Zircon U-Pb and Hf Isotopic Composition of Permian Felsic Tuffs in Southeastern Margin of Lhasa, Tibet
-
摘要: 西藏东南缘记录的唐加-松多古特提斯增生杂岩带对认识古特提斯洋晚古生代的构造演化提供了新的证据.针对该杂岩带中新发现的长英质凝灰岩开展了全岩主、微量元素,锆石LA-ICP-MS U-Pb定年和锆石Hf同位素组成的研究.结果显示冲尼凝灰岩喷发于278~275 Ma,具有较高的SiO2含量(63.47%~72.65%)、Al2O3含量(14.53%~21.31%),较低的K2O含量(1.30%~2.51%)和TiO2含量(0.50%~1.17%),MgO含量较低,介于0.92%~2.00%,Mg#范围在19.9~34.2(均低于40).富集大离子亲石元素(LILE)、亏损高场强元素(HFSE).锆石具有较高的εHf(t)值(+10.2~+14.4)和相对年轻的地壳模式年龄TDMc=351~621 Ma,认为冲尼凝灰岩是唐加-松多古特提斯洋向北俯冲背景下的新生地壳部分熔融的产物,洋盆俯冲消减的开始时代不晚于早二叠世,并且在早二叠世拉萨地体东南缘存在新生地壳生长事件.Abstract: The Tangjia-Sumdo Paleo-Tethys accretionary complex belt, recorded in the southeastern margin of Lhasa, provides new evidence for the understanding of the Late Paleozoic tectonic evolution of the Paleo-Tethys Ocean. In this paper, it reports new data for the felsic tuff in this accretionary complex belt, including petrology, major and trace element compositions, zircon U-Pb age, and in-situ Hf isotopic compositions. U-Pb zircon dating indicates that the timing of eruption of the Chongni tuffs was ca. 278-275 Ma. They are characterized by relatively high SiO2 (63.47%-72.65%), and high Al2O3 (14.53%-21.31%), relatively low K2O (1.30%-2.51%), TiO2 (0.50%-1.17%), MgO (0.92%-2.00%), and Mg# (19.9-34.2). These tuffs exhibit LILE enrichment and HFSE depletetion. The zircons participating in the weighted age calculation have positive εHf(t) values of +10.2 to +14.4 and relatively young zircon Hf crustal model ages (TDMc=351-621 Ma). It agrees that Chongni tuffs were derived from the partial melting of the juvenile crust under the background of the northward subduction of the Tangjia-Sumdo Paleo-Tethys Ocean slab, and the beginning time of the ocean slab subduction is not later than Early Permian, before which there were the events that crust grew in the southeastern margin of Lhasa.
-
Key words:
- Early Permian /
- Lhasa terrane /
- Hf isotope /
- U-Pb age /
- Tangjia-Sumdo Paleo-Tethys /
- petrology
-
图 1 青藏高原地质简图以及唐加‒松多地区地质简图
a.青藏高原构造单元划分简图(李才等,2008;Zhang et al., 2014;Xu et al., 2015);b.唐加‒松多地区地质简图.数据来源:陈松永等(2008);Yang et al.(2009);曾令森等(2009);Cheng et al.(2012, 2015);Weller et al.(2016);Wang et al.(2019, 2021);李楠等(2020);于云鹏(2020)
Fig. 1. Tangjia-Sumdo geological map in the Gangdese, Tibet
图 5 冲尼凝灰岩岩石判别图
a. Zr/TiO2-Nb/Y图解,据Winchester and Floyd(1977);b. Th-Co图解,据Hastie et al.(2007).数据来源:大陆平均弧安山岩(Kelemen et al., 2007);中二叠世深成岩(李楠等,2020;于云鹏,2020);埃达克质花岗岩(Wang et al., 2021);皮康花岗岩(Zhu et al., 2009)
Fig. 5. Classification diagrams of Chongni tuffs
图 6 原始地幔标准化微量元素蛛网图及球粒陨石标准化稀土配分曲线图
标准化数据引自Sun and McDonough(1989).数据引用参看图 5
Fig. 6. Primitive mantle-normalized trace element spidergram and chondrite-normalized REE pattern
图 7 冲尼凝灰岩锆石微量元素特征判别图
a,b.据Belousova et al.(2002);c,d.据Yang et al.(2012)
Fig. 7. Zircon trace element plots of Chongni tuffs
图 8 冲尼凝灰岩εHf(t)‒锆石年龄图
数据来源于Zhu et al.(2009);牛志祥(2019);于云鹏(2020);Wang et al.(2021)
Fig. 8. εHf(t) vs. age diagram of Chongni tuffs
-
[1] Bacon, C. R., Druitt, T. H., 1988. Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2): 224-256. https://doi.org/10.1007/BF00402114 [2] Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7 [3] Cawood, P. A., Johnson, M. R. W., Nemchin, A. A., 2007. Early Palaeozoic Orogenesis along the Indian Margin of Gondwana: Tectonic Response to Gondwana Assembly. Earth and Planetary Science Letters, 255(1/2): 70-84. https://doi.org/10.1016/j.epsl.2006.12.006 [4] Chen, S.Y., Yang, J.S., Xu, X.Z., et al., 2008. Study of Lu-Hf Geochemical Tracing and LA-ICPMS U-Pb Isotopic Dating of the Sumdo Eclogite from the Lhasa Block, Tibet. Acta Petrologica Sinica, 24(7): 1528-1538 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200807011.htm [5] Cheng, H., Liu, Y. M., Vervoort, J. D., et al., 2015. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar Multichronometric Dating on the Bailang Eclogite Constrains the Closure Timing of the Paleo-Tethys Ocean in the Lhasa Terrane, Tibet. Gondwana Research, 28(4): 1482-1499. https://doi.org/10.1016/j.gr.2014.09.017 [6] Cheng, H., Zhang, C., Vervoort, J. D., et al., 2012. Zircon U-Pb and Garnet Lu-Hf Geochronology of Eclogites from the Lhasa Block, Tibet. Lithos, 155: 341-359. https://doi.org/10.1016/j.lithos.2012.09.011 [7] Collins, W. J., Belousova, E. A., Kemp, A. I. S., et al., 2011. Two Contrasting Phanerozoic Orogenic Systems Revealed by Hafnium Isotope Data. Nature Geoscience, 4(5): 333-337. https://doi.org/10.1038/ngeo1127 [8] Dong, X., Zhang, Z.M., 2013. Genesis and Tectonic Significance of the Early Jurassic Magmatic Rocks from the Southern Lhasa Terrane. Acta Petrologica Sinica, 29(6): 1933-1948 (in Chinese with English abstract). [9] Dong, X., Zhang, Z.M., Geng, G.S., et al., 2010. Devonian Magmatism from the Southern Lhasa Terrane, Tibetan Plateau. Acta Petrologica Sinica, 26(7): 2226-2232 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201007024.htm [10] Fan, J. J., Li, C., Xie, C. M., et al., 2017. Remnants of Late Permian-Middle Triassic Ocean Islands in Northern Tibet: Implications for the Late-Stage Evolution of the Paleo-Tethys Ocean. Gondwana Research, 44: 7-21. https://doi.org/10.1016/j.gr.2016.10.020 [11] Geng, Q.R., Wang, L.Q., Pan, G.T., et al., 2007. Volcanic Rock Geochemistry and Tectonic Implication of the Luobadui Formation on the Gangdese Zone, Xizang (Tibet). Acta Petrologica Sinica, 23(11): 2699-2714 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200711004.htm [12] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/S0016-7037(99)00343-9 [13] Grove, T. L., Donnelly-Nolan, J. M., 1986. The Evolution of Young Silicic Lavas at Medicine Lake Volcano, California: Implications for the Origin of Compositional Gaps in Calc-Alkaline Series Lavas. Contributions to Mineralogy and Petrology, 92(3): 281-302. https://doi.org/10.1007/BF00572157 [14] Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341-2357. https://doi.org/10.1093/petrology/egm062 [15] Heaman, L. M., Bowins, R., Crocket, J., 1990. The Chemical Composition of Igneous Zircon Suites: Implications for Geochemical Tracer Studies. Geochimica et Cosmochimica Acta, 54(6): 1597-1607. https://doi.org/10.1016/0016-7037(90)90394-Z [16] Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821X(88)90132-X [17] Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x [18] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h [19] Kelemen, P. B., Hanghøj, K., Greene, A. R., 2007. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1-70. https://doi.org/10.1016/b0-08-043751-6/03035-8 [20] Lang, X.H., Tang, J.X., Deng, Y.L., et al., 2017. The First Discovery of Early Carboniferous Gabbro in Xiongcun Area on the Southern Margin of Lhasa Terrane, Tibet: Remnants of Paleo-Tethys Ocean?. Acta Geoscientia Sinica, 38(5): 745-753 (in Chinese with English abstract). [21] Li, C., 1987. The Longmu Co-Shuanghu-Jitang Plate Suture and the Northern Boundary of Gondwanaland during Carboniferous and Permian. Journal of Changchun Geological Institute, 17(2): 155-166 (in Chinese with English abstract). [22] Li, C., Dong, Y.S., Zhai, Q.G., et al., 2008. Discovery of Eopaleozoic Ophiolite in the Qiangtang of Tibet Plateau: Evidence from SHRIMP U-Pb Dating and Its Tectonic Implications. Acta Petrologica Sinica, 24(1): 31-36 (in Chinese with English abstract) [23] Li, F.Q., Liu, W., Zhang, S.Z., et al., 2012. Chronology and Geochemical Characteristics of Yawa Mafic Complex in the Dajiacuo Area, Southern Gangdese. Acta Geologica Sinica, 86(10): 1592-1603 (in Chinese with English abstract) [24] Li, G.M., Zhang, L.K., Wu, J.Y., et al., 2020. Reestablishment and Scientific Significance of the Ocean Plate Geology in the Southern Tibet Plateau, China. Sedimentary Geology and Tethyan Geology, 40(1): 1-14 (in Chinese with English abstract). [25] Li, H.Q., Cai, Z.H., Chen, S.Y., et al., 2008. The Indosinian Orogenesis Occurred in Lhasa Terrain and the Evidence from Muscovite 40Ar-39Ar Geochronology. Acta Petrologica Sinica, 24(7): 1595-1604 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200807016.htm [26] Li, N., Zhu, L.D., Yang, W.G., et al., 2020. Discovery of the Middle Permian Island-Arc Basalt in the Chongni Area, Tibet and Its Tectonic Implication. Geology and Exploration, 56(4): 722-731 (in Chinese with English abstract). [27] Li, Z. L., Yang, J. S., Xu, Z. Q., et al., 2009. Geochemistry and Sm-Nd and Rb-Sr Isotopic Composition of Eclogite in the Lhasa Terrane, Tibet, and Its Geological Significance. Lithos, 109(3/4): 240-247. https://doi.org/10.1016/j.lithos.2009.01.004 [28] Liu, Y., Liu, H. F., Theye, T., et al., 2009. Evidence for Oceanic Subduction at the NE Gondwana Margin during Permo-Triassic Times. Terra Nova, 21(3): 195-202. https://doi.org/10.1111/j.1365-3121.2009.00874.x [29] Liu, Y. M., Li, S. Z., Xie, C. M., et al., 2020. Subduction-Collision and Exhumation of Eclogites in the Lhasa Terrane, Tibet Plateau. Gondwana Research. https://doi.org/10.1016/j.gr.2020.01.019 [30] Niu, Z.X., 2019. Permian Magmatic Rocks in the Eastern End of the Gangdese Arc, and Their Cenozoic Metamorphism and Tectonic Significance (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [31] Paton, C., Woodhead, J. D., Hellstrom, J. C., et al., 2010. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06. https://doi.org/10.1029/2009GC002618 [32] Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon-A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1-2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 [33] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [34] Wang, B., Xie, C. M., Dong, Y. S., et al., 2021. Middle Permian Adakitic Granite Dikes in the Sumdo Region, Central Lhasa Terrane, Central Tibet: Implications for the Subduction of the Sumdo Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 205: 104610. https://doi.org/10.1016/j.jseaes.2020.104610 [35] Wang, B., Xie, C. M., Fan, J. J., et al., 2019. Genesis and Tectonic Setting of Middle Permian OIB-Type Mafic Rocks in the Sumdo Area, Southern Lhasa Terrane. Lithos, 324/325: 429-438. https://doi.org/10.1016/j.lithos.2018.11.015 [36] Wang, B., Xie, C.M., Li, C., et al., 2017. The Discovery of Wenmulang Ophiolite in Songduo Area of the Tibetan Plateau and Its Geological Significance. Geological Bulletin of China, 36(11): 2076-2081 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201711018.htm [37] Wang, L. Q., Pan, G.T., Zhu, D.C., et al., 2008. Carboniferous-Permian Island Arc Orogenesis in the Gangdise Belt, Tibet, China: Evidence from Volcanic Rocks and Geochemistry. Geological Bulletin of China, 27(9): 1509-1534 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200809014.htm [38] Weller, O. M., St-Onge, M. R., Rayner, N., et al., 2016. U-Pb Zircon Geochronology and Phase Equilibria Modelling of a Mafic Eclogite from the Sumdo Complex of South-East Tibet: Insights into Prograde Zircon Growth and the Assembly of the Tibetan Plateau. Lithos, 262: 729-741. https://doi.org/10.1016/j.lithos.2016.06.005 [39] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [40] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). http://www.oalib.com/paper/1492671 [41] Wu, X.Y., Wang, Q., Zhu, D.C., et al., 2013. Origin of the Early Carboniferous Granitoids in the Southern Margin of the Lhasa Terrane and Its Implication for the Opening of the Songdo Tethyan Ocean. Acta Petrologica Sinica, 29(11): 3716-3730 (in Chinese with English abstract). [42] Wu, Y. B., Zheng, Y. F., Zhao, Z. F., et al., 2006. U-Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen. Geochimica et Cosmochimica Acta, 70(14): 3743-3761. https://doi.org/10.1016/j.gca.2006.05.011 [43] Wu, Y.W., 2013. The Evolution Record of Longmuco-Shuanghu-Lancang Ocean Cambrian-Permian Ophiolites (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [44] Xiao, W.J., Li, J.L., Song, D.F., et al., 2019. Structural Analyses and Spatio-Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905019.htm [45] Xie, C.M., Li, C., Li, G.M., et al., 2020. The Research Progress and Problem of the Sumdo Paleo-Tethys Ocean, Tibet. Sedimentary Geology and Tethyan Geology, 40(2): 1-13 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S136791202030403X [46] Xu, Z. Q., Dilek, Y., Cao, H., et al., 2015. Paleo-Tethyan Evolution of Tibet as Recorded in the East Cimmerides and West Cathaysides. Journal of Asian Earth Sciences, 105: 320-337. https://doi.org/10.1016/j.jseaes.2015.01.021 [47] Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2012. Large Igneous Province and Magmatic Arc Sourced Permian-Triassic Volcanogenic Sediments in China. Sedimentary Geology, 261/262: 120-131. https://doi.org/10.1016/j.sedgeo.2012.03.018 [48] Yang, J.S., Xu, Z.Q., Geng, Q.R., et al., 2006. A Possible New HP/UHP(?) Metamorphic Belt in China: Discovery of Eclogite in the Lasha Terrane, Tibet. Acta Geologica Sinica, 80(12): 1783-1792 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE200612000&dbcode=CJFD&year=2006&dflag=pdfdown [49] Yang, J. S., Xu, Z. Q., Li, Z. L., et al., 2009. Discovery of an Eclogite Belt in the Lhasa Block, Tibet: A New Border for Paleo-Tethys?. Journal of Asian Earth Sciences, 34(1): 76-89. https://doi.org/10.1016/j.jseaes.2008.04.001 [50] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [51] Yu, Y.P., 2020. Permian-Jurassic Magmatism and Its Tectonic Significance in Sumdo Area, Southern Tibet (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [52] Zeng, L.S., Liu, J., Gao, L.E., et al., 2009. Early Mesozoic High-Pressure Metamorphism within the Lhasa Block, Tibet and Its Implications for Regional Tectonics. Earth Science Frontiers, 16(2): 140-151 (in Chinese with English abstract). http://www.onacademic.com/detail/journal_1000035535323910_69e0.html [53] Zhai, Q. G., Jahn, B. M., Wang, J., et al., 2016. Oldest Paleo-Tethyan Ophiolitic Mélange in the Tibetan Plateau. Geological Society of America Bulletin, 128(3/4): 355-373. https://doi.org/10.1130/b31296.1 [54] Zhang, K. J., Tang, X. C., 2009. Eclogites in the Interior of the Tibetan Plateau and Their Geodynamic Implications. Science Bulletin, 54(15): 2556-2567. https://doi.org/10.1007/s11434-009-0407-9 [55] Zhang, Z. M., Dong, X., Santosh, M., et al., 2014. Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 25(1): 170-189. https://doi.org/10.1016/j.gr.2012.08.024 [56] Zheng, Y. F., Wu, Y. B., Zhao, Z. F., et al., 2005. Metamorphic Effect on Zircon Lu-Hf and U-Pb Isotope Systems in Ultrahigh-Pressure Eclogite-Facies Metagranite and Metabasite. Earth and Planetary Science Letters, 240(2): 378-400. https://doi.org/10.1016/j.epsl.2005.09.025 [57] Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009. Zircon U-Pb Dating and In-Situ Hf Isotopic Analysis of Permian Peraluminous Granite in the Lhasa Terrane, Southern Tibet: Implications for Permian Collisional Orogeny and Paleogeography. Tectonophysics, 469(1-4): 48-60. https://doi.org/10.1016/j.tecto.2009.01.017 [58] Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2010. Presence of Permian Extension-and Arc-Type Magmatism in Southern Tibet: Paleogeographic Implications. Geological Society of America Bulletin, 122(7/8): 979-993. https://doi.org/10.1130/b30062.1 [59] Zhu, D. C., Pan, G. T., Chung, S. L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442-471. https://doi.org/10.2747/0020-6814.50.5.442 [60] Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2011a. Lhasa Terrane in Southern Tibet Came from Australia. Geology, 39(8): 727-730. https://doi.org/10.1130/g31895.1 [61] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011b. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [62] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 [63] 陈松永, 杨经绥, 徐向珍, 等, 2008. 西藏拉萨地块松多榴辉岩的锆石Lu/Hf同位素研究及LA-ICPMS U-Pb定年. 岩石学报, 24(7): 1528-1538. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807011.htm [64] 董昕, 张泽明, 2013. 拉萨地体南部早侏罗世岩浆岩的成因和构造意义. 岩石学报, 29(6): 1933-1948. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306007.htm [65] 董昕, 张泽明, 耿官升, 等, 2010. 青藏高原拉萨地体南部的泥盆纪花岗岩. 岩石学报, 26(7): 2226-2232. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007024.htm [66] 耿全如, 王立全, 潘桂棠, 等, 2007. 西藏冈底斯带洛巴堆组火山岩地球化学及构造意义. 岩石学报, 23(11): 2699-2714. doi: 10.3969/j.issn.1000-0569.2007.11.003 [67] 郎兴海, 唐菊兴, 邓煜霖, 等, 2017. 西藏拉萨地块南缘雄村矿集区首次发现早石炭世辉长岩: 古特提斯洋的残留?. 地球学报, 38(5): 745-753. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705014.htm [68] 李才, 1987. 龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界. 长春地质学院学报, 17(2): 155-166. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ198702003.htm [69] 李才, 董永胜, 翟庆国, 等, 2008. 青藏高原羌塘早古生代蛇绿岩: 堆晶辉长岩的锆石SHRIMP定年及其意义. 岩石学报, 24(1): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200801003.htm [70] 李奋其, 刘伟, 张士贞, 等, 2012. 冈底斯南部打加错地区鸭洼基性杂岩的年代学及地球化学特征. 地质学报, 86(10): 1592-1603. doi: 10.3969/j.issn.0001-5717.2012.10.004 [71] 李光明, 张林奎, 吴建阳, 等, 2020. 青藏高原南部洋板块地质重建及科学意义. 沉积与特提斯地质, 40(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202001001.htm [72] 李化启, 蔡志慧, 陈松永, 等, 2008. 拉萨地体中的印支造山事件及年代学证据. 岩石学报, 24(7): 1595-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807016.htm [73] 李楠, 朱利东, 杨文光, 等, 2020. 西藏冲尼中二叠世岛弧玄武岩的发现及意义. 地质与勘探, 56(4): 722-731. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202004005.htm [74] 牛志祥, 2019. 冈底斯岩浆弧东端二叠纪岩浆岩及新生代变质作用与构造意义(硕士学位论文). 北京: 中国地质大学. [75] 王斌, 解超明, 李才, 等, 2017. 青藏高原松多地区温木朗蛇绿岩的发现及其地质意义. 地质通报, 36(11): 2076-2081. doi: 10.3969/j.issn.1671-2552.2017.11.017 [76] 王立全, 潘桂棠, 朱弟成, 等, 2008. 西藏冈底斯带石炭纪-二叠纪岛弧造山作用: 火山岩和地球化学证据. 地质通报, 27(9): 1509-1534. doi: 10.3969/j.issn.1671-2552.2008.09.012 [77] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [78] 吴兴源, 王青, 朱弟成, 等, 2013. 拉萨地体南缘早石炭世花岗岩类的起源及其对松多特提斯洋开启的意义. 岩石学报, 29(11): 3716-3730. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311006.htm [79] 吴彦旺, 2013. 龙木错-双湖-澜沧江洋历史记录: 寒武纪-二叠纪的蛇绿岩(博士学位论文). 长春: 吉林大学. [80] 肖文交, 李继亮, 宋东方, 等, 2019. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687. doi: 10.3799/dqkx.2019.979 [81] 解超明, 李才, 李光明, 等, 2020. 西藏松多古特提斯洋研究进展与存在问题. 沉积与特提斯地质, 40(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202002002.htm [82] 杨经绥, 许志琴, 耿全如, 等, 2006. 中国境内可能存在一条新的高压/超高压(?)变质带: 青藏高原拉萨地体中发现榴辉岩带. 地质学报, 80(12): 1783-1792. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200612000.htm [83] 于云鹏, 2020. 藏南松多地区二叠纪-侏罗纪岩浆作用及构造意义(博士学位论文). 长春: 吉林大学. [84] 曾令森, 刘静, 高利娥, 等, 2009. 青藏高原拉萨地块早中生代高压变质作用及大地构造意义. 地学前缘, 16(2): 140-151. doi: 10.3321/j.issn:1005-2321.2009.02.010 -
dqkxzx-46-11-3880-附表.pdf