Pu'an Pb-Zn Deposit Area, Southwest Guizhou, China. Earth Science, 47(1): 368-386. doi: 10.3799/dqkx.2021.001

    黔西南普安铅锌矿区盆地尺度构造

    doi: 10.3799/dqkx.2021.001
    基金项目: 

    国家自然科学基金项目 41672073

    详细信息
      作者简介:

      周亮(1995-), 男, 硕士研究生, 构造地质学专业.ORCID: 0000-0003-0529-6130.E-mail: 1126232363@qq.com

      通讯作者:

      胡煜昭, E-mail: huyuzhao155@sohu.com

    • 中图分类号: P542.5;P613

    Basin-Scale Structure of Pu'an Pb-Zn Deposit Area, Southwest Guizhou, China

    • 摘要:

      贵州省普安铅锌矿区位于华南褶皱带西北缘的黔西南坳陷,矿体主要赋存在石炭系的白云质灰岩和白云岩中,构造控矿特征显著. NW-SE走向的二维地震剖面横穿了铅锌矿区,清晰地揭示了矿区的地层和NE向构造格架. 从浅层的泥盆系至深层的新元古界,共标定了3个反射层和3个反射单元,据两个重要角度不整合面,矿区呈现为双层基底、单层盖层的“2+1”盆地地层格架,为讨论黔西南的大地构造属性提供了新佐证. 矿区盆地构造格架呈现为2条主控逆冲断层夹多种构造样式的次一级逆冲断层和褶皱,对地震剖面显示的断层露头及其派生构造进行了野外观察和几何学、运动学解析,解剖了4个矿床的控矿断层,发现挤压逆冲断层活动时间与成矿年代息息相关. 基于剖面解释的构造格架,详细分析了各个构造要素在成矿过程中的作用,2条深切基底的一级断裂是来自大气降水和盆地深部的流体通道,广西运动不整合面(下称“广西面”)则是成矿流体侧向运输通道,刺穿下-中泥盆统火烘组(D1-2h)(不透水层)的盖层断裂是矿液上升至石炭系成矿的渠道;结合典型矿床的构造控矿特性,构建了普安铅锌矿区的盆地尺度构造控矿模型.

       

    • 图  1  普安铅锌矿区地质(a)及大地构造略图(b)

      a. 据马力等(2004)修改. 结合带:①师宗‒弥勒带;②金沙‒墨江带;③垭都‒紫云‒罗甸带;④八布‒Phu-Ngu带;⑤溆浦‒四堡带;⑥儋县‒屯昌带;⑦萍乡‒郴州‒博白带;⑧长乐‒南澳带;⑨绍兴‒萍乡带. 二级构造单元:Ⅰ1. 黔中‒滇东隆起;Ⅰ2. 黔南坳陷;Ⅰ3. 雪峰基底拆离造山带;Ⅱ1. 黔西南坳陷;Ⅱ2. 罗甸断坳;Ⅱ3. 南盘江坳陷. b. P3ch. 长兴组;P3l.龙潭组;P2‒3em.峨眉山组;P2m.茅口组;P2q.栖霞组;P2l.梁山组;(C2‒P1)m.马平组;C2h.黄龙组;C1‒2w.威宁组;C1‒2n.南丹组;C1dw.打屋坝组;C1m.睦化组;C1b.摆佐组;C1d.大塘组

      Fig.  1.  Tectonic map (a) and simplified geologic map (b) of the research area

      图  2  黔西南普安铅锌矿区地层柱状简图

      张德明等(2014)和Hu et al. (2017)修改

      Fig.  2.  The simplified stratigraphic sequences of Pu'an Pb-Zn deposit area, Southwest Guizhou, China

      图  3  NW-SE向横穿铅锌矿区地震剖面解释

      时‒深(时间‒深度)转换数据来源于南盘江坳陷秧1井TP反射层(二叠系底部)的时间‒速度模板曲线. 地层单元:T1-T2. 下‒中三叠统;P3. 上二叠统;D-P2. 泥盆系‒中二叠统;D3s-T2g. 上泥盆统桑郎组‒中二叠统关岭组;D3s-P1. 上泥盆统桑郎组‒下二叠统;D1-2h. 下‒中泥盆统火烘组;D1-D1-2g. 下泥盆统‒下中泥盆统罐子窑组;S.志留系;∈-O.寒武系‒奥陶系;Pt2. 中元古界;Pt3. 新元古界;An∈. 前寒武纪地层

      Fig.  3.  Interpretation of the NW-SE-striking seismic profile across the Pb-Zn deposit

      图  4  高棉乡北侧F2断层及其上盘褶皱素描图

      Fig.  4.  Sketch and photo of F2 and its secondary fold in the north of Gaomian Village

      图  5  赋存在虚脱部位的对门坡矿床(O-1)

      a.据杨德传等(2017)修改;b.褶皱虚脱空间形成示意图;c.F3及其派生构造示意图

      Fig.  5.  Duimenpo Pb-Zn ore body (O-1) occurring in the secondary folds

      图  6  F3上盘派生的虚脱构造和叠加褶皱

      Fig.  6.  Saddle structure and superposed fold on hanging wall of F3

      图  7  F4素描图及其派生次级构造

      地层代号同图 2

      Fig.  7.  Sketch and photo of F4 and its parasitical structure

      图  8  受F4控制赋存在层间破碎带中的莲花山矿体(O-2)

      杨光龙(2007)修改

      Fig.  8.  Lianhuashan ore body (O-2) in the interlayer fracture zone controlled by F4

      图  9  罐子窑镇南侧F5素描图

      Fig.  9.  Sketch and photo of F5 in the south of Guanziyao Town

      图  10  铁厂村公路旁F5及其引起的上盘顺层滑动构造

      Fig.  10.  Sketch and photo of F5 and the sliding structures generated by F5 in roadside near Tiechang Village

      图  11  铅厂矿床(O-3)勘探剖面及露头滑脱构造素描图

      图a据曾广乾等(2017)修改

      Fig.  11.  Exploration profiles and outcrop sketch of detachment structure of Qianchang deposit (O-3)

      图  12  麻布河北侧F6及其上盘背斜中的双峰山矿床(O-4)

      Fig.  12.  Photos of F6 and Shuangfengshan deposit (O-4) occurring in the fault-propagation fold in the north of Mabu River

      图  13  双峰山矿区发育的不同方位褶皱变形

      a. 近东西向挤压产生的“M”形褶皱(F6活动产生);b. 近南北向挤压产生的斜歪褶皱;c. 与F6同倾向的厘米级逆断层

      Fig.  13.  Fold deformation in different directions in Shuangfengshan mineral area

      图  14  盆地尺度构造控矿模型

      地层代号同图 2

      Fig.  14.  Basin-scale model of structure controlling Pb-Zn deposits

      表  1  反射层(单元)地震属性

      Table  1.   Attributes of seismic reflectors (reflective units)

      代号 反射层
      (反射单元)
      同相
      轴数
      地震反射基本属性
      振幅 视频率 连续性
      RU1 火烘组 3~4 中‒强 中频
      TD 下泥盆统底 2~3 弱‒中 中频
      TS 下志留统底 2~3 中‒强 中频
      T∈ 下寒武统底 3~5 中‒强 高频
      RU2 震旦系 5~6 中‒强 高频
      RU3 TB1 南华系、青白口系 4~5 中频
      TB2 8~10 高频
      下载: 导出CSV

      表  2  地震线穿过的主要构造

      Table  2.   Main structures cut by seismic profile

      代号 名称 地表及深部特征
      F1 格所河逆冲断层 倾向近W,倾角65°左右,落差约1 200 m,断开了S-C2;走向近SN,破碎带宽20~40 m
      F2 高棉‒马场逆冲断层 走向NE,延伸30 km左右,倾向NW,倾角60°~70°,断距达到6 000 m,错断了Pt3-T2
      F3 苏子坡逆冲断层 走向NEE,延长15 km,倾向SSE,倾角78°,可见断层引起上盘A1核部变宽效应,控制了对门坡矿床
      F4 新寨逆冲断层 走向SN,倾向E,断距120 m左右. 控莲花山矿床
      F5 罐子窑逆冲断层 走向NE,长度18.2 km,倾向NW,倾角30°~50°,可划分为南段、中段、北段. 控铅厂矿床
      F6 苏子坪逆冲断层 走向NE,倾向NW,倾角50°,断距50~300 m. 控双峰山矿床
      A1 格所河背斜 近SN向展布,轴面倾向W,枢纽弯曲起伏且向S倾伏,被F3和F4错断,核部地层为D2h,倒转强烈
      A2 代家菁背斜 近SN向展布,轴面倾向W,被一条NW向断层错断,核部地层为D1-2g
      A3 丁头山背斜 在约0.3 km2范围内岩层产状变化为350°~25°∠70°~25°,有向SW倾伏的趋势,核部地层为C1dw
      注:据张德明等(2014)杨德传等(2017).
      下载: 导出CSV
    • [1] Chen, M.H., Huang, Q.W., Hu, Y., et al., 2009. Genetic Types of Phyllosilicate (Micas) and Its 39Ar-40Ar Dating in Lannigou Gold Deposit, Guizhou Province, China. Acta Mineralogica Sinica, 29(3): 353-362 (in Chinese with English abstract).
      [2] Chen, M.H., Mao, J. W., Li, C., et al., 2015. Re-Os Isochron Ages for Arsenopyrite from Carlin-like Gold Deposits in the Yunnan-Guizhou-Guangxi "Golden Triangle", Southwestern China. Ore Geology Reviews, 64: 316-327. https://doi.org/10.1016/j.oregeorev.2014.07.019
      [3] Chen, S.J., 1986. Research on the Genesis of Lead-Zinc Ore-Deposits in Western Guizhou and Northeastern Yunnan. Guizhou Geology, (3): 211-222 (in Chinese with English abstract).
      [4] Chen, X.M., 2009. Analyses on the Wrench Structure in West Guizhou. Guizhou Geology, 26(1): 13-18, 78 (in Chinese with English abstract).
      [5] Dou, X.Z., 2012. Tectonic Evolution and Its Control on Coalbed Methane Reservoiring in Western Guizhou (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract).
      [6] Du, D.Q., 1995. A Study on the Thrust and Nappe Tectonics in the Facies Change Belt of Triassic Period in Southwestern Guizhou and Nanpan Jiang Area. Journal of Guizhou Institute of Technology, 24(5): 34-39 (in Chinese with English abstract).
      [7] Du, Y.S., Huang, H.W., Huang, Z.Q., et al., 2009. Basin Translation from Late Palaeozoic to Triassic of Youjiang Basin and Its Tectonic Significance. Geological Science and Technology Information, 28(6): 10-15 (in Chinese with English abstract).
      [8] Guizhou Geological Survey Institute, 2017. Regional Geology of China (Guizhou Province). Geological Publishing House, Beijing (in Chinese).
      [9] Hu, Y. Z., Liu, W. H., Wang, J. J., et al., 2017. Basin-Scale Structure Control of Carlin-Style Gold Deposits in Central Southwestern Guizhou, China: Insights from Seismic Reflection Profiles and Gravity Data. Ore Geology Reviews, 91: 444-462. https://doi.org/10.1016/j.oregeorev.2017.09.011
      [10] Jenkins, A. P., Torvela, T., 2020. Basin Analysis Using Seismic Interpretation as a Tool to Examine the Extent of a Basin Ore 'Play'. Ore Geology Reviews, 125: 103698. https://doi.org/10.1016/j.oregeorev.2020.103698
      [11] Jin, X.Y., 2017. Geology, Mineralization and Genesis of the Nibao, Shuiyindong and Yata Gold Deposits in SW Guizhou Province, China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [12] Jin, Z.G., 2006. Research on the Ore-Controlling Factors, Metallogenic Regularity and and Prediction of Lead-Zinc Ore District in Northwest, Guizhou (Dissertation). Central South University, Changsha (in Chinese with English abstract).
      [13] Li, D.X., Tan, Y.A., 2019. Structural Synthesis Analysis of S-Shaped Anticline in Tongguanshan. Earth Science, 44(5): 1511-1525 (in Chinese with English abstract).
      [14] Liu, G. F., Meng, X. H., Ni, J. H., et al., 2018. Evaluation of the 2D Reflection Seismic Method toward the Exploration of Thrust-Controlled Mineral Deposits in Southwestern Fujian Province, China. Geophysics, 83(4): B209-B220. https://doi.org/10.1190/geo2017-0289.1
      [15] Liu, N., He, L., Luo, L., 2018. Sequence Stratigraphic Division and Tectonic Setting of the Qingbaikouan Yanmenzhai Formation and Nanhuan Changan Formation in the Southeastern Margin of the Yangtze Block. Journal of Stratigraphy, 42(1): 1-8 (in Chinese with English abstract).
      [16] Ma, L., Chen, H.J., Gan, K.W., et al., 2004. Geotectonics and Marine Petroleum Geology in South China. Geological Publishing House, Beijing (in Chinese).
      [17] Malehmir, A., Bellefleur, G., Koivista, E., et al., 2017. Pros and Cons of 2D vs 3D Seismic Mineral Exploration Surveys. First Break, 35(8): 49-55. https://doi.org/10.3997/1365-2397.35.8.89805
      [18] Manzi, M.S.D., Hein, K.A.A., King, N., et al., 2013. Neoarchaean Tectonic History of the Witwatersrand Basin and Ventersdorp Supergroup: New Constraints from High-Resolution 3D Seismic Reflection Data. Tectonophysics, 590: 94-105. https://doi.org/10.1016/j.tecto.2013.01.014
      [19] Mao, J.Q., Du, D.Q., Pan, N.X., et al., 1990. Analysis of Detachment and Gold Ore Deposit in Southwestern Guizhou. Journal of Guizhou Institute of Technology, 19(3): 44-49 (in Chinese with English abstract).
      [20] Mei, M.X., Li, Z.Y., 2004. Sequence-Stratigraphic Succession and Sedimentary-Basin Evolution from Late Paleozoic to Triassic in the Yunnan-Guizhou-Guangxi Region. Geoscience, (4): 555-563 (in Chinese with English abstract).
      [21] Mei, M.X., Ma, Y.S., Deng, J., et al., 2005. Tectonic Palaeogeographic Changes Resulting from the Caledonian Movement and the Formation of the Dianqiangui Basin: Discussion on the Deep Exploration Potential of Oil and Gas in the Dianqiangui Basin. Earth Science Frontiers, 12(3): 227-236 (in Chinese with English abstract).
      [22] Ou, J.X., 1996. Geological Characteristics and Ore-Control Geological Conditions of Qingshan Lead-Zinc Deposit, Guizhou. Journal of Guilin Institute of Technology, 16(3): 277-282 (in Chinese with English abstract).
      [23] Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1-28 (in Chinese with English abstract).
      [24] Pi, Q. H., Hu, R. Z., Xiong, B., et al., 2017. In Situ SIMS U-Pb Dating of Hydrothermal Rutile: Reliable Age for the Zhesang Carlin-Type Gold Deposit in the Golden Triangle Region, SW China. Mineralium Deposita, 52(8): 1179-1190. https://doi.org/10.1007/s00126-017-0715-y
      [25] Place, J., Malehmir, A., 2016. Using Supervirtual First Arrivals in Controlled-Source Hardrock Seismic Imaging-Well Worth the Effort. Geophysical Journal International, 206(1): 716-730. https://doi.org/10.1093/gji/ggw176
      [26] Pretorius, C. C., Muller, M. R., Larroque, M., et al., 2003. A Review of 16 Years of Hardrock Seismics on the Kaapvaal Craton. In: Hardrock Seismic Exploration. Society of Exploration Geophysicists, Tulsa.
      [27] Wang, Y., Rong, J.Y., Tang, P., et al., 2021. Characteristics of Major Hiatus in Middle Paleozoic Rocks of South China and Their Significance of Geotectonics. Scientia Sinica Terrae, 51(2): 218-240 (in Chinese). doi: 10.1360/SSTe-2020-0079
      [28] Xu, X.S., Liu, W., Men, Y, P., et al., 2012. Probe into the Tectonic Nature of Neoproterozoic Southern Hunan-Northern Guangxi Marine Basin. Acta Geologica Sinica, 86(12): 1890-1904 (in Chinese with English abstract).
      [29] Yang, D.C., Wang, L., Li, Z.Y., 2017. Application of Induced Polarization Intermediate Gradient Survey in Prospecting for Lead-Zinc Deposit in Dingtou Mountain of Qinglong. Geological Survey of China, 4(6): 89-98 (in Chinese with English abstract).
      [30] Yang, G.L., 2007. Analyses on Geologic Characteristic and Ore-Controlling Factors in the Longyin Lead-Zinc Deposit, Pu'an County. Guizhou Geology, 24(2): 97-100, 160 (in Chinese with English abstract).
      [31] Yang, K.G., He, L.L., Liu, Y., et al., 2020. The Thrust- Decollement Structure in Western Guizhou and Its Control of Pb-Zn Deposit. Bulletin of Geological Science and Technology, 39(1): 149-156 (in Chinese with English abstract).
      [32] Yang, K.G., Li, X.G., Dai, C.G., et al., 2012. Superimposition Deformation Controlled and Adjusted by Faults: An Example from Yanshanian Structural Deformation in Guizhou Province. Geological Science and Technology Information, 31(5): 50-56 (in Chinese with English abstract).
      [33] Yao, S.Z., Ding, Z.J., Zhou, Z.G., et al., 2020. Ore- Accumulating Structural System and Mineral Exploration. Earth Science, 45(12): 4389-4398 (in Chinese with English abstract).
      [34] Yu, K.F., Wang, S.D., 1995. Duyun Movement in South Guizhou Province and Its Paleostructure, and Their Significance in Petroleum Geology. Guzhou Geology, 12(3): 225-232 (in Chinese with English abstract).
      [35] Zeng, G.Q., He, L.L., Zhang, D.M., et al., 2017. Pb Isotopic Composition of Guanziyao Lead-Zinc Ore Deposits in West Guizhou and Its Geological Implications. Geotectonica et Metallogenia, 41(2): 305-314 (in Chinese with English abstract).
      [36] Zhang, D.M., He, L.L., Zeng, G.Q., et al., 2014. Superimposed Deformation and Its Controlling Effect on Pb-Zn Deposits of Guanziyao Region in West Guizhou. Guizhou Geology, 31(4): 241-251 (in Chinese with English abstract).
      [37] Zhao, M.J., Zhang, S.C., Zhao, L., et al., 2006. Geochemistry and Genesis of Bitumen in Paleo-Oil Reservoir in the Nanpanjiang Basin, China. Acta Geologica Sinica, 80(6): 893-901, 926 (in Chinese with English abstract).
      [38] Zhen, S.M., 2013. Research on Metallization of Devonian Mississippi Valley-Type Lead-Zinc Deposits of Nanling Region, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [39] Zheng, S., Hu, Y.Z., Guan, S.J., et al., 2020. Structural Deformation and Evolution of the Lannigou Gold Orefield in Southwestern Guizhou. Geological Review, 66(5): 1431-1445 (in Chinese with English abstract).
      [40] Zhou, J. X., Huang, Z. L., Bao, G. P., et al., 2013. Sources and Thermo-Chemical Sulfate Reduction for Reduced Sulfur in the Hydrothermal Fluids, Southeastern SYG Pb-Zn Metallogenic Province, SW China. Journal of Earth Science, 24(5): 759-771. https://doi.org/10.1007/s12583-013-0372-8
      [41] Zhou, J. X., Huang, Z. L., Lü, Z. C., et al., 2014. Geology, Isotope Geochemistry and Ore Genesis of the Shanshulin Carbonate-Hosted Pb-Zn Deposit, Southwest China. Ore Geology Reviews, 63: 209-225. https://doi.org/10.1016/j.oregeorev.2014.05.012
      [42] 陈懋弘, 黄庆文, 胡瑛, 等, 2009. 贵州烂泥沟金矿层状硅酸盐矿物及其39Ar-40Ar年代学研究. 矿物学报, 29(3): 353-362. doi: 10.3321/j.issn:1000-4734.2009.03.013
      [43] 陈士杰, 1986. 黔西滇东北铅锌矿成因探讨. 贵州地质, (3): 211-222. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ198603000.htm
      [44] 陈学敏, 2009. 论贵州西部扭动构造. 贵州地质, 26(1): 13-18, 78. doi: 10.3969/j.issn.1000-5943.2009.01.003
      [45] 窦新钊, 2012. 黔西地区构造演化及其对煤层气成藏的控制(博士学位论文). 徐州: 中国矿业大学.
      [46] 杜定全, 1995. 黔西南及南盘江地区三迭纪相变带的逆冲推覆构造研究. 贵州工学院学报, 24(5): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GZGX505.005.htm
      [47] 杜远生, 黄宏伟, 黄志强, 等, 2009. 右江盆地晚古生代‒三叠纪盆地转换及其构造意义. 地质科技情报, 28(6): 10-15. doi: 10.3969/j.issn.1000-7849.2009.06.002
      [48] 贵州省地质调查院, 2017. 中国区域地质志(贵州志). 北京: 地质出版社.
      [49] 靳晓野, 2017. 黔西南泥堡、水银洞和丫他金矿床的成矿作用特征与矿床成因研究(博士学位论文). 武汉: 中国地质大学.
      [50] 金中国, 2006. 黔西北地区铅锌矿控矿因素、成矿规律与找矿预测研究(博士学位论文). 长沙: 中南大学.
      [51] 李东旭, 谭以安, 2019. 铜官山S状背斜构造综合解析. 地球科学, 44(5): 1511-1525. doi: 10.3799/dqkx.2019.974
      [52] 刘南, 贺良, 罗来, 2018. 扬子地块东南缘青白口系岩门寨组‒南华系长安组层序地层划分及构造背景讨论. 地层学杂志, 42(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201801001.htm
      [53] 马力, 陈焕疆, 甘克文, 等, 2004. 中国南方大地构造和海相油气地质. 北京: 地质出版社.
      [54] 毛健全, 杜定全, 潘年勋, 等, 1990. 滑脱构造与黔西南地区金矿浅析. 贵州工学院学报, 19(3): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GZGX199003005.htm
      [55] 梅冥相, 李仲远, 2004. 滇黔桂地区晚古生代至三叠纪层序地层序列及沉积盆地演化. 现代地质, (4): 555-563. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200404023.htm
      [56] 梅冥相, 马永生, 邓军, 等, 2005. 加里东运动构造古地理及滇黔桂盆地的形成——兼论滇黔桂盆地深层油气勘探潜力. 地学前缘, 12(3): 227-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503031.htm
      [57] 欧锦秀, 1996. 贵州水城青山铅锌矿床的成矿地质特征. 桂林工学院学报, 16(3): 277-282. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX603.013.htm
      [58] 潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901004.htm
      [59] 王怿, 戎嘉余, 唐鹏, 等, 2021. 华南古生代中期地层界面的特征与大地构造意义. 中国科学: 地球科学, 51(2): 218-240. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202102004.htm
      [60] 许效松, 刘伟, 门玉澎, 等, 2012. 对新元古代湘桂海盆及邻区构造属性的探讨. 地质学报, 86(12): 1890-1904. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201212004.htm
      [61] 杨德传, 汪磊, 李再勇, 2017. 激电中梯测量在晴隆丁头山铅锌矿找矿中的应用. 中国地质调查, 4(6): 89-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201706013.htm
      [62] 杨光龙, 2007. 普安县龙吟铅锌矿地质特征及控矿因素分析. 贵州地质, 24(2): 97-100, 160. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200702003.htm
      [63] 杨坤光, 何良伦, 刘雨, 等, 2020. 黔西逆冲滑脱构造及其对铅锌矿床的控制. 地质科技通报, 39(1): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001018.htm
      [64] 杨坤光, 李学刚, 戴传固, 等, 2012. 断层调整与控制作用下的叠加构造变形: 以贵州地区燕山期构造为例. 地质科技情报, 31(5): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205008.htm
      [65] 姚书振, 丁振举, 周宗桂, 等. 2020. 聚矿构造系统与找矿. 地球科学, 45(12): 4389-4398. doi: 10.3799/dqkx.2020.337
      [66] 余开富, 王守德, 1995. 贵州南部的都匀运动及其古构造特征和石油地质意义. 贵州地质, 12(3): 225-232. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ503.004.htm
      [67] 曾广乾, 何良伦, 张德明, 等, 2017. 黔西罐子窑铅锌矿床Pb同位素研究及地质意义. 大地构造与成矿学, 41(2): 305-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201702007.htm
      [68] 张德明, 何良伦, 曾广乾, 等, 2014. 黔西罐子窑地区叠加变形及其对铅锌矿床的控制作用. 贵州地质, 31(4): 241-251. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ201404001.htm
      [69] 赵孟军, 张水昌, 赵陵, 等, 2006. 南盘江盆地古油藏沥青地球化学特征及成因. 地质学报, 80(6): 893-901, 926. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200606011.htm
      [70] 甄世民, 2013. 南岭地区泥盆系密西西比河谷型(MVT)铅锌矿床成矿特征研究(博士学位论文). 北京: 中国地质大学.
      [71] 郑爽, 胡煜昭, 管申进, 等, 2020. 黔西南烂泥沟金矿田构造变形及演化分析. 地质论评, 66(5): 1431-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202005028.htm
    • 加载中
    图(14) / 表(2)
    计量
    • 文章访问数:  390
    • HTML全文浏览量:  49
    • PDF下载量:  78
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-19
    • 网络出版日期:  2022-02-11
    • 刊出日期:  2022-01-20

    目录

      /

      返回文章
      返回