Geology and Genesis of Lead-Zinc Polymetallic Deposits in the Great Xing'an Range
-
摘要: 随着近年来找矿工作的不断突破,大兴安岭地区的铅锌多金属矿床在矿化元素组合、矿床时空分布、成因类型等方面逐渐显示出复杂性和多样性特征.为了进一步探究该地区铅锌多金属矿床的差异性及其内在因素,在前期对白音诺尔、拜仁达坝、维拉斯托、浩布高和边家大院等铅锌多金属矿床研究基础上,结合区内前人对中型以上铅锌多金属矿床的资料和成果,重点讨论了区域上中生代与岩浆作用有关的铅锌多金属矿床成矿背景、共性特征和成矿时空规律,获得了以下主要认识:(1)大部分矿床空间上大致以北、中、南近平行的三条NE向矿带展布,其中一南带矿床尤为密集;(2)时间上可分为中-晚三叠世与晚侏罗-早白垩世两期,且后者的矿床数量占大多数,多期次成矿的现象较为普遍;(3)成因类型上,北矿带主要为浅成低温热液型矿床,中、南成矿带则以矽卡岩型和岩浆热液脉型最为重要;(4)在晚侏罗-早白垩世区域范围内的拉伸环境下,大规模的中酸性岩浆侵入活动是大兴安岭地区最重要岩浆-热事件,形成了多种类型的铅锌多金属矿床,其中的高分异花岗岩与南带富锡铅锌多金属成矿的关系密切;(5)F、Mn元素相关的蚀变与矿化具有较为强烈的空间联系;(6)S同位素显示北带矿床的S来源主要为相关的火山-次火山岩,中带矿床S主要来自成矿岩浆,而南带矿床除岩浆外,围岩地层对S也有一定贡献;(7)Pb同位素数据显示其主要为造山带混合铅来源,与晚侏罗-早白垩世时期大兴安岭地区后造山伸展构造环境有关;(8)H-O同位素数据表明区域矿床的成矿流体来源较为相似,浅成低温热液型矿床流体中大气降水比重较大,而矽卡岩型和岩浆热液脉型矿床则主要为岩浆水,大气降水则在成矿晚期加入.Abstract: As breakthrough achieved in recent exploration,lead-zinc polymetallic deposits in the Great Xing'an Range have shown complexity and differences in aspects of mineralized elements,temporal-spatial distribution,genesis and so on. For a further inspection of the variation and its internal causes,data from medium-large sized deposits are compiled and compared in this study. Main conclusions are summarized: (1) these deposits formed three parallel NE trending belts with a higher intensity in the southern belt; (2) two major phases of mineralization are recognized as in the Middle-Late Triassic (less important) and the predominant Late Jurassic-Early Cretaceous,superimposed mineralization is also notable; (3) epithermal deposit is representative in the northern belt,while skarn- and magmatic hydrothermal vein-types are more common in the middle and the southern belts; (4) under the Late Jurassic-Early Cretaceous extensional environment,enormous acidic-intermediate magma emplacement affected the whole Great Xing'an Range,leading to the formation of various lead-zinc polymetallic deposits,among which tin-rich ones in the southern belt exhibit genetic links to highly differentiated magma; (5) strong spatial association between the fluorine-,manganese-related alteration and mineralization is noticed; (6) deposits in the northern,middle and southern belts have their sulfur sourced from genetically related volcanic-subvolcanic rocks,ore-related magma and a combination of magma and country rocks; (7) Pb isotope data indicate that most deposits have a mixed lead source from orogeny,probably due to similar regional post-orogenic background in the Late Jurassic-Early Cretaceous; (8) as suggested by H-O isotopic data,meteoric water contributes more for fluid source in epithermal deposits,despite a more crucial role of magmatic water in skarn- and magmatic hydrothermal vein-type deposits.
-
Key words:
- Great Xing'an Range /
- lead-zinc deposit /
- deposit geology /
- metallogeny belt /
- genetic model
-
图 1 大兴安岭地区构造单元划分(a);大兴安岭地区铅锌矿分布(b)
据Wu et al.(2011);孟凡超等(2014);Liu et al.(2017)有修改.F1.德尔布干断裂;F2.新林-喜桂图断裂;F3.贺根山-黑河断裂;F4.嫩江断裂;F5.西拉木伦断裂
Fig. 1. Sketch map of tectonic division in the Great Xing'an Range (GXR) (a), distribution of lead-zinc polymetallic deposits in GXR (b)
图 2 大兴安岭地区铅锌矿床燕山期成岩成矿年龄分布
数据来源见表 1
Fig. 2. Temporal distribution of lead-zinc polymetallic deposits with Yanshanian age in GXR
图 3 大兴安岭地区铅锌矿床成矿岩体的A/NK-A/CNK图解(a)、K2O-SiO2图解(b)和Na2O+K2O-SiO2图解(c)
全岩数据来源:甲乌拉(杨梅等, 2017)、额仁陶勒盖(许立权等, 2014)、八岔沟(刘承先, 2019)、二道河(衮民汕, 2016;本文未发表数据)、朝不楞(Wu et al., 2017)、查干敖包(张万益等, 2012)、吉林宝力格(张万益, 2008)、浩布高(王祥东, 2017)、双尖子山(王祥东, 2017)、白音诺尔(江思宏等, 2011)、维拉斯托(Wang et al., 2017;刘怀征, 2017)、白音查干(刘新等, 2017b;姚磊等, 2017)、大井(Mei et al., 2014)、边家大院(王喜龙, 2014;Ruan et al., 2015)、黄岗(Mei et al., 2015).a.据Maniar and Piccoli(1989);b.实线据Peccerillo and Taylor(1976), 虚线据Middlemost(1985);c.据Middlemost(1994);IR线据Irvine and Baragar(1971);Ir-Irvine分界线, 上方为碱性, 下方为亚碱性.1.橄榄辉长岩;2a.碱性辉长岩;2b.亚碱性辉长岩;3.辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.硅英岩;8.二长辉长岩;9.二长闪长岩;10.二长岩;11.石英二长岩;12.正长岩;13.副长石辉长岩;14.副长石二长闪长岩;15.副长石二长正长岩;16.副长正长岩;17.副长深成岩;18.霓方钠岩/磷霞岩/粗白榴岩
Fig. 3. Plots of A/NK-A/CNK(a), K2O-SiO2(b) and Na2O+K2O-SiO2(c)
图 4 大兴安岭地区铅锌矿床成矿岩体的微量元素蛛网图(a, b, c)与稀土元素配分图(d, e, f)
球粒陨石数据与原始地幔数据来自Sun and McDonough(1989)
Fig. 4. Plots of trace element spider (a, b, c) and REE pattern (d, e, f) diagrams
图 5 大兴安岭地区铅锌矿床成矿岩体的(Na2O+K2O)/CaO-Zr+Nb+Ce+Y图解(a)和Na2O-K2O图解(b)
a.底图据Whalen et al.(1987);b.底图据Collins et al.(1982)
Fig. 5. Plots of (Na2O+K2O)/CaO-Zr+Nb+Ce+Y (a) and Na2O-K2O(b)
图 6 大兴安岭地区铅锌矿床成矿岩体的Rb/Sr-SiO2图解(a)和SiO2-Al2O3/(CaO+Na2O+K2O)图解(b)
a.底图据Blevin and Chappell(1995);b.修改自Feiss(1978)
Fig. 6. Plots of Rb/Sr-SiO2 (a) and SiO2-Al2O3/(CaO+Na2O+K2O) (b)
图 7 大兴安岭地区铅锌矿床成矿岩体的δEu-Rb/Sr图解(a)、(Al2O3+CaO)/(FeOt+Na2O+K2O)-100(MgO+FeOt+TiO2)/SiO2图解(b)和K/Rb-SiO2图解(c)
底图据Blevin(2004)
Fig. 7. Plots of δEu-Rb/Sr (a), (Al2O3+CaO)/(FeOt+Na2O+K2O)-100(MgO+FeOt+TiO2)/SiO2 (b) and K/Rb-SiO2 (c)
图 8 大兴安岭地区铅锌矿床成矿岩体的εHf(t)-t图解(a)和εNd(t)-(87Sr/86Sr)t图解(b)
全岩同位素数据来源:甲乌拉(杨梅, 2017)、八岔沟(刘承先, 2019)、二道河(本文未发表数据)、查干敖包(张万益, 2008)、吉林宝力格(张万益, 2008)、浩布高(王祥东, 2017)、双尖子山(王祥东, 2017)、白音诺尔(江思宏等, 2011)、黄岗(Mei et al., 2015);a.底图据Vervoort et al., 1996;b.底图据Wu et al., 2002
Fig. 8. Plots of εHf(t)-t (a) and εNd(t)-(87Sr/86Sr)t (b)
图 9 大兴安岭地区铅锌矿床黄铁矿、闪锌矿和方铅矿硫同位素特征
硫同位素数据来源:得耳布尔(吕莹玉, 2017)、东珺(温亦品, 2015)、甲乌拉(翟德高等, 2013;Li et al., 2015;牛斯达, 2017)、额仁陶勒盖(田京, 2015)、八岔沟(刘承先, 2019)、二道河(衮民汕, 2016)、朝不楞(聂凤军等, 2007b;陈鹏飞, 2018)、查干敖包(张万益, 2008)、吉林宝力格(张万益, 2008;杜昊, 2018)、阿尔哈达(柯亮亮, 2017;李顺达, 2019)、扎木钦(何鹏等, 2018)、昌图希力(Zhang et al., 2020;何鹏等, 2019)、白音诺尔(曾庆栋等, 2007)、浩布高(李剑锋等, 2015;王祥东, 2017)、黄岗(周振华, 2011)、花敖包特(陈永清等, 2014;张雪冰, 2017)、孟恩陶勒盖(朱笑青等, 2004)、布黑金(付丽娟, 2016)、白音查干(聂凤军等, 2007a)、大井(冯建忠等, 1994;储雪蕾等, 2002)、双尖子山(吴冠斌等, 2014;王祥东, 2017)、拜仁达坝(欧阳荷根, 2013)、维拉斯托(欧阳荷根, 2013)、边家大院(阮班晓等, 2013;Song et al., 2019;Zhai et al., 2019)
Fig. 9. 34SCDT value comparison of pyrite, sphalerite and galena from different deposits in the GXR
图 10 207Pb/204Pb-206Pb/204Pb增长曲线(a);208Pb/204Pb-206Pb/204Pb增长曲线(b);207Pb/204Pb-206Pb/204Pb构造环境判别图解(c);208Pb/204Pb-206Pb/204Pb构造环境判别图解(d)
Pb同位素数据来源:北带:二道河子(李进文等, 2011)、得耳布尔(关键东等, 2015)、东珺(温亦品, 2015)、甲乌拉(翟德高等, 2013;Li et al., 2015)、额仁陶勒盖(田京, 2015), 中带:二道河(衮民汕, 2016)、阿尔哈达(张万益等, 2007)、查干敖包(张万益, 2008)、吉林宝力格(王治华等, 2014;杜昊, 2018)、朝不楞(聂凤军等, 2007b), 南带:扎木钦(何鹏等, 2018)、浩布高(李剑锋等, 2015;王祥东, 2017)、双尖子山(王祥东, 2017)、白音诺尔(江思宏等, 2011)、大井(储雪蕾等, 2002)、黄岗(翟德高等, 2012)、拜仁达坝(欧阳荷根, 2013)、维拉斯托(欧阳荷根, 2013)、边家大院(阮班晓等, 2013).底图据Zartman and Doe(1981);朱炳泉(1998)
Fig. 10. 207Pb/204Pb-206Pb/204Pb growth curve (a), 208Pb/204Pb-206Pb/204Pb growth curve (b), 207Pb/204Pb-206Pb/204Pb tectonic discriminaton diagram (c), 208Pb/204Pb-206Pb/204Pb tectonic discriminaton diagram (d)
图 11 大兴安岭地区铅锌矿床H-O同位素特征(底图据Sheppard, 1977)
H-O同位素数据来源:甲乌拉(翟德高等, 2013;Li et al., 2015)、额仁陶勒盖(田京, 2015;赵岩, 2017)、得耳布尔(赵岩等, 2018)、二道河(衮民汕, 2016)、阿尔哈达(柯亮亮, 2017;李顺达, 2019)、吉林宝力格(杜昊, 2018)、黄岗梁(周振华等, 2011;梅微等, 2015)、白音诺尔(于琪等, 2015)、浩布高(李剑锋等, 2015)、孟恩陶勒盖(朱笑青等, 2004)、花敖包特(周顶, 2014;张雪冰, 2017)、布金黑(付丽娟, 2016;张雪冰, 2017)、边家大院(阮班晓、吕新彪, 2014;李昊星, 2019)、拜仁达坝(欧阳荷根, 2013;梅微等, 2015)、维拉斯托(欧阳荷根, 2013;梅微等, 2015)、大井(梅微, 2014)
Fig. 11. δDSMOW versus δ18Owater diagram of different deposits in the GXR(modified after Sheppard, 1977)
表 1 大兴安岭地区铅锌多金属矿床特征
Table 1. Characteristics of lead-zinc polymetallic deposits in the GXR
矿床名称 成因类型 矿化元素 规模 赋矿地层及时代 控矿构造 围岩蚀变 重要金属矿物 成矿岩体与锆石年龄 成矿年代与定年方法 得耳布尔 浅成低温热液型 Pb-Zn-Ag 大型 中侏罗统塔木兰沟组(J2t)粗安岩、安山岩 NW向断裂 内带泥化, 中带硅化、绢云母化, 外带青磐岩化 方铅矿、闪锌矿、黄铜矿、深红银矿、脆银矿、黄铁矿、铅矾、白铅矿、菱锌矿 正长斑岩(燕山晚期) 闪锌矿Rb-Sr等时线141.6± 1.9 Ma (赵岩等, 2017) 比利亚谷 浅成低温热液型 Pb-Zn-Ag 大型 中侏罗统塔木兰沟组(J2t)英安岩、角砾凝灰岩、安山质火山碎屑岩等 NW向张性断裂 线型硅化、黄铁矿化、重晶石化、绢云母化、绿泥石化, 面型青磐岩化 方铅矿、闪锌矿、黄铁矿、黄铜矿 未发现 晚侏罗世 二道河子 低硫化浅成低温热液型 Pb-Zn-Ag 大型 中侏罗统塔木兰沟组(J2t)凝灰岩、岩屑晶屑凝灰岩 NW向张性断裂 硅化、绢云母化、黄铁矿化、碳酸盐化、绿泥石化 方铅矿、闪锌矿、黄铁矿、黄铜矿、毒砂、辉银矿、深红银矿、脆银矿、银黝铜矿 安山玢岩(133.9± 0.9 Ma) (Xu et al., 2020) 闪锌矿Rb-Sr等时线130.5± 3.6 Ma (Xu et al., 2020) 东珺 浅成低温热液型 Pb-Zn-Ag 中型 中侏罗统塔木兰沟组(J2t)玄武安山岩、粗安岩、凝灰岩 NW向张性断裂 硅化、绢云母化、碳酸盐化、高岭土化、绿泥石化、少量阳起石化 方铅矿、闪锌矿、黄铜矿、黄铁矿、磁黄铁矿、毒砂、磁铁矿 未发现 闪锌矿Rb-Sr等时线130.2± 4.4 Ma (杨郧城等, 2015) 甲乌拉 低硫化浅成低温热液型 Ag-Pb-Zn-Cu 大型 中侏罗统塔木兰沟组(J2t)安山岩、安山质火山碎屑岩 NNW、NWW向断裂、放射状断裂系统、层间构造带 硅化、绿泥石化、碳酸盐化、水云母和伊利石化、萤石化 方铅矿、闪锌矿、黄铜矿、黄铁矿、磁黄铁矿、毒砂、磁铁矿 富碱花岗斑岩(146.4±1.6 Ma;杨梅等, 2017) 硫化物Rb-Sr等时线142.7± 1.3 Ma(李铁刚等, 2014);热液锆石U-Pb 143.1±3.9 Ma(杨梅等, 2017) 查干布拉根 低硫化浅成低温热液型 Ag-Pb-Zn 大型 中侏罗统万宝组(J2w)砂岩、砾岩, 塔木兰沟组(J2t)玄武岩、安山岩 硅化、碳酸盐化、伊利石化、水云母化、绿泥石化、高岭土化、绢云母化、萤石化 方铅矿、闪锌矿、黄铁矿、黄铜矿、磁黄铁矿、毒砂、硫锑铜银矿、银黝铜矿、深红银矿、硫银锡矿、辉银矿、金银矿、银金矿、自然金 未发现 白云母Ar-Ar坪年龄137.7± 0.94 Ma (Li et al., 2016) 额仁陶勒盖 低硫化浅成低温热液型 Ag-Pb-Zn-Mn 大型 中侏罗统塔木兰沟组(J2t)玄武岩、安山岩、火山碎屑岩 NE向扭性断裂、NW向张扭性断裂 中心向外围依次为硅化、绢英岩化、泥化、青磐岩化、碳酸盐化 硬锰矿、自然银、黄铁矿、方铅矿、闪锌矿、黄铜矿 石英二长斑岩脉(138.6±2.3 Ma;许立权等, 2014) 早白垩世 八岔沟 矽卡岩型 Pb-Zn-Ag 大型 上侏罗统满克头鄂博组(J3mk)流纹质晶屑凝灰岩 NE和NW向断裂及两者交汇处 矽卡岩化、碳酸盐化、云英岩化、硅化、绢云母化、绿泥石化、高岭土化 闪锌矿、方铅矿、磁铁矿、黄铁矿、黄铜矿 黑云母二长花岗岩(141.5± 1.1 Ma;刘承先, 2019) 早白垩世 二道河 矽卡岩型 Pb-Zn-Ag 大型 中上奥陶统裸河组(O2-3l)灰岩、变质粉砂岩;次为中侏罗统塔木兰沟组(J2t)安山岩 NE向断裂 矽卡岩化、绿帘石化、碳酸盐化、绿泥石化、绢云母化、硅化、钾长石化、钠长石化、萤石化 闪锌矿、方铅矿、黄铜矿、黄铁矿、磁黄铁矿、磁铁矿、赤铁矿、硫锰矿 二长闪长岩(227±2 Ma;Yang et al., 2020)、闪长玢岩脉(145.0±1.6 Ma;杨发亭, 2016)、花岗斑岩脉(134±1 Ma;衮民汕, 2016) 热液榍石U-Pb 234.0±5.9 Ma、144.4± 3.9 Ma(本文未发表数据);闪锌矿Rb-Sr等时线131±2 Ma(衮民汕, 2016) 朝不楞 矽卡岩型 Fe-Bi-Ag-Sn-(Cu-Pb-Zn-W-Mo) 中型(小型) 中泥盆统塔尔巴格特组(D2t)板岩、粉砂岩、凝灰岩、碳酸盐岩和细砂岩 NE向断裂破碎带 矽卡岩化、钙硅质角岩化、绿帘石化、碳酸盐化、萤石化、硅化、钾化、绿泥石化、泥化 磁铁矿、赤铁矿、白钨矿、毒砂、斜方砷铁矿、白铁矿、辉钼矿、黄铜矿、磁黄铁矿、闪锌矿、方铅矿、辉铋矿、斜方辉铅铋矿、自然铋 朝不楞复式岩体(130~145 Ma, 137.07± 0.57 Ma;Wu et al., 2017) 辉钼矿Re-Os等时线外接触带140.7±1.8 Ma(聂凤军等, 2007b), 内接触带131.2± 4.1 Ma、135.0± 2.1 Ma(Wu et al., 2017) 阿尔哈达 岩浆热液脉型 Pb-Zn-Ag 大型 上泥盆统安格尔音乌拉组(D3a)炭质板岩、细砂岩和凝灰岩 NW向断裂 高岭土化、绢云母化、白云母化、绿泥石化、绿帘石化、硅化、滑石化、碳酸盐化、萤石化 方铅矿、闪锌矿、黄铁矿、毒砂、磁黄铁矿、黄铜矿、黝锡矿 隐伏黑云母花岗岩(156.27±0.49 Ma;李顺达, 2019) 白云母Ar-Ar坪年龄156.27± 0.49 Ma (谢玉玲等, 2015) 查干敖包-曼特敖包 矽卡岩型 Fe-Zn 中型 中奥陶统多宝山组(O2d)大理岩-凝灰质板岩 NE向断裂及其次级断裂和构造破碎带 矽卡岩化、角岩化、硅化、高岭土化、绿泥石化、绿帘石化、碳酸盐化 磁铁矿、闪锌矿、赤铁矿、磁黄铁矿、黄铁矿、斑铜矿、毒砂、自然铋、辉铋铅矿、辉钼矿、方铅矿、白钨矿 碱性石英闪长岩(237± 6 Ma;张万益等, 2008) 中晚三叠世 吉林宝力格 岩浆热液脉型 Ag-(Au-Pb-Zn) 中型 上泥盆统安格尔音乌拉组(D3a)粉砂凝灰质泥岩夹砂岩和凝灰砂质板岩 NW向张扭性断裂 角岩化、高岭土化、硅化、绢云母化、绿泥石化、碳酸盐化 毒砂、黄铁矿、白铁矿、黄铜矿、方铅矿、闪锌矿 斑状二长花岗岩(314±8.8 Ma;张万益, 2008) 晚石炭世 扎木钦 浅成低温热液型 Pb-Zn-Ag 大型 下白垩统白音高老组(K1b)英安质角砾凝灰岩、晶屑凝灰岩 NE向层间断裂、NW向张扭性断裂及两者交汇处 高岭土化、绢云母化、白云母化、绿泥石化、绿帘石化、硅化、黄铁矿化、碳酸盐化、萤石化 方铅矿、闪锌矿、黄铁矿、深红银矿、辉银矿、脆银矿、毒砂、针碲金银矿、自然银、银黝铜矿 白音高老组火山岩(早白垩世?) 早白垩世 花敖包特 岩浆热液脉型 Pb-Zn-Ag 大型 下二叠统寿山沟组(P1s)砂岩、粉砂岩、炭质板岩、细砂岩、粉砂质泥岩 NW、NE、NS向断裂及其交汇处 硅化、绢云母化、黄铁矿化、高岭土化、碳酸盐化、绿泥石化 方铅矿、闪锌矿、黄铁矿、磁黄铁矿、毒砂、深红银矿、辉银矿、银黝铜矿、黄铜矿、辉锑矿 流纹斑岩(136±3 Ma;张雪冰, 2017) 早白垩世 布金黑 岩浆热液脉型 Pb-Zn 中型 下二叠统寿山沟组(P1s)变质砂岩、泥质板岩 EW向断裂 硅化、碳酸盐化、绢云母化、绿泥石化、绿帘石化、高岭土化、萤石化 黄铁矿、毒砂、磁黄铁矿、闪锌矿、方铅矿、锡石、辉银矿、斑铜矿 流纹斑岩(122.9± 2.4 Ma;张雪冰, 2017) 早白垩世 昌图希力 中-低硫化浅成低温热液型 Ag-Pb-Zn-Mn 大型 下白垩统白音高老组(K1b)英安岩、流纹岩、流纹质火山碎屑岩 NW向破碎蚀变带 硅化、绿泥石化、绢云母化、泥化、碳酸盐化 菱锰矿、硬锰矿、锰钾矿、锰铅矿、方铅矿、闪锌矿、银黝铜矿、自然银、深红银矿、黄铁矿、毒砂、黄铜矿 白音高老组火山岩(146~160 Ma;Zhang et al., 2020) 晚侏罗世-早白垩世 孟恩陶勒盖 岩浆热液脉型 Ag-Pb-Zn-(Cu-Au-Sn) 大型 无 EW向脆性断裂 硅化、白云母化、绢云母化、绿泥石化、碳酸盐化、锰菱铁矿化 方铅矿、闪锌矿、黄铜矿、黄铁矿、磁黄铁矿、毒砂、锡石、黝锡矿 隐伏花岗岩? 白云母Ar-Ar坪年龄179.0± 1.5 Ma (张炯飞等, 2003) 浩布高 矽卡岩型 Cu-Pb-Zn-Fe-Sn 大型 下二叠统大石寨组(P1d)粉砂质、泥质板岩夹大理岩、变质砂岩 NE向断裂 矽卡岩化、绢云母化、绿泥石化、钾长石化、云英岩化、青磐岩化 闪锌矿、方铅矿、黄铜矿、磁铁矿、磁黄铁矿、锡石、黄铁矿、赤铁矿 黑云母花岗岩(139 Ma;Wang et al., 2018) 辉钼矿Re-Os等时线137.5± 2.7 Ma (Wang et al., 2018) 双尖子山 岩浆热液脉型 Ag-Pb-Zn 超大型 下二叠统大石寨组(P1d)泥质炭质板岩夹蚀变凝灰岩和蚀变安山岩 NW、NE向断裂 绿泥石化、硅化、碳酸盐化、黄铁矿化 闪锌矿、方铅矿、黄铁矿、毒砂、黄铜矿、硫银锡矿、深红银矿、银黝铜矿、硫锑铜银矿 斑状花岗闪长岩(130± 6 Ma;Liu et al., 2016), 斑状花岗岩(159.3± 2.3 Ma;欧阳荷根等, 2016) 闪锌矿Rb-Sr等时线132.7± 3.9 Ma(吴冠斌等, 2013);黄铁矿Re-Os等时线165.0± 7.1 Ma (Liu et al., 2016) 白音诺尔 矽卡岩型 Pb-Zn 大型 下二叠统哲斯组(P1z)结晶灰岩、大理岩 NE、EW向断裂及NE向复背斜 矽卡岩化、绿泥石化、绿帘石化、碳酸盐化、硅化、高岭土化 方铅矿、闪锌矿、黄铁矿、黄铜矿、磁黄铁矿、锡石、毒砂、斑铜矿 花岗闪长岩(244.5± 0.9 Ma), 凝灰熔岩(172.9±2.7 Ma)(Jiang et al., 2017) 闪锌矿Rb-Sr等时线167.6± 4.9 Ma (王祥东等, 2019) 拜仁达坝 岩浆热液脉型 Ag-Pb-Zn 大型 下古生界“锡林郭勒杂岩”黑云斜长片麻岩 近EW向压扭性断裂 硅化、绢云母化、萤石化、碳酸盐化、高岭土化 闪锌矿、黄铜矿、方铅矿、磁黄铁矿、毒砂、黄铁矿、辉锑矿、银黝铜矿、硫锑铅矿 未发现 白云母Ar-Ar坪年龄135±3 Ma (常勇和赖勇, 2010) 维拉斯托 岩浆热液脉型 Sn-Pb-Zn-Sn-Cu-Li-Rb 大型 下古生界“锡林郭勒杂岩”黑云斜长片麻岩 近EW向压扭性断裂 绿泥石化、硅化、绢云母化、碳酸盐化、云英岩化、绿帘石化、叶腊石化、高岭土化 锡石、闪锌矿、黄铜矿、黄铁矿、黑钨矿、方铅矿、辉钼矿、黝锡矿、斜方砷铁矿、黝铜矿、磁铁矿、针硫锑铅矿 石英斑岩(135~139 Ma;翟德高等, 2016;祝新友等, 2016) 云英岩锡石U-Pb 138±6、135±6 Ma(Wang et al., 2017)、石英脉锡石136.0±6.1 Ma(刘瑞麟等, 2018) 白音查干 岩浆热液脉型 Sn-Cu-Pb-Zn-Ag-(Sb) 大型 下二叠统大石寨组(P1d)凝灰质粉砂岩 NE、NEE向断裂 电气石化、云英岩化、萤石化、硅化、绢云母化、绿泥石化、碳酸盐化、高岭土化 锡石、闪锌矿、黄铁矿、黄铜矿、方铅矿、辉锑矿、毒砂、黝铜矿、银黝铜矿、脆硫锑铅矿 石英斑岩(140.0~144.3 Ma;姚磊等, 2017;刘新等, 2017b) 早白垩世 大井 岩浆热液脉型 Sn-Ag-Pb-Zn-Cu 大型 上二叠统林西组(P3l)黑色板岩、砂岩夹泥灰岩 NW、NWW向断裂 硅化、绿泥石化、绢云母化、萤石化、碳酸盐化 黄铜矿、锡石、闪锌矿、方铅矿、黄铁矿、毒砂、磁黄铁矿、银矿物 次火山岩脉(162.0~253.8 Ma;Mei et al., 2014;刘铭涛等, 2019) 锡石U-Pb 144±16 Ma (廖震等, 2014) 边家大院 岩浆热液脉型 Pb-Zn-Ag-Sn-Mo 中型 下二叠统哲斯组(P1z)硅质粉砂岩 NW向断裂 绿泥石化、硅化、绢云母化、黄铁矿化、钾化、碳酸盐化 方铅矿、闪锌矿、磁黄铁矿、黄铁矿、黄铜矿、辉银矿、银黝铜矿、深红银矿、硫砷铜银矿 石英斑岩(140.8± 0.9 Ma、140.2± 0.6 Ma;Ruan et al., 2015;Zhai et al., 2017) 辉钼矿Re-Os 140.0±1.7 Ma;绢云母Ar-Ar坪年龄138.7±1.0 Ma(Zhai et al., 2017) 黄岗 矽卡岩型 Fe-Sn-(Pb-Zn) 大型 下二叠统哲斯组(P1z)安山岩、P1h大理岩 NE向断裂 矽卡岩化、萤石化、碳酸盐化、硅化 磁铁矿、锡石、白钨矿、闪锌矿、黄铜矿、方铅矿、毒砂、辉钼矿、辉铋矿、磁黄铁矿、黄铁矿 钾长花岗岩(139~145 Ma;Mei et al., 2015;Zhai et al., 2014) 辉钼矿模式年龄141.2±4.3 Ma(团块状矽卡岩)、264.8± 3.9 Ma(似层状矽卡岩)(要梅娟等, 2016) 表 2 大兴安岭地区铅锌多金属成矿带特征对比
Table 2. Characteristic comparison of lead-zinc polymetallic belts in the Great Xing'an Range
北带 中带 南带 主要成因类型 浅成低温热液型 矽卡岩型、岩浆热液脉型 主矿化元素 Pb-Zn-Ag Pb-Zn-Ag-Sn(-Fe-Cu) 主要赋矿地层 中侏罗世火山(碎屑)岩 奥陶-泥盆系碎屑沉积岩 二叠系碎屑沉积岩 主要成矿岩体 火山-次火山岩 中酸性侵入岩 高分异岩浆 成矿物质S来源 火山-次火山岩 中酸性侵入岩 成矿岩浆及围岩地层 主要成矿流体来源 大气降水 岩浆水混合大气降水 -
[1] Badarch, G., Dickson Cunningham, W., Windley, B.F., 2002.A New Terrane Subdivision for Mongolia:Implications for the Phanerozoic Crustal Growth of Central Asia.Journal of Asian Earth Sciences, 21(1):87-110. https://doi.org/10.1016/s1367-9120(02)00017-2 [2] Blevin, P.L., 2004.Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia:Implications for Gold-Rich Ore Systems.Resource Geology, 54(3):241-252. https://doi.org/10.1111/j.1751-3928.2004.tb00205.x [3] Blevin, P.L., Chappell, B.W., 1995.Chemistry, Origin, and Evolution of Mineralized Granites in the Lachlan Fold Belt, Australia:The Metallogeny of I- and S-Type Granites.Economic Geology, 90(6):1604-1619. https://doi.org/10.2113/gsecongeo.90.6.1604 [4] Chang, Y., Lai, Y., 2010.Study on Characteristics of Ore-Forming Fluid and Chronology in the Yindu Ag-Pb-Zn Polymetallic Ore Deposit, Inner Mongolia.Acta Scientiarum Naturalium Universitatis Pekinensis, 46(4):581-593(in Chinese with English abstract). [5] Chen, P.F., 2018.Study on Material Composition and Genesis of the Chaobuleng Fe Polymetallic Deposit, Inner Mongolia (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [6] Chen, Y.Q., Zhou, D., Guo, L.F., 2014.Genetic Study on the Huaaobaote Pb-Zn-Ag Polymetallic Deposit in Inner Mongolia:Evidence from Fluid Inclusions and S, Pb, H, O Isotopes.Journal of Jilin University (Earth Science Edition), 44(5):1478-1491(in Chinese with English abstract). [7] Chu, X.L., Huo, W.G., Zhang, X., 2002.S, C, and Pb Isotopes and Sources of Metallogenetic Elements of the Dajing Cu-Polymetallic Deposit in Linxi County, Inner Mongolia, China.Acta Petrologica Sinica, 18(4):566-574(in Chinese with English abstract). [8] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200. https://doi.org/10.1007/bf00374895 [9] Du, H., 2018.Studies on Material Composition and Genesis of the Jilinbaolige Deposit in Inner Mongolia (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [10] Fan, X.Y., Lü, X.B., Liu, X., et al., 2020.Zonation of Alteration Mineral and Primary Halo in the Wunuer Pb-Zn-Ag-Mo Ore Deposit, Inner Mongolia, NE China.Earth Science(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.037 [11] Feiss, P.G., 1978.Magmatic Sources of Copper in Porphyry Copper Deposits.Economic Geology, 73(3):397-404. https://doi.org/10.2113/gsecongeo.73.3.397 [12] Feng, J.Z., Ai, X., Wu, Y.B., et al., 1994.The Stable Isotopic Geochemistry of the Dajing Polymetallic Deposit, Inner Mongolia.Jilin Geology, 13(3):60-66(in Chinese with English abstract). [13] Feng, Y.Y., Sun, J.G., Zhu, J.Q., et al., 2017.Petrogenesis and Geological Implications of Volcanic Rocks in Erentaolegai Silver Polymetallic Deposit on West Slope of the Great Xing'an Range:Zircon U-Pb Geochronology and Geochemistry.Global Geology, 36(1):118-134(in Chinese with English abstract). [14] Fu, L.J., 2016.The Geological Characterisitcs and Prospecting Direction of the Bujinhei Pb-Zn Deposit in West Ujimqin, Inner Mongolia (Dissertation).Jilin University, Changchun(in Chinese with English abstract). [15] Gladkochub, D.P., Donskaya, T.V., Wingate, M.T.D., et al., 2008.Petrology, Geochronology, and Tectonic Implications of ca.500 Ma Metamorphic and Igneous Rocks along the Northern Margin of the Central Asian Orogen (Olkhon Terrane, Lake Baikal, Siberia).Journal of the Geological Society, 165(1):235-246. https://doi.org/10.1144/0016-76492006-125 [16] Guan, J.D., Meng, H., Ma, Z.M., 2015.Isotopic Characteristics and Origin of the Sanhe Pb-Zn Deposit, Inner Mongolia.Western Resources, (2):106-108(in Chinese with English abstract). [17] Gun, M.S., 2016.Geological Charateristics and Ore Genesis of Erdaohe Zn-Pb Polymetallic Deposit in Inner Mongolia (Dissertation).China University of Geosciences, Wuhan(in Chinese with English abstract). [18] He, P., Guo, S., Zhang, K., et al., 2019.The Sources of Ore-Forming Materials and Genesis of the Changtuxili Ag-Pb-Zn-Mn Polymetallic Deposit in the Middle-Southern Segment of Da Hinggan Mountains:Constraints from S-Pb-C-O Isotope Geochemistry.Acta Geologica Sinica, 93(8):2037-2054(in Chinese with English abstract). [19] He, P., Guo, S., Zhang, T.F., et al., 2018.The Sources of Ore-Forming Materials and Genesis of the Zhamuqin Pb-Zn-Ag Polymetallic Deposit in the Middle-Southern Segment of Da Hinggan Mountains:Constrains from S, Pb Isotope Geochemistry.Acta Petrologica Sinica, 34(12):3597-3610(in Chinese with English abstract). [20] Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055 [21] Jian, P., Liu, D.Y., Kröner, A., et al., 2010.Evolution of a Permian Intraoceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia.Lithos, 118(1-2):169-190. https://doi.org/10.1016/j.lithos.2010.04.014 [22] Jiang, S.H., Chen, C.L., Bagas, L., et al., 2017.Two Mineralization Events in the Baiyinnuoer Zn-Pb Deposit in Inner Mongolia, China:Evidence from Field Observations, S-Pb Isotopic Compositions and U-Pb Zircon Ages.Journal of Asian Earth Sciences, 144:339-367. https://doi.org/10.1016/j.jseaes.2016.12.042 [23] Jiang, S.H., Nie, F.J., Bai, D.M., et al., 2011.Geochronology Evidence for Indosinian Mineralization in Baiyinnuoer Pb-Zn Deposit of Inner Mongolia.Mineral Deposits, 30(5):787-798(in Chinese with English abstract). [24] Ke, L.L., 2017.Isotopic Geochemistry and Evolution of Ore-Forming Fluids of the Aerhada Pb-Zn-Ag Deposit, Inner Mongolia, NE China (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [25] Li, H.X., 2019.Characteristics of Ore-Forming Fluids and Metallogenic Potential of Bianjiadayuan Molybdenum-Lead-Zinc Polymetallic Deposit in Inner Mongolia (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [26] Lehmann, B., 1990.Metallogeny of Tin.Springer-Verlag, Berlin. [27] Li, J.F., Wang, K.Y., Lu, J.S., et al., 2015.Ore-Forming Fluid Geochemical Characteristics and Genesis of Pb-Zn Deposit in Hongling, Inner Mongolia.Earth Science, 40(6):995-1005(in Chinese with English abstract). [28] Li, J.W., Liang, Y.W., Wang, X.Y., et al., 2011.The Origin of the Erdaohezi Lead-Zinc Deposit, Inner Mongolia.Journal of Jilin University (Earth Science Edition), 41(6):1745-1754, 1783(in Chinese with English abstract). [29] Li, J.Y., 2006.Permian Geodynamic Setting of Northeast China and Adjacent Regions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate.Journal of Asian Earth Sciences, 26(3-4):207-224. https://doi.org/10.1016/j.jseaes.2005.09.001 [30] Li, S., Wang, T., Wilde, S.A., et al., 2013.Evolution, Source and Tectonic Significance of Early Mesozoic Granitoid Magmatism in the Central Asian Orogenic Belt (Central Segment).Earth-Science Reviews, 126:206-234. https://doi.org/10.1016/j.earscirev.2013.06.001 [31] Li, S.D., 2019.Metallogenic Regularity and Metallogenic Prediction of the Aerhada Pb-Zn Polymetallic Deposit, Inner Mongolia (Dissertation).Jilin University, Changchun(in Chinese with English abstract). [32] Li, T.G., Wu, G., Liu, J., et al., 2014.Rb-Sr Isochron Age of the Jiawula Pb-Zn-Ag Deposit in the Manzhouli Area and Its Geological Significance.Acta Petrologica Sinica, 30(1):257-270(in Chinese with English abstract). [33] Li, T.G., Wu, G., Liu, J., et al., 2015.Fluid Inclusions and Isotopic Characteristics of the Jiawula Pb-Zn-Ag Deposit, Inner Mongolia, China.Journal of Asian Earth Sciences, 103:305-320. https://doi.org/10.1016/j.jseaes.2014.10.003 [34] Li, T.G., Wu, G., Liu, J., et al., 2016.Geochronology, Fluid Inclusions and Isotopic Characteristics of the Chaganbulagen Pb-Zn-Ag Deposit, Inner Mongolia, China.Lithos, 261:340-355. https://doi.org/10.1016/j.lithos.2016.04.029 [35] Li, Y., Xu, W.L., Wang, F., et al., 2014.Geochronology and Geochemistry of Late Paleozoic Volcanic Rocks on the Western Margin of the Songnen-Zhangguangcai Range Massif, NE China:Implications for the Amalgamation History of the Xing'an and Songnen-Zhangguangcai Range Massifs.Lithos, 205:394-410. https://doi.org/10.1016/j.lithos.2014.07.008 [36] Liao, Z., Wang, Y.W., Wang, J.B., et al., 2014.LA-MC-ICP-MS U-Pb Dating and Its Significance of Cassiterite in the Dajing Sn-Polymetallic Deposit, Inner Mongolia.Mineral Deposits, 33(Suppl.1):421-422(in Chinese with English abstract). [37] Liu, C.H., Bagas, L., Wang, F.X., 2016.Isotopic Analysis of the Super-Large Shuangjianzishan Pb-Zn-Ag Deposit in Inner Mongolia, China:Constraints on Magmatism, Metallogenesis, and Tectonic Setting.Ore Geology Reviews, 75:252-267. https://doi.org/10.1016/j.oregeorev.2015.12.019 [38] Liu, C.X., 2019.Geology, Geochemistry and Genesis of Bachagou Ditch Lead-Zinc Deposit in Oroqen Banner, Inner Mongolia (Dissertation).Jilin University, Changchun(in Chinese with English abstract). [39] Liu, H.Z., 2017.Discussion on Metallogenic Characteristics and Genesis of Weilasituo Sn Polymetal Deposit in Inner Mongolia (Dissertation).China University of Geosciences, Beigjing(in Chinese with English abstract). [40] Liu, M.T., Liu, J.M., Xue, C.J., et al., 2019.LA-ICP-MS Zircon U-Pb Dating of Dikes in the Dajing Copper-Polymetallic Deposit and a Discussion on the Metallogenic Epoch.Geological Bulletin of China, 38(8):1306-1313(in Chinese with English abstract). [41] Liu, R.L., Wu, G., Li, T.G., et al., 2018.LA-ICP-MS Cassiterite and Zircon U-Pb Ages of the Weilasituo Tin-Polymetallic Deposit in the Southern Great Xing'an Range and Their Geological Significance.Earth Science Frontiers, 25(5):183-201(in Chinese with English abstract). [42] Liu, X., Li, X.G., Zhu, X.Y., et al., 2017a.Mineralization Process of the Baiyinchagan Tin Polymetallic Deposit in Inner Mongolia Ⅱ:Chronology of Ore-Bearing Porphyry, Geochemical Characteristics and Geological Implications of the Granite Porphyry.Mineral Exploration, 8(6):981-996(in Chinese with English abstract). [43] Liu, X., Wang, J.B., Zhu, X.Y., et al., 2017b.Mineralization Process of the Baiyinchagan Tin Polymetallic Deposit in Inner Mongolia Ⅰ:Metallic Mineral Assemblage and Metallogenic Mechanism.Mineral Exploration, 8(6):967-980(in Chinese with English abstract). [44] Liu, Y.J., Li, W.M., Feng, Z.Q., et al., 2017.A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt.Gondwana Research, 43:123-148. https://doi.org/10.1016/j.gr.2016.03.013 [45] Lü, Y.Y., 2017.Analysis on Geological Characteristics and Prospecting of the Quanzishan Area, Inner Mongolia.Heilongjiang Science and Technology Information, (10):7-8(in Chinese with English abstract). [46] Lü, Z.C., Zhang, P.P., Liu, C.Q., et al., 2000.Mineralogical Characteristics of Silver Minerals in E'rentaolegai Silver Deposit.Geology-Geochemistry, 28(3):41-47(in Chinese with English abstract). [47] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [48] Mei, W., 2014.Mesozoic Magmatism and Mineralization in Northern Chifeng, Inner Mongolia (Dissertation).China University of Geosciences, Wuhan(in Chinese with English abstract). [49] Mei, W., Lü, X.B., Ai, Z.L., et al., 2014.Geochemistry and Zircon U-Pb Age of Subvolcanic Rocks in Dajing Deposit, NE China:Geodynamic Implications.Geochemical Journal, 48(4):379-395. https://doi.org/10.2343/geochemj.2.0313 [50] Mei, W., Lü, X.B., Cao, X.F., et al., 2015.Ore Genesis and Hydrothermal Evolution of the Huanggang Skarn Iron-Tin Polymetallic Deposit, Southern Great Xing'an Range:Evidence from Fluid Inclusions and Isotope Analyses.Ore Geology Reviews, 64:239-252. https://doi.org/10.1016/j.oregeorev.2014.07.015 [51] Mei, W., Lü, X.B., Liu, Z., et al., 2015.Geochronological and Geochemical Constraints on the Ore-Related Granites in Huanggang Deposit, Southern Great Xing'an Range, NE China and Its Tectonic Significance.Geosciences Journal, 19(1):53-67. https://doi.org/10.1007/s12303-014-0021-y [52] Mei, W., Lü, X.B., Tang, R.K., et al., 2015.Ore-Forming Fluid and Its Evolution of Bairendaba-Weilasituo Deposits in West Slope of Southern Great Xing'an Range.Earth Science, 40(1):145-162(in Chinese with English abstract). [53] Meng, F.C., Liu, J.Q., Cui, Y., et al., 2014.Mesozoic Tectonic Regimes Transition in the Northeast China:Constriants from Temporal-Spatial Distribution and Associations of Volcanic Rocks.Acta Petrologica Sinica, 30(12):3569-3586(in Chinese with English abstract). [54] Middlemost, E.A.K., 1985.Magmas and Magmatic Rocks: An Introduction to Igneous Petrology.Longman Higher Education, London. [55] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [56] Nie, F.J., Jiang, S.H., Zhang, Y., et al., 2007a.Metallogeny and Ore Prospecting of Ore Deposits Occurring along the Border Region of China and Mongolia.Geological Publishing House, Beijing(in Chinese). [57] Nie, F.J., Zhang, W.Y., Du, A.D., et al., 2007b.Re-Os Isotopic Age Dating of Molybdenite Separates from the Chaobuleng Skarn Iron-Polymetallic Deposit, Dong Ujimqin Banner, Inner Mongolia.Acta Geoscientica Sinica, 28(4):315-323(in Chinese with English abstract). [58] Niu, D.S., 2017.Magma Emplacement Sequence and Mineralization of the Jiawula Pb-Zn-Ag Deposit, Inner Mongolia, NE China: Evidence from Geochronology, Geochemistry and Genetic Mineralogy (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [59] Ouyang, H.G., 2013.Metallogenesis of Bairendaba-Weilasituo Silver-Polymetallic Deposit and Its Geodynamic Setting, in the Southern Segment of Great Xing'an Range, NE China (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [60] Ouyang, H.G., Li, R.H., Zhou, Z.H., 2016.The Jurassic Mineralization of the Shuangjianzisha Ag-Polymetallic Deposit and Its Significance in Prospecting:Evidence from Geochronology.Acta Geologica Sinica, 90(8):1835-1845(in Chinese with English abstract). [61] Qiu, J.X., Lin, J.Q., 1991.Petrochemistry.Geological Publishing House, Beijing(in Chinese). [62] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [63] Ruan, B.X., Lü, X.B., Liu, S.T., et al., 2013.Genesis of Bianjiadayuan Pb-Zn-Ag Deposit in Inner Mongolia:Constraints from U-Pb Dating of Zircon and Multi-Isotope Geochemistry.Mineral Deposits, 32(3):501-514(in Chinese with English abstract). [64] Ruan, B.X., Lü, X.B., Yang, W., et al., 2015.Geology, Geochemistry and Fluid Inclusions of the Bianjiadayuan Pb-Zn-Ag Deposit, Inner Mongolia, NE China:Implications for Tectonic Setting and Metallogeny.Ore Geology Reviews, 71:121-137. https://doi.org/10.1016/j.oregeorev.2015.05.004 [65] Sheppard, S.M.F., 1977.Identification of the Origin of OreForming Solutions by the Use of Stable Isotopes.Geological Society, London, Special Publications, 7(1):25-41. https://doi.org/10.1144/gsl.sp.1977.007.01.04 [66] Shi, L., Zheng, C.Q., Yao, W.G., et al., 2015.Geochronological Framework and Tectonic Setting of the Granitic Magmatism in the Chaihe-Moguqi Region, Central Great Xing'an Range, China.Journal of Asian Earth Sciences, 113:443-453. https://doi.org/10.1016/j.jseaes.2014.12.013 [67] Shuang, B., 2012.Metallogenic Series and Metallogenic Prognosis of Nonferrous and Precious Metal Deposits in Manzhouli-Xin Barag Youqi (Dissertation).Jilin University, Changchun(in Chinese with English abstract). [68] Song, K.R., 2019.Metallogenic Relationship and Prospecting Significance between Fluorite Deposits and Lead-Zinc-Silver Polymetallic Deposits in the Linxi Area, Inner Mongolia (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [69] Song, K.R., Tang, L., Zhang, S.T., et al., 2019.Genesis of the Bianjiadayuan Pb-Zn Polymetallic Deposit, Inner Mongolia, China:Constraints from In-Situ Sulfur Isotope and Trace Element Geochemistry of Pyrite.Geoscience Frontiers, 10(5):1863-1877. https://doi.org/10.1016/j.gsf.2019.02.004 [70] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42:313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [71] Sun, X.G., 2008.Metallogenic Model and Prospecting Model in Longtoushan Ag-Pb-Zn Polymetallic Ore Deposit, Inner Mongolia (Dissertation).Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing(in Chinese with English abstract). [72] Tang, J., Xu, W.L., Wang, F., et al., 2014.Geochronology and Geochemistry of Early-Middle Triassic Magmatism in the Erguna Massif, NE China:Constraints on the Tectonic Evolution of the Mongol-Okhotsk Ocean.Lithos, 184-187:1-16. https://doi.org/10.1016/j.lithos.2013.10.024 [73] Tang, J., Xu, W.L., Wang, F., et al., 2018.Subduction History of the Paleo-Pacific Slab beneath Eurasian Continent:Mesozoic-Paleogene Magmatic Records in Northeast Asia.Scientia Sinica Terrae, 48(5):549-583(in Chinese). [74] Tang, R.K., Lü, X.B., Cao, X.F., et al., 2014.Mineralogy and Metallogenic Mechanism of Weilasituo and Beirendaba Deposits, Inner Mongolia, China.Earth Science, 39(6):671-686(in Chinese with English abstract). [75] Tian, J., 2015.Mineralization and Alteration Geological Charateristics Study in Erentaolegai Silver Deposit, Inner Monglia (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [76] Tomurtogoo, O., Windley, B.F., Kröner, A., et al., 2005.Zircon Age and Occurrence of the Adaatsag Ophiolite and Muron Shear Zone, Central Mongolia:Constraints on the Evolution of the Mongol-Okhotsk Ocean, Suture and Orogen.Journal of the Geological Society, 162:125-134. https://doi.org/10.1144/0016-764903-146 [77] Vervoort, J.D., Patchett, P.J., Gehrels, G.E., et al., 1996.Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes.Nature, 379:624-627. https://doi.org/10.1038/379624a0 [78] Wang, C.M., 2008.Exhalative Sedimentary Mineralization and Metallogenic Prediction in the Middle-Southern Segment of the Da Hinggan Mountains (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [79] Wang, F.X., Bagas, L., Jiang, S.H., et al., 2017.Geological, Geochemical, and Geochronological Characteristics of Weilasituo Sn-Polymetal Deposit, Inner Mongolia, China.Ore Geology Reviews, 80:1206-1229. https://doi.org/10.1016/j.oregeorev.2016.09.021 [80] Wang, X.L., 2014.The Study of the Metallogenic Charateristics and Genesis of the Bianjiadayuan Pb-Zn-Ag Deposit in Inner Mongolia, China (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [81] Wang, X.D., 2017.Magmatism and Mineralization of Ag-Pb-Zn Polymetallic Deposits in the Lindong District, Inner Mongolia (Dissertation).China University of Geosciences, Wuhan(in Chinese with English abstract). [82] Wang, X.D., Xu, D.M., Lü, X.B., et al., 2018.Origin of the Haobugao Skarn Fe-Zn Polymetallic Deposit, Southern Great Xing'an Range, NE China:Geochronological, Geochemical, and Sr-Nd-Pb Isotopic Constraints.Ore Geology Reviews, 94:58-72. https://doi.org/10.1016/j.oregeorev.2018.01.022 [83] Wang, X.D., Xu, D.M., Lü, X.B., et al., 2019.Middle Jurassic Mineralization Event in the Baiyinnuoer Deposit:Evidence from the Sphalerite Rb-Sr Isochron Age.Mineral Deposits, 10(4):791-800(in Chinese with English abstract). [84] Wang, Z.H., Cong, R.X., Chang, C.J., et al., 2014.Sulfur, Lead Isotopic Characteristics and Genesis of the Jilinbaolige Ag Polymetallic Deposit, Inner Mongolia.Mineral Deposits, 33(Suppl.1):289-290(in Chinese with English abstract). [85] Wen, Y.P., 2015.The Study on Geochemistry Feature of Dongjun Ergun Lead-Zinc-Silver Deposits (Dissertation).Xi'an University of Science and Technology, Xi'an(in Chinese with English abstract). [86] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [87] Wu, C., Wang, B.R., Zhou, Z.G., et al., 2017.The Relationship between Magma and Mineralization in Chaobuleng Iron Polymetallic Deposit, Inner Mongolia.Gondwana Research, 45:228-253. https://doi.org/10.1016/j.gr.2017.02.006 [88] Wu, F.Y., Jahn, B.M., Wilde, S.A., et al., 2003.Highly Fractionated I-Type Granites in NE China (II):Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic.Lithos, 67(3-4):191-204. https://doi.org/10.1016/s0024-4937(03)00015-x [89] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). [90] Wu, F.Y., Sun, D.Y., Ge, W.C., et al., 2011.Geochronology of the Phanerozoic Granitoids in Northeastern China.Journal of Asian Earth Sciences, 41(1):1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 [91] Wu, F.Y., Sun, D.Y., Li, H.M., et al., 2002.A-Type Granites in Northeastern China:Age and Geochemical Constraints on Their Petrogenesis.Chemical Geology, 187(1-2):143-173. https://doi.org/10.1016/s0009-2541(02)00018-9 [92] Wu, G.B., Liu, J.M., Zeng, Q.D., et al., 2013.Mineralization Age of the Shuangjianzishan Pb-Zn-Ag Deposit, Inner Mongolia.Acta Mineralogica Sinica, 33(Suppl.2):619(in Chinese with English abstract). [93] Wu, G.B., Liu, J.M., Zeng, Q.D., et al., 2014. Occurrences of Silver in the Shuangjianzishan Pb-Zn-Ag Deposit and Its Implications for Mineral Processing. Earth Science Frontiers, 21(5): 105-115 (in Chinese with English abstract). [94] Xie, Y.L., Zhong, R.C., Zhou, J.J., et al., 2015.Metallogenic Regularity and Prospecting Direction of Mo-Pb-Zn Polymetallic Deposit in Eastern Wuqi Area, Inner Mongolia.University of Science and Technology Beijing, Beijing(in Chinese). [95] Xu, L.Q., Liu, C., Deng, J.F., et al., 2014.Geochemical Characteristics and Zircon U-Pb SHRIMP Age of Igneous Rocks in Erentaolegai Silver Deposit, Inner Mongolia.Acta Petrologica Sinica, 30(11):3203-3212(in Chinese with English abstract). [96] Xu, W.L., Pei, F.P., Wang, F., et al., 2013.Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China:Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes.Journal of Asian Earth Sciences, 74:167-193. https://doi.org/10.1016/j.jseaes.2013.04.003 [97] Xu, Z.T., Liu, Y., Sun, J.G., et al., 2020.Nature and Ore Formation of the Erdaohezi Pb-Zn Deposit in the Great Xing'an Range, NE China.Ore Geology Reviews, 119:103385. https://doi.org/10.1016/j.oregeorev.2020.103385 [98] Yang, F.T., 2016.Geologic Features of Erdaohe Silver Polymetallic Deposit and Its Ore Finding Prediction in Middle Daxing'anling Mountains (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [99] Yang, J.S., Lü, X.B., Gun, M.S., et al., 2020.Early Mesozoic Subduction of the Mongol-Okhotsk Ocean and Its Effect on the Central Great Xing'an Range:Insights from the Monzodiorite in the Erdaohe Deposit.Geological Journal. https://doi.org/10.1002/gj.4002 [100] Yang, M., 2017.Research on the Genesis of Jiawula Cu-Pb-Zn Deposit in the Western Slope of the Great Xing'an Range (Dissertation).Jilin University, Changchun(in Chinese with English abstract). [101] Yang, M., Sun, J.G., Wang, Z.Y., et al., 2017.Petrogenesis and Geological Significance of the Alkali-Rich Granite Porphyry in the Jiawula Cu-Ag-Pb-Zn Deposit in the Western Slope of the Great Xing'an Range:Zircon U-Pb Dating and Geochemical Characteristics.Journal of Jilin University (Earth Science Edition), 47(2):477-496(in Chinese with English abstract). [102] Yang, X.P., Jiang, B., Yang, Y.J., 2019.Spatial-Temporal Distribution Characteristics of Early Cretaceous Volcanic Rocks in Great Xing'an Range Area.Earth Science, 44(10):3237-3251(in Chinese with English abstract). [103] Yang, Y.C., Guo, W.J., Wang, Y.J., et al., 2015.Rb-Sr Dating of Sphalerites from Dongjun Pb-Zn-Ag Deposit, Inner Mongolia and Its Geological Significance.Earth Science Frontiers, 22(3):348-356(in Chinese with English abstract). [104] Yao, L., Lü, Z.C., Ye, T.Z., et al., 2017.Zircon U-Pb Age, Geochemical and Nd-Hf Isotopic Characteristics of Quartz Porphyry in the Baiyinchagan Sn Polymetallic Deposit, Inner Mongolia, Southern Great Xing'an Range, China.Acta Petrologica Sinica, 33(10):3183-3199(in Chinese with English abstract). [105] Yao, M.J., Cao, Y., Liu, J.J., et al., 2016.Isotope Age of Re-Os in Molybdenite and Genetic Implication of Huanggangliang Fe-Sn Deposit in Inner Mongolia.Mineral Exploration, 7(3):399-403(in Chinese with English abstract). [106] Yu, Q., Wang, K.Y., Han, Y., et al., 2015.Metallogenic Fluid Characteristics of Baiyinnuo'er Pb-Zn Deposit of Inner Mongolia.Global Geology, 34(1):102-112(in Chinese with English abstract). [107] Zartman, R.E., Doe, B.R., 1981.Plumbotectonics:The Model.Tectonophysics, 75(1-2):135-162. https://doi.org/10.1016/0040-1951(81)90213-4 [108] Zeng, Q.D., Liu, J.M., Jia, C.S., et al., 2007.Sedimentary Exhalative Origin of the Baiyinnuoer Zinc-Lead Deposit, Inner Mongolia:Geological and Sulfur Isotope Evidence.Journal of Jilin University (Earth Science Edition), 37(4):659-667(in Chinese with English abstract). [109] Zhai, D.G., Liu, J.J., Cook, N.J., et al., 2019.Mineralogical, Textural, Sulfur and Lead Isotope Constraints on the Origin of Ag-Pb-Zn Mineralization at Bianjiadayuan, Inner Mongolia, NE China.Mineralium Deposita, 54:47-66. https://doi.org/10.1007/s00126-018-0804-6 [110] Zhai, D.G., Liu, J.J., Li, J.M., et al., 2016.Geochronological Study of Weilasituo Porphyry Type Sn Deposit in Inner Mongolia and Its Geological Significance.Mineral Deposits, 35(5):1011-1022(in Chinese with English abstract). [111] Zhai, D.G., Liu, J.J., Wang, J.P., et al., 2013.A Study of Stable Isotope Geochemistry of the Jiawula Large Pb-Zn-Ag Ore Deposit, Inner Mongolia.Earth Science Frontiers, 20(2):213-225(in Chinese with English abstract). [112] Zhai, D.G., Liu, J.J., Yang, Y.Q., et al., 2012.Petrogenetic and Metallogentic Ages and Tectonic Setting of the Huanggangliang Fe-Sn Deposit, Inner Mongolia.Acta Petrologica et Mineralogica, 31(4):513-523(in Chinese with English abstract). [113] Zhai, D.G., Liu, J.J., Zhang, A.L., et al., 2017.U-Pb, Re-Os and 40Ar/39Ar Geochronology of Porphyry Sn±Cu±Mo and Polymetallic (Ag-Pb-Zn-Cu) Vein Mineralization at Bianjiadayuan, Inner Mongolia, NE China:Implications for Discrete Mineralization Events.Economic Geology, 112(8):2041-2059. https://doi.org/10.5382/econgeo.2017.4540 [114] Zhai, D.G., Liu, J.J., Zhang, H.Y., et al., 2014.S-Pb Isotopic Geochemistry, U-Pb and Re-Os Geochronology of the Huanggangliang Fe-Sn Deposit, Inner Mongolia, NE China.Ore Geology Reviews, 59:109-122. https://doi.org/10.1016/j.oregeorev.2013.12.005 [115] Zhang, H.F., Gao, S., 2012.Geochemistry.Geological Publishing House, Beijing(in Chinese). [116] Zhang, J.F., Pang, Q.B., Zhu, Q., et al., 2003.Mengentaolegai Ag-Pb-Zn Deposit in Inner Mongolia:Ar-Ar Age of Muscovite and Its Significance.Mineral Deposits, 22(3):253-256(in Chinese with English abstract). [117] Zhang, K., Jin, R.S., Sun, F.Y., et al., 2020.Metallogenesis and Ore-Forming Time of the Changtuxili Mn-Ag-Pb-Zn Deposit in Inner Mongolia:Evidence from C-O-S Isotopes and U-Pb Geochronology.Geoscience Frontiers, 11(4):1369-1380. https://doi.org/10.1016/j.gsf.2019.11.013 [118] Zhang, W.Y., 2008.Magmatic Activity and Metallogeny of Dong Ujimqin Banner, Inner Mongolia (Dissertation).Chinese Academy of Geologcial Sciences, Beijing(in Chinese with English abstract). [119] Zhang, W.Y., Nie, F.J., Gao, Y.G., et al., 2012.Geochemical Characteristics and Genesis of Triassic Chagan Obo Alkaline Quartz Diorites in Inner Mongolia.Acta Petrologica Sinica, 28(2):525-534(in Chinese with English abstract). [120] Zhang, W.Y., Nie, F.J., Jiang, S.H., et al., 2008.Zircon SHRIMP U-Pb Age of Quartz Diorite in Qagan Obo of Inner Mongolia and Its Geological Significance.Acta Petrologica et Mineralogica, 27(3):177-184(in Chinese with English abstract). [121] Zhang, W.Y., Nie, F.J., Liu, Y., et al., 2007.Studies on Sulfur and Lead Isotope of the Arehada Pb-Zn-Ag Deposit, Dong Ujmqin Qi (County), Inner Mongolia.Journal of Jilin University (Earth Science Edition), 37(5):868-877, 883(in Chinese with English abstract). [122] Zhang, X.B., 2017.Pb-Zn Polymetallic Deposits Metallogenic Series and Prospecting Direction of the West Slope of Southern Great Xing'an Range (Dissertation).Jilin University, Changchun(in Chinese with English abstract). [123] Zhao, Y., 2017.Metallogenetic Model and Prospectings of the Pb-Zn-Ag Deposit in the De'rbugan Metallogenic Belt, Inner Mongolia (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [124] Zhao, Y., Lü, J.C., Zhang, D.B., et al., 2017.Rb-Sr Isochron Age of De'rbur Pb-Zn-Ag Deposit in Erguna Massif of Northeast Inner Mongolia and Its Geological Significance.Mineral Deposits, 36(4):893-904(in Chinese with English abstract). [125] Zhao, Y., Lü, J.C., Zhang, P., et al., 2018.Characteristics of Ore-Forming Fluids in the De'rbur Pb-Zn-Ag Deposit in the NW Great Hinggan Mountains and Its Significance.Acta Geologica Sinica, 92(1):142-153(in Chinese with English abstract). [126] Zhao, Y.M., Wang, D.W., Zhang, D.Q., 1994.Geological Setting and Exploration Model for the Polymetallic Deposits Occurring in the Southeastern Part of Inner Mongolia.Seismologic Press, Beijing(in Chinese with English abstract). [127] Zhao, Z., Wang, D.H., Zhang, C.Q., et al., 2014.Metallogenic Specialization of the Magmatic Rocks Associated with the Lead-Zinc Deposits in the Nanling Region.Geotectonica et Metallogenia, 38(2):289-300(in Chinese with English abstract). [128] Zhou, D., 2014.Genetic Model and Comprehensive Prospecting Pattern of Hua'aobaote Pb-Zn-Ag Polymetallic Deposit, Inner Mongolia (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [129] Zhou, J.B., Wang, B., Wilde, S.A., et al., 2015.Geochemistry and U-Pb Zircon Dating of the Toudaoqiao Blueschists in the Great Xing'an Range, Northeast China, and Tectonic Implications.Journal of Asian Earth Sciences, 97:197-210. https://doi.org/10.1016/j.jseaes.2014.07.011 [130] Zhou, J.B., Wilde, S.A., Zhang, X.Z., et al., 2011.A > 1 300 km Late Pan-African Metamorphic Belt in NE China:New Evidence from the Xing'an Block and Its Tectonic Implications.Tectonophysics, 509(3-4):280-292. https://doi.org/10.1016/j.tecto.2011.06.018 [131] Zhou, Z.H., 2011.Geology and Geochemistry of Huanggang Sn-Fe Deposit, Inner Mongolia (Dissertation).Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract). [132] Zhou, Z.H., Wang, A.S., Li, T., 2011.Fluid Inclusion Characteristics and Metallogenic Mechanism of Huanggang Sn-Fe Deposit in Inner Mongolia.Mineral Deposits, 30(5):867-889(in Chinese with English abstract). [133] Zhu, B.Q., 1998.Study on Chemical Heterogeneities of Mantle Crustal Systems and Geochemical Boundaries of Blocks.Earth Science Frontiers, (1):72-82(in Chinese with English abstract). [134] Zhu, X.Q., Zhang, Q., He, Y.L., et al., 2004.Genesis of Meng'entaolegai Ag-Pb-Zn-In Polymetallic Deposit in Inner Mongolia.Mineral Deposits, 23(1):52-60(in Chinese with English abstract). [135] Zhu, X.Y., Zhang, Z.H., Fu, X., et al., 2016.Geological and Geochemical Characteristics of the Weilasito Sn-Zn Deposit, Inner Mongolia.Geology in China, 43(1):188-208(in Chinese with English abstract). [136] 常勇, 赖勇, 2010.内蒙古银都银铅锌多金属矿床成矿流体特征及成矿年代学研究.北京大学学报(自然科学版), 46(4):581-593. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201004013.htm [137] 陈鹏飞, 2018.内蒙古朝不楞铁多金属矿床物质组成与矿床成因研究(硕士学位论文).北京: 中国地质大学. [138] 陈永清, 周顶, 郭令芬, 2014.内蒙古花敖包特铅锌银多金属矿床成因探讨:流体包裹体及硫、铅、氢、氧同位素证据.吉林大学学报(地球科学版), 44(5):1478-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405008.htm [139] 储雪蕾, 霍卫国, 张巽, 2002.内蒙古林西县大井铜多金属矿床的硫、碳和铅同位素及成矿物质来源.地球化学, 18(4):566-574. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200204015.htm [140] 杜昊, 2018.内蒙古吉林宝力格铅锌银矿床物质组成与矿床成因(硕士学位论文).北京: 中国地质大学. [141] 范谢均, 吕新彪, 柳潇, 等, 2020.内蒙古乌奴耳铅锌银钼矿床蚀变矿物分带及原生晕特征.地球科学. https://doi.org/10.3799/dqkx.2020.037. [142] 冯建忠, 艾霞, 吴俞斌, 等, 1994.内蒙古大井多金属矿床稳定同位素地球化学特征.吉林地质, 13(3):60-66. [143] 冯洋洋, 孙景贵, 祝浚泉, 等, 2017.大兴安岭西坡额仁陶勒盖银多金属矿区火山岩岩石成因及其地质意义:年代学、地球化学特征.世界地质, 36(1):118-134. doi: 10.3969/j.issn.1004-5589.2017.01.010 [144] 付丽娟, 2016.内蒙古西乌珠穆沁旗布金黑铅锌矿床地质特征及找矿方向(硕士学位论文).长春: 吉林大学. [145] 关键东, 蒙红伟, 麻志敏, 2015.内蒙古三河铅锌矿床同位素特征与矿床成因探讨.西部资源, (2):106-108. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201502119.htm [146] 衮民汕, 2016.内蒙古二道河铅锌多金属矿床地质特征及成因研究(硕士学位论文).武汉: 中国地质大学. [147] 何鹏, 郭硕, 张阔, 等, 2019.大兴安岭中南段昌图锡力银铅锌锰多金属矿床成矿物质来源及矿床成因:来自S-Pb-C-O同位素的制约.地质学报, 93(8):2037-2054. doi: 10.3969/j.issn.0001-5717.2019.08.014 [148] 何鹏, 郭硕, 张天福, 等, 2018.大兴安岭中南段扎木钦铅锌银多金属矿床成矿物质来源及矿床成因:来自S、Pb同位素的制约.岩石学报, 34(12):3597-3610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812010.htm [149] 江思宏, 聂凤军, 白大明, 等, 2011.内蒙古白音诺尔铅锌矿床印支期成矿的年代学证据.矿床地质, 30(5):787-798. doi: 10.3969/j.issn.0258-7106.2011.05.003 [150] 柯亮亮, 2017.内蒙古阿尔哈达铅锌银矿床同位素地球化学及成矿流体演化(硕士学位论文).北京: 中国地质大学. [151] 李昊星, 2019.内蒙古边家大院钼铅锌多金属矿床成矿流体特征及成矿潜力分析(硕士学位论文).北京: 中国地质大学. [152] 李剑锋, 王可勇, 陆继胜, 等, 2015.内蒙古红岭铅锌矿床成矿流体地球化学特征及矿床成因.地球科学, 40(6):995-1005. doi: 10.3799/dqkx.2015.083 [153] 李进文, 梁玉伟, 王向阳, 等, 2011.内蒙古二道河子铅锌矿成因研究.吉林大学学报(地球科学版), 41(6):1745-1754, 1783. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106009.htm [154] 李顺达, 2019.内蒙古阿尔哈达铅锌多金属矿床成矿规律与成矿预测(博士学位论文).长春: 吉林大学. [155] 李铁刚, 武广, 刘军, 等, 2014.大兴安岭北部甲乌拉铅锌银矿床Rb-Sr同位素测年及其地质意义.岩石学报, 30(1):257-270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401019.htm [156] 廖震, 王玉往, 王京彬, 等, 2014.内蒙古大井锡多金属矿床锡石LA-MC-ICP-MS U-Pb测年及其意义.矿床地质, 33(增刊1):421-422. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2014S1213.htm [157] 刘承先, 2019.内蒙古鄂伦春自治旗八岔沟铅锌矿地质、地球化学特征及成因(硕士学位论文).长春: 吉林大学. [158] 刘怀征, 2017.内蒙古维拉斯托锡多金属矿床成矿特征与成因研究(硕士学位论文).北京: 中国地质大学. [159] 刘铭涛, 刘建明, 薛春纪, 等, 2019.内蒙古大井铜多金属矿床脉岩LA-ICP-MS锆石U-Pb定年及成矿时代.地质通报, 38(8):1306-1313. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201908006.htm [160] 刘瑞麟, 武广, 李铁刚, 等, 2018.大兴安岭南段维拉斯托锡多金属矿床LA-ICP-MS锡石和锆石U-Pb年龄及其地质意义.地学前缘, 25(5):183-201. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201805014.htm [161] 刘新, 李学刚, 祝新友, 等, 2017a.内蒙古白音查干锡多金属矿床成矿作用研究Ⅱ:成矿花岗斑岩年代学、地球化学特征及地质意义.矿产勘查, 8(6):981-996. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201706008.htm [162] 刘新, 王京彬, 祝新友, 等, 2017b.内蒙古白音查干锡多金属矿床成矿作用研究Ⅰ:金属矿物组合及其成因机制.矿产勘查, 8(6):967-980. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201706007.htm [163] 吕莹玉, 2017.内蒙古泉子山地区地质特征及找矿前景浅析.黑龙江科技信息, (10):7-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX201710007.htm [164] 吕志成, 张培萍, 刘丛强, 等, 2000.额仁陶勒盖银矿床银矿物的矿物学特征及形成条件.地质地球化学, 28(3):41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200003003.htm [165] 梅微, 2014.内蒙古赤峰北部地区中生代岩浆作用与成矿研究(博士学位论文).武汉: 中国地质大学. [166] 梅微, 吕新彪, 唐然坤, 等, 2015.大兴安岭南段西坡拜仁达坝-维拉斯托矿床成矿流体特征及其演化.地球科学, 40(1):145-162. doi: 10.3799/dqkx.2015.010 [167] 孟凡超, 刘嘉麒, 崔岩, 等, 2014.中国东北地区中生代构造体制的转变:来自火山岩时空分布与岩石组合的制约.岩石学报, 30(12):3569-3586. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412008.htm [168] 聂凤军, 江思宏, 张义, 等, 2007a.中蒙边境中东段金属矿床成矿规律和找矿方向.北京:地质出版社. [169] 聂凤军, 张万益, 杜安道, 等, 2007b.内蒙古朝不楞矽卡岩型铁多金属矿床辉钼矿铼-锇同位素年龄及地质意义.地球学报, 28(4):315-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200704000.htm [170] 牛斯达, 2017.大兴安岭甲乌拉铅锌银矿岩浆侵位序列与成矿: 来自年代学、地球化学和成因矿物学的证据(博士学位论文).北京: 中国地质大学. [171] 欧阳荷根, 2013.大兴安岭南带拜仁达坝—维拉斯托银多金属矿床成矿作用及动力学背景(博士学位论文).北京: 中国地质大学. [172] 欧阳荷根, 李睿华, 周振华, 2016.内蒙古双尖子山银多金属矿床侏罗纪成矿的年代学证据及其找矿意义.地质学报, 90(8):1835-1845. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608013.htm [173] 邱家骧, 林景仟, 1991.岩石化学.北京:地质出版社. [174] 阮班晓, 吕新彪, 刘申态, 等, 2013.内蒙古边家大院铅锌银矿床成因:来自锆石U-Pb年龄和多元同位素的制约.矿床地质, 32(3):501-514. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201303004.htm [175] 双宝, 2012.满洲里-新巴尔虎右旗有色、贵金属矿床成矿系列与成矿预测(博士学位论文).长春: 吉林大学. [176] 宋开瑞, 2019.内蒙古林西地区萤石矿与银多金属矿成矿关系及找矿意义(博士学位论文).北京: 中国地质大学. [177] 孙兴国, 2008.内蒙古龙头山Ag-Pb-Zn多金属矿床成矿模式及找矿模型(博士学位论文).北京: 中国科学院研究生院(地质与地球物理研究所). [178] 唐杰, 许文良, 王枫, 等, 2018.古太平洋板块在欧亚大陆下的俯冲历史:东北亚陆缘中生代-古近纪岩浆记录.中国科学:地球科学, 48(5):549-583. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201805004.htm [179] 唐然坤, 吕新彪, 曹晓峰, 等, 2014.内蒙古维拉斯托-拜仁达坝矿床矿石特征及成矿机理.地球科学, 39(6):671-686. doi: 10.3799/dqkx.2014.063 [180] 田京, 2015.内蒙古额仁陶勒盖银矿床矿化与蚀变地质特征研究(硕士学位论文).北京: 中国地质大学. [181] 王长明, 2008.大兴安岭中-南带喷流-沉积成矿特征与成矿预测(博士学位论文).北京: 中国地质大学. [182] 王喜龙, 2014.内蒙古边家大院铅锌银矿床成矿特征与矿床成因(硕士学位论文).北京: 中国地质大学. [183] 王祥东, 2017.内蒙古林东地区银铅锌多金属矿床成岩成矿作用(博士学位论文).武汉: 中国地质大学. [184] 王祥东, 徐德明, 吕新彪, 等, 2019.内蒙古白音诺尔锌铅矿床中侏罗世成矿事件:来自闪锌矿Rb-Sr等时线年龄的证据.矿产勘查, 10(4):791-800. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201904011.htm [185] 王治华, 丛润祥, 常春郊, 等, 2014.内蒙古吉林宝力格银多金属矿床S、Pb同位素特征及成因初探.矿床地质, 33(S1):289-290. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2014S1147.htm [186] 温亦品, 2015.额尔古纳东珺铅锌银矿矿床地球化学特征研究(硕士学位论文).西安: 西安科技大学. [187] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [188] 吴冠斌, 刘建明, 曾庆栋, 等, 2013.内蒙古大兴安岭双尖子山铅锌银矿床成矿年龄.矿物学报, 33(增刊2):619. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2013S2348.htm [189] 吴冠斌, 刘建明, 曾庆栋, 等, 2014.内蒙古双尖子山铅锌银矿床银的赋存状态及其指示意义.地学前缘, 21(5): 105-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405012.htm [190] 谢玉玲, 钟日晨, 周俊杰, 等, 2015.内蒙古东乌旗地区钼-铅锌-多金属矿床的成矿规律与找矿方向研究报告.北京: 北京科技大学. [191] 许立权, 刘翠, 邓晋福, 等, 2014.内蒙古额仁陶勒盖银矿区火成岩岩石地球化学特征及锆石SHRIMP U-Pb同位素定年.岩石学报, 30(11):3203-3212. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411008.htm [192] 杨发亭, 2016.大兴安岭中带二道河银多金属矿床地质特征及找矿预测(硕士学位论文).北京: 中国地质大学. [193] 杨梅, 2017.大兴安岭西坡甲乌拉铜铅锌矿床成因研究(硕士学位论文).长春: 吉林大学. [194] 杨梅, 孙景贵, 王忠禹, 等, 2017.大兴安岭西坡甲乌拉铜银铅锌矿床富碱花岗斑岩的成因及其地质意义:锆石U-Pb定年和地球化学特征.吉林大学学报(地球科学版), 47(2):477-496. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201702014.htm [195] 杨晓平, 江斌, 杨雅军, 2019.大兴安岭早白垩世火山岩的时空分布特征.地球科学, 44(10):3237-3251. doi: 10.3799/dqkx.2019.080 [196] 杨郧城, 郭万军, 王亚君, 等, 2015.内蒙古东珺铅锌银矿床闪锌矿Rb-Sr定年及其地质意义.地学前缘, 22(3):348-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503033.htm [197] 姚磊, 吕志成, 叶天竺, 等, 2017.大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U-Pb年龄、地球化学和Nd-Hf同位素特征及地质意义.岩石学报, 33(10):3183-3199. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201710014.htm [198] 要梅娟, 曹烨, 刘家军, 等, 2016.内蒙古黄岗梁铁锡矿床辉钼矿Re-Os年龄及其成因意义.矿产勘查, 7(3):399-403. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201603004.htm [199] 于琪, 王可勇, 韩屹, 等, 2015.内蒙古白音诺尔铅锌矿床成矿流体特征.世界地质, 34(1):102-112. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201501013.htm [200] 曾庆栋, 刘建明, 贾长顺, 等, 2007.内蒙古赤峰市白音诺尔铅锌矿沉积喷流成因:地质和硫同位素证据.吉林大学学报(地球科学版), 37(4):659-667. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200704003.htm [201] 翟德高, 刘家军, 王建平, 等, 2013.内蒙古甲乌拉大型Pb-Zn-Ag矿床稳定同位素地球化学研究.地学前缘, 20(2):213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201302030.htm [202] 翟德高, 刘家军, 杨永强, 等, 2012.内蒙古黄岗梁铁锡矿床成岩、成矿时代与构造背景.岩石矿物学杂志, 31(4):513-523. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201204005.htm [203] 翟德高, 刘家军, 李俊明, 等, 2016.内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义.矿床地质, 35(5):1011-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201605009.htm [204] 张宏飞, 高山.2012.地球化学.北京:地质出版社. [205] 张炯飞, 庞庆邦, 朱群, 等, 2003.内蒙古孟恩陶勒盖银铅锌矿床白云母Ar-Ar年龄及其意义.矿床地质, 22(3):253-256. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200303005.htm [206] 张万益, 2008.内蒙古东乌珠穆沁旗岩浆活动与金属成矿作用(博士学位论文).北京: 中国地质科学院. [207] 张万益, 聂凤军, 高延光, 等, 2012.内蒙古查干敖包三叠纪碱性石英闪长岩的地球化学特征及成因.岩石学报, 28(2):525-534. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202015.htm [208] 张万益, 聂凤军, 江思宏, 等, 2008.内蒙古查干敖包石英闪长岩锆石SHRIMP U-Pb年龄及其地质意义.岩石矿物学杂志, 27(3):177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200803002.htm [209] 张万益, 聂凤军, 刘妍, 等, 2007.内蒙古东乌旗阿尔哈达铅-锌-银矿床硫和铅同位素研究.吉林大学学报(地球科学版), 37(5):868-877, 883. [210] 张雪冰, 2017.大兴安岭南带西坡铅锌多金属矿床成矿系列与找矿方向(博士学位论文).长春: 吉林大学. [211] 赵岩, 2017.内蒙古得尔布干成矿带铅锌银矿成矿模式与找矿预测(博士学位论文).北京: 中国地质大学. [212] 赵岩, 吕骏超, 张德宝, 等, 2017.内蒙古东北部得耳布尔铅锌银矿床闪锌矿Rb-Sr年龄及地质意义.矿床地质, 36(4):893-904. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704007.htm [213] 赵岩, 吕骏超, 张朋, 等, 2018.大兴安岭北段得耳布尔铅锌银矿床成矿流体特征与意义.地质学报, 92(1):142-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201801010.htm [214] 赵一鸣, 王大畏, 张德全, 1994.内蒙古东南部铜多金属成矿地质条件及找矿模式.北京:地震出版社. [215] 赵正, 王登红, 张长青, 等, 2014.南岭地区与铅锌矿有关岩浆岩的成矿专属性研究.大地构造与成矿学, 38(2):289-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402008.htm [216] 周顶, 2014.内蒙古花敖包特铅锌银多金属矿床成因模式与综合找矿模型(硕士学位论文).北京: 中国地质大学. [217] 周振华, 2011.内蒙古黄岗锡铁矿床地质与地球化学(博士学位论文).北京: 中国地质科学院. [218] 周振华, 王挨顺, 李涛, 2011.内蒙古黄岗锡铁矿床流体包裹体特征及成矿机制研究.矿床地质, 30(5):867-889. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201105010.htm [219] 朱炳泉, 1998.壳幔化学不均一性与块体地球化学边界研究.地学前缘, (1):72-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY801.010.htm [220] 朱笑青, 张乾, 何玉良, 等, 2004.内蒙古孟恩陶勒盖银铅锌铟矿床成因研究.矿床地质, 23(1):52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200401005.htm [221] 祝新友, 张志辉, 付旭, 等, 2016.内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征.中国地质, 43(1):188-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201601014.htm