Petrogenesis of Jingshan Granites from Southeast Margin of North China Block and Its Tectonic Implications
-
摘要: 对华北东南缘荆山花岗岩进行了锆石U-Pb定年、微量元素和Hf同位素分析,全岩主微量元素和Sr-Nd同位素分析.LA-ICP-MS锆石U-Pb定年结果表明,荆山花岗岩形成于晚侏罗世(160.9±0.8~161.6±1.5 Ma).残留锆石的U-Pb年龄主要为三叠纪和新元古代,分别与大别-苏鲁造山带超高压变火成岩的变质年龄和原岩年龄一致.这些花岗岩为钙碱性-高钾钙碱性,具有弧型的微量元素分布特征和富集的Sr-Nd-Hf同位素组成,即高的全岩(87Sr/86Sr)i比值(0.708 0~0.709 1),低的εNd(t)值(-15.6~-13.5)和锆石εHf(t)值(-23.1~-9.5),对应的两阶段Nd-Hf模式年龄主要为古元古代.这些锆石U-Pb同位素年代学和地球化学特征与大别-苏鲁造山带超高压变火成岩一致,表明它们之间存在成因联系.特别地,残留锆石新元古代和三叠纪U-Pb年龄是俯冲华南陆壳的标志性特征.因此,荆山花岗岩是俯冲华南陆壳部分熔融的产物,华南陆壳是三叠纪大陆碰撞过程中进入华北地壳之中的.这些花岗岩具有低的Rb含量、高的Sr和Ba含量,低的Rb/Sr比值以及低的全岩锆饱和温度和锆石Ti温度(~700℃),表明它们源于俯冲华南陆壳低温加水部分熔融,可能与侏罗纪古太平洋板块俯冲于中国东部之下有关.Abstract: In this paper it presents a combined study of zircon U-Pb ages, trace elements and Hf isotopes, and whole-rock major-trace elements and Sr-Nd isotopes for the Jingshan granites from the southeast margin of the North China block (NCB). LA-ICP-MS zircon U-Pb dating yielded Late Jurassic ages of 160.9±0.8 to 161.6±1.5 Ma. Relict zircons have U-Pb ages of mainly Triassic and Neoproterozoic, in agreement with metamorphic and protolith ages for the ultrahigh-pressure (UHP) meta-igneous rocks in the Dabie-Sulu orogenic belt, respectively. These granites are calc-alkaline to high-K calc-alkaline, and exhibit arc-type trace element features and enriched Sr-Nd-Hf isotope compositions, i.e. high whole-rock (87Sr/86Sr)i ratios of 0.708 0 to 0.709 1, low εNd(t) values of -15.6 to -13.5 and zircon εHf(t) values of -23.1 to -9.5, with two-stage Nd-Hf model ages mainly of Paleoproterozoic. These zircon U-Pb geochronological and geochemical characteristics are consistent with those of the UHP meta-igneous rocks in the Dabie-Sulu orogenic belt, indicating a genetic link between them. In particular, the Neoproterozoic and Triassic U-Pb ages of relict zircons are characteristic features of the subducted continental crust of the South China block (SCB). Therefore, the Jingshan granites are the product of partial melting of the subducted SCB continental crust, which would be incorporated into the crust of the NCB during the Triassic continental collision. These granites have low Rb contents, high Sr, Ba contents, and thus low Rb/Sr ratios, and low zirconium saturation and Ti-in-zircon temperatures (~700℃), suggesting their derivation from low-temperature partial melting of the subducted SCB continental crust with water addition, which might be related to the subduction of the paleo-Pacific plate beneath eastern China in the Jurassic.
-
图 1 蚌埠地区构造位置图(a)和地质简图(b)(修改自Liu et al., 2012a)
Fig. 1. The tectonic location map (a) and the geologic sketch map (b) of the Bengbu area (modified after Liu et al., 2012a)
图 4 荆山花岗岩Na2O+K2O-SiO2图(a)和A/NK-A/CNK图(b)(文献数据来自Li et al., 2014)
Fig. 4. Diagrams of Na2O+K2O versus SiO2 (TAS) (a) and A/NK versus A/CNK (b) for the Jingshan granites (literature data are from Li et al., 2014)
图 5 荆山花岗岩哈克图解(文献数据来自Li et al., 2014)
Fig. 5. Hacker diagrams for the Jingshan granites (literature data are from Li et al., 2014)
图 7 荆山花岗岩全岩初始Sr-Nd同位素组成图,回算至t=161 Ma
文献数据来自Li et al.(2014),大别-苏鲁造山带超高压花岗片麻岩和榴辉岩以及华北下地壳和上地壳的Sr-Nd同位素组成分别据Zhao et al.(2017b)和Jahn et al.(1999)
Fig. 7. Diagram of initial Sr-Nd isotope compositions for the Jingshan granites, calculated back to 161 Ma
图 10 荆山花岗岩锆石球粒陨石标准化稀土元素分布图
球粒陨石稀土元素含量据McDonough and Sun(1995),大别-苏鲁造山带花岗片麻岩锆石稀土元素数据来自Chen et al.(2010)
Fig. 10. Chondrite-normalized REE patterns for zircon from the Jingshan granites
图 11 荆山花岗岩残留锆石三叠纪U-Pb年龄统计图
数据来源:Xu et al.(2005, 2013);Wang et al.(2013);Li et al.(2014);本文
Fig. 11. Histogram of Triassic U-Pb ages for relict zircons in the Jingshan granites
图 12 (a) 荆山花岗岩、大别造山带碰撞后花岗岩和蚌埠地区早白垩世花岗岩全岩锆饱和温度统计图;(b) 荆山花岗岩锆石Ti温度统计图
数据来源:He et al.(2011);Liu et al. (2012a);Li et al.(2014);本文
Fig. 12. Zircon saturation temperatures for the Jingshan granites, post-collisional granites in the Dabie orogen and Early Cretaceous granites in the Bengbu area (a); Ti-in-zircon temperatures for the Jingshan granites (b)
图 13 荆山花岗岩Rb/Sr-Ba(a)和Rb/Sr-Sr图解
据Weinberg and Hasalová(2015);文献数据来自Li et al.(2014)
Fig. 13. Diagrams of Rb/Sr-Ba (a) and Rb/Sr-Sr
表 1 荆山花岗岩全岩主量和微量元素组成
Table 1. Major and trace element compositions for the Jingshan granites
样品 16JS01 16JS03 16JS07 16JS08 16JS11 16JS14 16JS16 16JS19 16JS20 16JS23 16JS24 16JS28 16JS37 主量元素(%) SiO2 73.9 72.1 73.2 73.3 73.3 72.8 72.4 74.0 72.8 72.6 74.0 74.8 73.8 TiO2 0.06 0.10 0.07 0.07 0.07 0.07 0.10 0.03 0.09 0.08 0.06 0.03 0.07 Al2O3 14.7 15.9 14.7 14.9 14.8 14.7 15.4 14.6 14.8 14.8 15.0 14.5 14.8 Fe2O3 0.73 0.93 0.75 0.70 0.95 0.84 1.10 0.65 0.98 0.93 0.62 0.30 0.75 MnO 0.04 0.05 0.04 0.05 0.04 0.04 0.03 0.04 0.06 0.07 0.01 0.03 0.05 MgO 0.14 0.22 0.15 0.16 0.16 0.12 0.24 0.08 0.21 0.19 0.11 0.07 0.15 CaO 1.37 1.68 1.38 1.53 1.36 1.40 2.24 1.43 1.60 1.42 1.20 1.04 1.38 Na2O 4.60 4.94 4.55 4.54 4.47 4.38 4.71 4.41 4.53 4.67 4.91 4.84 4.54 K2O 3.90 3.75 3.99 3.76 3.92 4.19 2.89 3.98 3.77 3.92 3.50 3.62 4.01 P2O5 0.01 0.02 0.01 0.01 0.01 0.01 0.02 < 0.01 0.02 0.02 0.01 < 0.01 0.01 LOI 0.71 0.54 0.66 0.58 0.81 0.50 0.74 0.65 0.66 0.83 0.51 0.53 0.58 Total 99.6 100 99.1 99.3 99.3 98.8 99.4 99.5 99.2 99.1 99.8 99.4 99.8 K2O/Na2O 0.85 0.76 0.88 0.83 0.88 0.96 0.61 0.90 0.83 0.84 0.71 0.75 0.88 Mg# 31.1 35.8 32.0 35.0 28.4 25.2 33.9 22.5 33.5 32.5 29.5 35.4 32.0 A/CNK 1.03 1.04 1.03 1.04 1.05 1.03 1.03 1.03 1.03 1.02 1.07 1.05 1.03 TZrn(℃) 715 723 709 709 703 714 718 718 724 712 712 722 707 微量元素(10-6) Rb 124 95.8 145 121 107 110 69.3 112 91.7 127 85.2 106 144 Ba 1 265 1 974 1 581 1 765 1 665 1 760 1 667 1 336 1 756 1 483 1 691 738 1 643 Th 1.72 2.40 1.49 1.54 1.95 1.53 1.37 1.24 2.07 1.61 1.32 1.04 1.54 U 1.06 0.77 1.20 1.15 2.53 0.96 0.70 0.87 1.54 0.88 0.70 1.13 1.22 Nb 9.55 6.31 9.39 5.68 7.23 5.76 5.00 5.94 6.80 8.47 4.08 9.31 9.42 Ta 0.54 0.35 0.40 0.32 0.40 0.27 0.24 0.25 0.36 0.40 0.18 0.57 0.42 Sr 388 638 482 531 469 452 730 404 549 478 539 229 491 Pb 44.1 37.4 55.1 42.5 34.2 42.3 33.6 47.3 39.2 37.8 25.6 33.3 57.1 Zr 67.6 76.8 62.8 61.4 56.2 67.2 71.8 69.5 76.7 66.5 61.8 71.4 60.1 Hf 1.93 1.99 1.77 1.66 1.55 1.86 1.90 1.83 2.11 1.81 1.68 2.54 1.67 Y 10.5 9.86 10.3 10.5 6.35 8.38 6.89 9.08 9.11 11.3 7.14 13.4 10.5 Ga 16.8 16.3 16.4 15.9 16.3 16.4 16.4 15.5 16.3 17.8 15.5 19.6 16.7 Cs 1.63 1.18 1.49 1.53 1.41 0.76 0.93 2.13 1.27 1.32 0.68 0.70 1.46 Sn 0.83 0.61 0.77 0.58 0.58 0.64 0.61 0.62 0.67 0.85 0.60 0.56 0.79 Zn 17.4 30.5 28.4 27.7 11.3 8.56 13.4 23.7 38.4 19.4 10.7 6.34 29.5 Sc 1.75 1.92 1.44 1.14 1.29 1.54 1.76 1.16 1.74 1.91 1.25 1.46 1.49 V 3.79 6.54 3.76 4.31 4.75 3.84 5.87 2.73 6.45 6.23 3.06 3.05 4.02 Cr 0.94 1.97 1.31 1.24 1.12 0.47 0.81 0.25 1.68 1.51 0.40 0.41 1.22 Co 0.41 0.72 0.48 0.47 0.44 0.18 0.64 0.14 0.68 0.57 3.30 1.06 0.49 Ni 0.56 1.10 0.63 0.63 0.61 0.38 0.69 0.28 0.80 0.76 0.88 0.63 0.68 Rb/Sr 0.32 0.15 0.30 0.23 0.23 0.24 0.09 0.28 0.17 0.27 0.16 0.46 0.29 稀土元素(10-6) La 4.87 10.0 5.27 6.02 6.46 5.45 7.01 2.84 8.24 6.48 4.24 1.59 5.31 Ce 9.40 18.7 10.1 11.4 12.0 10.2 12.9 5.45 15.1 11.9 7.04 3.28 9.89 Pr 1.08 2.06 1.17 1.33 1.30 1.16 1.44 0.62 1.64 1.33 0.86 0.42 1.16 Nd 3.80 7.30 4.25 4.80 4.65 4.29 5.45 2.46 5.91 4.90 3.22 1.83 4.43 Sm 0.86 1.42 0.99 1.02 0.91 0.94 1.16 0.57 1.19 1.05 0.64 0.63 1.07 Eu 0.28 0.41 0.33 0.33 0.28 0.31 0.39 0.22 0.35 0.29 0.27 0.17 0.31 Gd 1.01 1.23 1.05 1.05 0.81 0.93 0.97 0.62 1.03 1.01 0.64 0.88 1.14 Tb 0.19 0.22 0.20 0.20 0.13 0.16 0.17 0.12 0.19 0.18 0.11 0.20 0.21 Dy 1.35 1.36 1.32 1.35 0.84 1.11 1.01 0.98 1.17 1.29 0.81 1.59 1.35 Ho 0.29 0.30 0.30 0.31 0.17 0.24 0.21 0.27 0.27 0.30 0.19 0.40 0.30 Er 0.99 0.96 0.99 1.00 0.58 0.77 0.66 1.05 0.87 1.04 0.68 1.43 1.02 Tm 0.18 0.15 0.17 0.18 0.12 0.12 0.11 0.19 0.14 0.19 0.13 0.25 0.17 Yb 1.40 1.08 1.25 1.27 0.79 0.90 0.77 1.48 1.05 1.49 1.03 1.93 1.23 Lu 0.22 0.16 0.20 0.19 0.14 0.16 0.12 0.26 0.18 0.27 0.18 0.32 0.20 Eu/Eu* 0.92 0.95 0.99 0.97 1.00 1.01 1.12 1.13 0.97 0.86 1.29 0.70 0.86 (La/Yb)N 2.5 6.6 3.0 3.4 5.9 4.3 6.5 1.4 5.6 3.1 3.0 0.6 3.1 注:TZrn.根据 Boehnke et al. (2013) 的方程计算.表 2 荆山花岗岩全岩Sr-Nd同位素组成
Table 2. Sr-Nd isotopic compositions of the Jingshan granites
样品 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i Sm(10-6) Nd (10-6) 147Sm/144Nd 143Nd/144Nd εNd(t) tDM2 (Ga) 16JS01 123.9 387.8 0.924 7 0.710 889 0.708 8 0.86 3.80 0.136 8 0.511 841 -14.3 2.33 16JS03 95.8 637.9 0.434 6 0.709 488 0.708 5 1.42 7.30 0.117 6 0.511 833 -14.1 2.28 16JS07 144.8 481.7 0.870 0 0.710 503 0.708 5 0.99 4.25 0.140 8 0.511 845 -14.3 2.34 16JS08 121.2 531.4 0.660 0 0.710 071 0.708 6 1.02 4.80 0.128 4 0.511 844 -14.1 2.30 16JS11 107.0 468.5 0.660 9 0.710 005 0.708 5 0.91 4.65 0.118 3 0.511 863 -13.5 2.24 16JS14 109.7 452.2 0.702 0 0.710 174 0.708 6 0.94 4.29 0.132 4 0.511 876 -13.5 2.26 16JS16 69.3 729.9 0.274 7 0.708 665 0.708 0 1.16 5.45 0.128 7 0.511 765 -15.6 2.43 16JS19 112.3 404.1 0.804 3 0.710 618 0.708 8 0.57 2.46 0.140 1 0.511 887 -13.5 2.27 16JS20 91.7 549.4 0.483 0 0.709 620 0.708 5 1.19 5.91 0.121 7 0.511 832 -14.2 2.30 16JS23 126.9 477.8 0.768 6 0.710 069 0.708 3 1.05 4.90 0.129 5 0.511 833 -14.3 2.32 16JS24 85.2 539.4 0.457 1 0.709 286 0.708 2 0.64 3.22 0.120 1 0.511 819 -14.4 2.31 16JS28 106.0 229.2 1.338 7 0.712 163 0.709 1 0.63 1.83 0.208 1 0.511 910 -14.4 2.19 注:初始Sr-Nd同位素组成计算到t=161 Ma. 表 3 荆山花岗岩LA-ICPMS锆石U-Pb同位素组成
Table 3. LA-ICPMS zircon U-Pb isotope data for the Jingshan granites
分析点 元素含量(10-6) Th/U 同位素比值 同位素年龄(Ma) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 16JS16 1 16.32 124 404 0.31 0.049 4 0.002 4 0.171 0.007 0.025 0 0.000 3 160 6 159 2 2 6.58 37 275 0.13 0.049 9 0.002 8 0.170 0.009 0.024 8 0.000 3 159 8 158 2 3 18.97 241 697 0.35 0.049 3 0.002 0 0.169 0.005 0.025 0 0.000 3 159 4 159 2 4 24.83 270 1 012 0.27 0.049 4 0.001 8 0.172 0.006 0.025 1 0.000 3 161 5 160 2 5 51.89 342 1 327 0.26 0.045 2 0.002 0 0.172 0.005 0.025 1 0.000 2 161 4 160 1 6 16.21 73 521 0.14 0.050 1 0.002 4 0.170 0.005 0.025 2 0.000 3 159 4 160 2 7 10.56 54 459 0.12 0.046 1 0.002 2 0.172 0.006 0.025 2 0.000 3 161 5 160 2 8 16.02 114 375 0.3 0.048 5 0.002 0 0.170 0.006 0.025 2 0.000 3 159 5 161 2 9 27.84 179 750 0.24 0.049 7 0.001 9 0.172 0.004 0.025 2 0.000 2 161 4 161 1 10 23.58 122 696 0.18 0.047 2 0.002 0 0.171 0.005 0.025 2 0.000 2 161 4 161 2 11 18.92 129 801 0.16 0.049 2 0.002 0 0.172 0.007 0.025 3 0.000 2 161 6 161 2 12 13.86 63 446 0.14 0.049 1 0.002 1 0.171 0.006 0.025 3 0.000 2 160 5 161 1 13 27.02 59 649 0.09 0.049 7 0.002 4 0.173 0.005 0.025 4 0.000 3 162 5 162 2 14 22.83 240 396 0.61 0.050 4 0.002 3 0.174 0.006 0.025 4 0.000 3 163 5 162 2 15 18.14 67 603 0.11 0.049 2 0.001 6 0.172 0.005 0.025 4 0.000 2 161 5 162 1 16 23.13 100 677 0.15 0.049 8 0.003 5 0.173 0.008 0.025 4 0.000 2 162 7 162 2 17 17.70 122 697 0.18 0.048 6 0.001 5 0.172 0.007 0.025 5 0.000 4 161 6 162 2 18 30.21 181 826 0.22 0.047 6 0.001 5 0.173 0.004 0.025 6 0.000 2 162 3 163 2 19 8.35 34 288 0.12 0.046 7 0.002 9 0.226 0.015 0.0329 0.001 2 207 12 209 8 20 13.52 9 163 0.06 0.050 5 0.002 8 0.229 0.013 0.033 2 0.000 4 209 10 211 3 21 10.54 12 313 0.04 0.051 2 0.001 8 0.234 0.008 0.033 7 0.000 3 214 6 213 2 22 26.80 118 533 0.22 0.056 9 0.003 7 0.240 0.018 0.034 8 0.001 8 219 15 221 11 23 18.70 53 562 0.09 0.047 8 0.002 4 0.253 0.013 0.035 9 0.000 9 229 11 228 6 24 37.34 80 124 0.65 0.066 4 0.002 5 1.145 0.034 0.126 4 0.001 3 775 16 767 7 25 39.48 188 214 0.88 0.065 8 0.002 3 1.172 0.029 0.128 8 0.001 4 788 13 781 8 26 165.15 30 564 0.05 0.110 2 0.002 5 4.835 0.099 0.316 9 0.003 8 1 791 17 1 774 19 27 113.03 53 347 0.15 0.109 1 0.002 2 4.869 0.114 0.321 8 0.003 9 1 797 20 1 799 19 16JS20 1 35.47 173 1 406 0.12 0.049 9 0.001 3 0.170 0.004 0.024 8 0.000 2 160 3 158 1 2 20.50 77 841 0.09 0.049 7 0.001 9 0.171 0.005 0.025 0 0.000 2 160 4 159 1 3 26.60 129 1 181 0.11 0.050 0 0.001 1 0.172 0.004 0.025 1 0.000 2 161 3 160 1 4 19.84 62 896 0.07 0.049 2 0.002 4 0.169 0.006 0.025 2 0.000 3 159 5 160 2 5 27.49 101 1 081 0.09 0.049 5 0.001 9 0.172 0.004 0.025 2 0.000 3 161 4 160 2 6 42.62 352 1 785 0.20 0.050 3 0.001 1 0.173 0.004 0.025 3 0.000 2 162 3 161 1 7 21.67 93 954 0.10 0.049 0 0.001 5 0.173 0.004 0.025 3 0.000 2 162 4 161 1 8 20.86 98 933 0.10 0.047 4 0.002 0 0.171 0.006 0.025 4 0.000 3 161 5 162 2 9 17.01 72 762 0.09 0.049 1 0.001 8 0.176 0.006 0.025 7 0.000 3 150 85 164 5 10 16.71 71 741 0.10 0.048 1 0.001 8 0.175 0.006 0.025 8 0.000 3 102 87 164 5 11 37.11 191 1 556 0.12 0.049 2 0.005 6 0.174 0.020 0.025 6 0.000 3 167 300 163 17 12 26.90 133 1 162 0.11 0.047 0 0.002 1 0.173 0.006 0.025 9 0.000 3 50 104 162 5 13 25.19 104 968 0.11 0.049 5 0.001 4 0.178 0.005 0.026 2 0.000 3 172 65 166 4 14 11.00 108 401 0.27 0.050 6 0.002 1 0.184 0.008 0.026 5 0.000 4 220 98 171 7 15 15.14 51 569 0.09 0.050 2 0.001 8 0.228 0.008 0.032 7 0.000 7 209 7 208 4 16 6.57 30 200 0.15 0.050 0 0.004 8 0.246 0.023 0.035 6 0.000 6 224 19 225 4 17 11.51 31 304 0.10 0.050 3 0.002 5 0.260 0.012 0.037 3 0.000 7 234 9 236 4 表 4 荆山花岗岩锆石微量组成
Table 4. Zircon trace element compositions for the Jingshan granites
分析点 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ti (10-6) TTi (℃) 16JS16 1 0.004 17.15 0.03 0.69 2.45 1.68 20.21 8.38 120.31 54.79 284.46 67.01 726.76 151.29 8.26 749 2 0.003 5.76 0.01 0.15 0.93 0.62 9.06 4.01 68.60 31.93 197.45 48.51 668.30 135.27 6.84 731 3 0.069 30.19 0.09 1.10 3.68 2.30 29.15 11.91 177.24 75.17 408.58 90.02 1 117.26 201.44 10.1 768 4 0.037 19.94 0.36 0.40 2.26 1.74 22.15 10.00 162.25 70.83 401.68 89.61 1 122.54 204.77 6.44 726 5 22.32 0.02 0.49 2.79 1.48 26.33 11.96 177.45 80.54 418.65 98.19 1 085.16 215.14 6.66 729 6 0.011 12.53 0.01 0.18 2.02 0.91 14.99 7.40 116.75 59.45 332.48 82.90 948.88 201.82 2.84 657 7 0.005 11.69 0.02 0.45 1.19 0.87 13.16 6.74 122.84 59.50 366.01 84.88 1 108.33 206.94 6.17 722 8 14.84 0.02 0.56 2.34 1.54 17.15 6.94 103.43 46.27 235.93 57.04 623.38 129.37 10.3 770 9 15.83 0.01 0.32 1.86 1.28 18.47 8.18 125.72 58.41 310.41 74.26 817.68 169.72 4.46 694 10 16.47 0.01 0.40 2.05 1.28 23.79 10.83 171.98 82.45 439.68 105.80 1 166.27 242.12 5.05 704 11 0.047 13.47 0.02 0.25 1.48 0.87 16.10 7.73 129.55 60.44 361.78 82.61 1 056.97 195.58 3.91 683 12 0.007 10.87 0.03 0.32 1.06 0.86 14.11 6.84 107.11 53.72 302.33 75.65 862.62 184.44 3.72 679 13 0.016 8.89 0.03 0.24 0.89 0.52 11.18 5.28 88.59 45.68 265.74 68.50 813.51 177.25 3.4 671 14 28.75 0.06 1.77 4.33 2.62 28.36 9.98 131.59 52.96 255.05 55.91 592.74 118.97 12.8 792 15 0.12 6.22 0.10 0.53 0.35 5.79 3.37 54.36 27.51 158.08 41.57 498.34 110.96 7.2 736 16 1.13 18.75 0.24 1.28 1.96 1.07 19.73 9.74 154.86 74.28 401.95 97.68 1 106.13 225.11 18 828 17 12.44 0.01 0.33 1.29 0.80 13.17 6.13 98.16 45.11 269.34 63.25 826.06 155.13 4.88 701 18 0.079 13.68 0.06 0.34 1.52 1.13 16.02 7.37 106.62 48.18 257.21 60.91 654.92 134.00 1.91 627 19 0.035 8.32 0.01 0.19 1.42 0.94 10.68 5.37 97.85 46.66 284.48 66.28 875.98 169.83 6 719 20 0.019 10.88 0.00 0.16 0.22 0.28 2.22 0.72 10.85 5.56 30.40 8.88 123.27 32.96 4.2 689 21 7.29 0.01 0.14 0.73 0.20 2.43 1.01 15.45 7.87 48.28 13.85 184.95 48.13 1.55 612 22 0.003 15.08 0.03 0.73 2.43 1.40 20.01 8.99 136.17 63.69 335.60 81.37 894.67 185.28 8.22 748 23 0.16 5.20 0.02 0.33 0.59 0.52 2.58 0.58 5.18 1.45 5.40 0.91 8.33 1.24 7.08 734 24 0.03 20.76 0.19 4.36 9.86 0.35 48.92 16.98 210.41 81.52 357.56 69.79 637.73 113.79 3.43 672 25 0.01 50.56 0.04 1.13 3.12 0.64 19.98 7.27 103.92 40.76 213.13 44.68 532.25 89.54 5.98 719 26 0.013 1.58 0.02 0.53 1.12 0.48 8.35 2.95 32.89 10.63 49.29 10.12 119.20 21.64 9.24 759 27 0.56 12.01 0.00 0.16 0.63 0.12 5.13 2.58 41.07 16.86 91.54 21.04 277.47 48.52 13.80 800 16JS20 1 0.30 12.07 0.07 0.19 0.87 0.51 10.43 5.18 95.20 46.64 301.00 76.88 1 084.57 214.03 2.56 649 2 0.024 11.88 0.14 0.22 0.82 0.46 11.24 6.00 115.48 60.53 404.53 102.58 1 456.11 285.11 2.94 660 3 0.01 20.40 0.08 0.37 1.50 0.67 17.55 9.61 186.62 94.95 613.97 150.87 2 076.06 396.21 4.14 687 4 0.003 7.82 0.01 0.14 0.45 0.29 6.47 3.78 78.37 42.96 302.98 83.56 1 241.89 258.58 2.54 648 5 0.002 14.47 0.07 0.17 0.85 0.68 14.06 7.78 145.37 74.44 492.53 125.33 1 764.10 345.27 2.76 655 6 0.013 21.30 0.06 0.23 1.48 0.90 18.99 8.76 156.48 74.32 457.07 110.18 1 488.69 282.11 4.32 691 7 0.051 13.68 0.01 0.28 1.05 0.55 13.34 6.99 135.92 70.04 460.75 116.25 1 633.18 318.52 4.34 691 8 18.45 0.00 0.31 1.32 0.67 15.34 7.94 156.29 78.78 510.17 125.73 1 730.65 330.98 4.88 701 9 0.007 11.63 0.00 0.57 0.82 0.48 10.80 5.95 115.89 59.67 386.27 97.86 1 344.44 261.62 4.97 703 10 12.92 0.01 0.20 0.84 0.51 10.64 5.56 104.38 54.80 362.23 92.40 1 305.38 254.98 3.70 678 11 24.45 0.79 0.21 1.34 0.88 19.81 10.22 190.23 96.75 620.25 151.08 2 072.94 389.43 2.98 661 12 0.002 21.19 0.01 0.27 1.66 0.82 18.18 9.89 192.32 96.84 623.40 152.83 2 091.64 399.80 3.52 674 13 0.002 17.12 0.02 0.36 1.08 0.74 16.64 8.86 165.67 82.82 532.05 131.57 1 774.10 338.29 4.48 694 14 18.48 0.02 0.48 1.97 1.47 22.40 10.05 163.38 71.16 414.32 94.72 1 230.95 231.86 7.70 742 15 11.62 0.13 0.70 0.43 5.74 2.87 53.45 26.65 167.31 41.17 566.53 107.57 5.04 704 16 0.004 13.99 0.01 0.20 0.53 0.42 3.20 1.33 21.55 9.85 62.80 16.07 230.76 44.66 2.20 637 17 0.018 29.00 0.07 1.02 3.31 0.97 13.88 5.03 72.43 28.59 157.47 35.06 458.41 85.16 8.38 750 注:TTi.据Ferry and Watson (2007)的公式计算,取a=0.8,a=1. 表 5 荆山花岗岩锆石Hf同位素组成
Table 5. Zircon Hf isotope compositions of the Jingshan granites
分析点 206Pb/238U年龄(Ma) 1σ 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(t) 2σ tDM1 (Ma) 2σ tDM2(Ma) 2σ 16JS20-01 158 1 0.057 874 0.001 602 0.002 407 0.000 051 0.282 207 0.000 025 -16.8 0.89 1 530 36 2 260 56 16JS20-02 159 1 0.068 272 0.002 519 0.003 018 0.000 094 0.282 370 0.000 027 -11.0 0.96 1 316 40 1 901 61 16JS20-03 160 1 0.045 279 0.005 369 0.001 909 0.000 204 0.282 261 0.000 025 -14.8 0.89 1 432 37 2 136 60 16JS20-04 160 2 0.067 961 0.004 253 0.002 829 0.000 177 0.282 412 0.000 039 -9.5 1.38 1 247 58 1 806 89 16JS20-05 160 2 0.085 857 0.004 569 0.003 589 0.000 119 0.282 275 0.000 026 -14.4 0.92 1 480 39 2 115 59 16JS20-06 161 1 0.006 559 0.000 122 0.000 278 0.000 005 0.282 309 0.000 029 -12.9 1.03 1 306 40 2 018 65 16JS20-07 161 1 0.022 949 0.002 044 0.000 987 0.000 075 0.282 337 0.000 024 -12.0 0.85 1 291 34 1 961 54 16JS20-08 162 2 0.044 757 0.006 359 0.001 742 0.000 226 0.282 306 0.000 026 -13.1 0.92 1 362 38 2 034 63 16JS20-09 164 5 0.038 666 0.002 234 0.001 717 0.000 088 0.282 022 0.000 029 -23.1 1.05 1 764 41 2 661 65 16JS20-10 164 5 0.038 505 0.002 247 0.001 676 0.000 077 0.282 180 0.000 024 -17.5 0.87 1 538 34 2 312 54 16JS20-11 163 17 0.052 929 0.001 017 0.002 140 0.000 037 0.282 180 0.000 029 -17.6 1.24 1 558 42 2 315 67 16JS20-12 162 5 0.049 235 0.004 939 0.001 890 0.000 187 0.282 064 0.000 029 -21.7 1.05 1 712 42 2 571 69 16JS20-13 166 4 0.030 718 0.004 414 0.001 369 0.000 168 0.282 098 0.000 046 -20.3 1.64 1 641 65 2 490 104 16JS20-14 171 7 0.064 921 0.002 285 0.002 896 0.000 087 0.282 207 0.000 036 -16.6 1.30 1 551 53 2 256 81 16JS20-15 208 4 0.036 156 0.001 921 0.001 611 0.000 077 0.282 253 0.000 026 -14.0 0.94 1 432 37 2 124 59 16JS20-16 225 3 0.092 642 0.006 428 0.003 697 0.000 188 0.282 306 0.000 036 -12.1 1.28 1 438 55 2 016 83 16JS20-17 236 4 0.017 339 0.001 306 0.000 773 0.000 059 0.282 353 0.000 025 -9.8 0.90 1 262 35 1 878 56 -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x doi: 10.1016/S0009-2541(02)00195-X [2] Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/s0024-4937(98)00085-1 doi: 10.1016/S0024-4937(98)00085-1 [3] Boehnke, P., Watson, E.B., Trail, D., et al., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351: 324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028 [4] Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010 [5] Chappell, B.W., White, A.J.R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174. http://ci.nii.ac.jp/naid/80013136601/ [6] Chen, R.X., Zheng, Y.F., Xie, L.W., 2010. Metamorphic Growth and Recrystallization of Zircon: Distinction by Simultaneous In-Situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen. Lithos, 114(1-2): 132-154. https://doi.org/10.1016/j.lithos.2009.08.006 [7] Chung, S.L., Chu, M.F., Zhang, Y.Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3-4): 173-196. https://doi.org/10.1016/j.earscirev.2004.05.001 http://www.sciencedirect.com/science/article/pii/S001282520400042X [8] Collins, W.J., Brendan, M.J., Johnson, T.E., et al., 2020. Critical Role of Water in the Formation of Continental Crust. Nature Geoscience, 13(5): 331-338. https://doi.org/10.1038/s41561-020-0573-6 [9] Dai, L.Q., Zhao, Z.F., 2019. Mafic Igneous Rocks in Continental Collision Orogen Record Recycling of Subducted Paleo-Oceanic Crust. Earth Science, 44(12): 4128-4134(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0024493719300301 [10] DePaolo, D.J., 1988. Neodymium Isotope Geochemistry: An Introduction. Springer-Verlag Press, New York, 181. [11] Ducea, M.N., Saleeby, J.B., Bergantz, G., 2015. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs. Annual Review of Earth and Planetary Sciences, 43(1): 299-331. https://doi.org/10.1146/annurev-earth-060614-105049 [12] Elhlou, S., Belousova, E., Griffin, W.L., et al., 2006. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation. Geochimica et Cosmochimica Acta, 70(18): A158. https://doi.org/10.1016/j.gca.2006.06.1383 http://adsabs.harvard.edu/abs/2006GeCAS..70R.158E [13] Faure, M., Lin, W., Schärer, U., et al., 2003. Continental Subduction and Exhumation of UHP Rocks. Structural and Geochronological Insights from the Dabieshan (East China). Lithos, 70(3-4): 213-241. https://doi.org/10.1016/s0024-4937(03)00100-2 doi: 10.1016/S0024-4937(03)00100-2 [14] Ferry, J.M., Watson, E.B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0 [15] Gao, P., Zheng, Y.F., Zhao, Z.F., 2016. Experimental Melts from Crustal Rocks: A Lithochemical Constraint on Granite Petrogenesis. Lithos, 266-267: 133-157. https://doi.org/10.1016/j.lithos.2016.10.005 [16] Geng, Y.S., Du, L.L., Ren, L.D., 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2-3): 517-529. https://doi.org/10.1016/j.gr.2011.07.006 [17] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 doi: 10.1016/S0016-7037(99)00343-9 [18] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 doi: 10.1016/S0024-4937(02)00082-8 [19] Guo, S.S., Li, S.G., 2007. Petrological and Geochemical Constraints on the Origin of Leucogranites. Earth Science Frontiers, 14(6): 290-298 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200706035.htm [20] Guo, S.S., Li, S.G., 2009. Petrochemical Characteristics of Leucogranite and a Case Study of Bengbu Leucogranites. Chinese Science Bulletin, 54(11): 1923-1930. https://doi.org/10.1007/s11434-009-0355-4 http://www.cqvip.com/Main/Detail.aspx?id=30566764 [21] Hawkesworth, C.J., Kemp, A.I.S., 2006. Evolution of the Continental Crust. Nature, 443: 811-817. https://doi.org/10.1038/nature05191 [22] He, Y.S., Li, S.G., Hoefs, J., et al., 2011. Post-Collisional Granitoids from the Dabie Orogen: New Evidence for Partial Melting of a Thickened Continental Crust. Geochimica et Cosmochimica Acta, 75(13): 3815-3838. https://doi.org/10.1016/j.gca.2011.04.011 [23] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h [24] Jagoutz, O., Kelemen, P.B., 2015. Role of Arc Processes in the Formation of Continental Crust. Annual Review of Earth and Planetary Sciences, 43(1): 363-404. https://doi.org/10.1146/annurev-earth-040809-152345 [25] Jahn, B.M., Condie, K.C., 1995. Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites. Geochimica et Cosmochimica Acta, 59(11): 2239-2258. https://doi.org/10.1016/0016-7037(95)00103-7 [26] Jahn, B.M., Wu, F.Y., Lo, C.H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1-2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1 doi: 10.1016/S0009-2541(98)00197-1 [27] Jiang, N., Chen, J.Z., Guo, J.H., et al., 2012. In Situ Zircon U-Pb, Oxygen and Hafnium Isotopic Compositions of Jurassic Granites from the North China Craton: Evidence for Triassic Subduction of Continental Crust and Subsequent Metamorphism-Related 18O Depletion. Lithos, 142-143: 84-94. https://doi.org/10.1016/j.lithos.2012.02.018 [28] Kemp, A.I.S., Hawkesworth, C.J., 2014. Growth and Differentiation of the Continental Crust from Isotope Studies of Accessory Minerals. Treatise on Geochemistry. Elsevier, Amsterdam, 379-421. https://doi.org/10.1016/b978-0-08-095975-7.00312-0 [29] Li, S.G., Wang, S.J., Guo, S.S., et al., 2014. Geochronology and Geochemistry of Leucogranites from the Southeast Margin of the North China Block: Origin and Migration. Gondwana Research, 26(3-4): 1111-1128. https://doi.org/10.1016/j.gr.2013.08.019 [30] Li, W.C., Chen, R.X., Zheng, Y.F., et al., 2013. Zirconological Tracing of Transition between Aqueous Fluid and Hydrous Melt in the Crust: Constraints from Pegmatite Vein and Host Gneiss in the Sulu Orogen. Lithos, 162-163: 157-174. https://doi.org/10.1016/j.lithos.2013.01.004 [31] Liégeois, J.P., 1998. Post-Collisional Magmatism. Lithos, 45: 560. [32] Liou, J.G., Tsujimori, T., Zhang, R.Y., et al., 2004. Global UHP Metamorphism and Continental Subduction/Collision: The Himalayan Model. International Geology Review, 46(1): 1-27. https://doi.org/10.2747/0020-6814.46.1.1 [33] Liu, F.L., Liou, J.G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1-39. https://doi.org/10.1016/j.jseaes.2010.08.007 [34] Liu, F.L., Robinson, P.T., Liu, P.H., 2012b. Multiple Partial Melting Events in the Sulu UHP Terrane: Zircon U-Pb Dating of Granitic Leucosomes within Amphibolite and Gneiss. Journal of Metamorphic Geology, 30(8): 887-906. https://doi.org/10.1111/j.1525-1314.2012.01005.x [35] Liu, F.L., Xu, Z.Q., Katayama, I., et al., 2001. Mineral Inclusions in Zircons of Para- and Orthogneiss from Pre-Pilot Drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos, 59(4): 199-215. https://doi.org/10.1016/s0024-4937(01)00064-0 doi: 10.1016/S0024-4937(01)00064-0 [36] Liu, F.L., Xu, Z.Q., Yang, J.S., et al., 2004. Geochemical Characteristics and UHP Metamorphism of Granitic Gneisses in the Main Drilling Hole of Chinese Continental Scientific Drilling Project and Its Adjacent Area. Acta Petrologica Sinica, 20(1): 9-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200401001.htm [37] Liu, S.G., Li, S.G., Guo, S.S., et al., 2012a. The Cretaceous Adakitic-Basaltic-Granitic Magma Sequence on South-Eastern Margin of the North China Craton: Implications for Lithospheric Thinning Mechanism. Lithos, 134-135: 163-178. https://doi.org/10.1016/j.lithos.2011.12.015 [38] Liu, Y.C., Wang, A.D., Rolfo, F., et al., 2009. Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton. Journal of Metamorphic Geology, 27(2): 125-138. https://doi.org/10.1111/j.1525-1314.2008.00810.x [39] Liu, Y.C., Zhang, P.G., Wang, C.C., et al., 2017. Petrology, Geochemistry and Zirconology of Impure Calcite Marbles from the Precambrian Metamorphic Basement at the Southeastern Margin of the North China Craton. Lithos, 290-291: 189-209. https://doi.org/10.1016/j.lithos.2017.08.011 [40] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [41] Ludwig, K.R., 2003. Isoplot Rev. 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley. [42] Lugmair, G.W., Marti, K., 1978. Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle. Earth and Planetary Science Letters, 39(3): 349-357. https://doi.org/10.1016/0012-821x(78)90021-3 doi: 10.1016/0012-821X(78)90021-3 [43] Ma, Q., Xu, Y.G., 2021. Magmatic Perspective on Subduction of Paleo-Pacific Plate and Initiation of Big Mantle Wedge in East Asia. Earth-Science Reviews, 213: 103473. https://doi.org/10.1016/j.earscirev.2020.103473 [44] McDonough, W.F., Sun, S.S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4 [45] Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2 [46] Niu, Y.L., Zhao, Z.D., Zhu, D.C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth: A Testable Hypothesis. Earth-Science Reviews, 127: 96-110. https://doi.org/10.1016/j.earscirev.2013.09.004 [47] Nowell, G.M., Kempton, P.D., Noble, S.R., et al., 1998. High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionisation Mass Spectrometry: Insights into the Depleted Mantle. Chemical Geology, 149(3-4): 211-233. https://doi.org/10.1016/s0009-2541(98)00036-9 doi: 10.1016/S0009-2541(98)00036-9 [48] Patiño Douce, A.E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4): 689-710. https://doi.org/10.1093/petroj/39.4.689 [49] Prouteau, G., Scaillet, B., Pichavant, M., et al., 2001. Evidence for Mantle Metasomatism by Hydrous Silicic Melts Derived from Subducted Oceanic Crust. Nature, 410: 197-200. https://doi.org/10.1038/35065583 [50] Sawyer, E.W., Cesare, B., Brown, M., 2011. When the Continental Crust Melts. Elements, 7(4): 229-234. https://doi.org/10.2113/gselements.7.4.229 [51] Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683-687. https://doi.org/10.1126/science.1061372 [52] Schertl, H.P., Okay, A.I., 1994. A Coesite Inclusion in Dolomite in Dabie Shan, China: Petrological and Rheological Significance. European Journal of Mineralogy, 6(6): 995-1000. https://doi.org/10.1127/ejm/6/6/0995 [53] Sun, H., Gao, Y.J., Xiao, Y.L., et al., 2016. Lithium Isotope Fractionation during Incongruent Melting: Constraints from Post-Collisional Leucogranite and Residual Enclaves from Bengbu Uplift, China. Chemical Geology, 439: 71-82. https://doi.org/10.1016/j.chemgeo.2016.06.004 [54] Tang, J., Zheng, Y.F., Gong, B., et al., 2008. Extreme Oxygen Isotope Signature of Meteoric Water in Magmatic Zircon from Metagranite in the Sulu Orogen, China: Implications for Neoproterozoic Rift Magmatism. Geochimica et Cosmochimica Acta, 72(13): 3139-3169. https://doi.org/10.1016/j.gca.2008.04.017 [55] Tang, Y.W., Chen, L., Zhao, Z.F., et al., 2020. Geochemical Evidence for the Production of Granitoids through Reworking of the Juvenile Mafic Arc Crust in the Gangdese Orogen, Southern Tibet. Geological Society of America Bulletin, 132(7-8): 1347-1364. https://doi.org/10.1130/b35304.1 doi: 10.1130/B35304.1 [56] Valley, J.W., Kinny, P.D., Schulze, D.J., et al., 1998. Zircon Megacrysts from Kimberlite: Oxygen Isotope Variability among Mantle Melts. Contributions to Mineralogy and Petrology, 133(1-2): 1-11. https://doi.org/10.1007/s004100050432 [57] Vielzeuf, D., Montel, J.M., 1994. Partial Melting of Metagreywackes. Part Ⅰ. Fluid-Absent Experiments and Phase Relationships. Contributions to Mineralogy and Petrology, 117(4): 375-393. https://doi.org/10.1007/bf00307272 doi: 10.1007/BF00307272 [58] Wang, Q., Wyman, D.A., Xu, J.F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636. https://doi.org/10.1016/j.gca.2007.03.008 [59] Wang, S.J., Li, S.G., Liu, S.G., 2013. The Origin and Evolution of Low-δ18O Magma Recorded by Multi-Growth Zircons in Granite. Earth and Planetary Science Letters, 373: 233-241. https://doi.org/10.1016/j.epsl.2013.05.009 [60] Weinberg, R.F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 212-215: 158-188. https://doi.org/10.1016/j.lithos.2014.08.021 [61] Weis, D., Kieffer, B., Maerschalk, C., et al., 2006. High-Precision Isotopic Characterization of USGS Reference Materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8): Q08006. https://doi.org/10.1029/2006gc001283 doi: 10.1029/2006GC001283/full [62] Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x doi: 10.1111/j.1751-908X.1995.tb00147.x [63] Wu, F.Y., Yang, J.H., Xu, Y.G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47(1): 173-195. https://doi.org/10.1146/annurev-earth-053018-060342 [64] Wu, F.Y., Zhao, G.C., Wilde, S.A., et al., 2005. Nd Isotopic Constraints on Crustal Formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523-545. https://doi.org/10.1016/j.jseaes.2003.10.011 [65] Xu, H.J., Ma, C.Q., Zhang, J.F., 2012. Generation of Early Cretaceous High-Mg Adakitic Host and Enclaves by Magma Mixing, Dabie Orogen, Eastern China. Lithos, 142-143: 182-200. https://doi.org/10.1016/j.lithos.2012.03.004 [66] Xu, H.J., Zhang, J.F., Wang, Y.F., et al., 2016. Late Triassic Alkaline Complex in the Sulu UHP Terrane: Implications for Post-Collisional Magmatism and Subsequent Fractional Crystallization. Gondwana Research, 35: 390-410. https://doi.org/10.1016/j.gr.2015.05.017 [67] Xu, L.J., Xiao, Y.L., Wu, F., et al., 2013. Anatomy of Garnets in a Jurassic Granite from the South-Eastern Margin of the North China Craton: Magma Sources and Tectonic Implications. Journal of Asian Earth Sciences, 78: 198-221. https://doi.org/10.1016/j.jseaes.2012.11.026 [68] Xu, S.T., Su, W., Liu, Y.C., et al., 1992. Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting. Science, 256(5053): 80-82. https://doi.org/10.1126/science.256.5053.80 [69] Xu, W.L., Wang, Q.H., Yang, D.B., et al., 2005. SHRIMP Zircon U-Pb Dating in Jingshan "Migmatitic Granite", Bengbu and Its Geological Significance. Science in China: Earth Sciences, 48(2): 185-191. https://doi.org/10.1360/03yd0045 [70] Yang, D.B., Xu, W.L., Wang, Q.H., et al., 2010a. Chronology and Geochemistry of Mesozoic Granitoids in the Bengbu Area, Central China: Constraints on the Tectonic Evolution of the Eastern North China Craton. Lithos, 114(1-2): 200-216. https://doi.org/10.1016/j.lithos.2009.08.009 [71] Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2005. Petrogenesis of Early Cretaceous Intrusions in the Sulu Ultrahigh-Pressure Orogenic Belt, East China and Their Relationship to Lithospheric Thinning. Chemical Geology, 222(3-4): 200-231. https://doi.org/10.1016/j.chemgeo.2005.07.006 [72] Yang, Y.H., Chu, Z.Y., Wu, F.Y., et al., 2011a. Precise and Accurate Determination of Sm, Nd Concentrations and Nd Isotopic Compositions in Geological Samples by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 26(6): 1237. https://doi.org/10.1039/c1ja00001b [73] Yang, Y.H., Wu, F.Y., Xie, L.W., et al., 2011b. High-Precision Direct Determination of the 87Sr/86Sr Isotope Ratio of Bottled Sr-Rich Natural Mineral Drinking Water Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 66(8): 656-660. https://doi.org/10.1016/j.sab.2011.07.004 [74] Yang, Y.H., Zhang, H.F., Chu, Z.Y., et al., 2010b. Combined Chemical Separation of Lu, Hf, Rb, Sr, Sm and Nd from a Single Rock Digest and Precise and Accurate Isotope Determinations of Lu-Hf, Rb-Sr and Sm-Nd Isotope Systems Using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry, 290(2-3): 120-126. https://doi.org/10.1016/j.ijms.2009.12.011 [75] Yuan, H.L., Gao, S., Dai, M.N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003 [76] Zhang, J., Zhao, Z.F., Zheng, Y.F., et al., 2010. Postcollisional Magmatism: Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China. Lithos, 119(3-4): 512-536. https://doi.org/10.1016/j.lithos.2010.08.005 [77] Zhao, Z.F., Dai, F.Q., Chen, Q., 2019. Continental Slab-Mantle Interaction: Geochemical Evidence from Post-Collisional Andesitic Rocks in the Dabie Orogen. Earth Science, 44(12): 4119-4127(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912021.htm [78] Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2013. Postcollisional Mafic Igneous Rocks Record Crust-Mantle Interaction during Continental Deep Subduction. Scientific Reports, 3: 3413. https://doi.org/10.1038/srep03413 [79] Zhao, Z.F., Liu, Z.B., Chen, Q., 2017b. Melting of Subducted Continental Crust: Geochemical Evidence from Mesozoic Granitoids in the Dabie-Sulu Orogenic Belt, East-Central China. Journal of Asian Earth Sciences, 145: 260-277. https://doi.org/10.1016/j.jseaes.2017.03.038 [80] Zhao, Z.F., Zheng, Y.F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science in China: Earth Sciences, 52(9): 1295-1318. https://doi.org/10.1007/s11430-009-0134-8 [81] Zhao, Z.F., Zheng, Y.F., Chen, Y.X., et al., 2017a. Partial Melting of Subducted Continental Crust: Geochemical Evidence from Synexhumation Granite in the Sulu Orogen. Geological Society of America Bulletin, 129(11-12): 1692-1707. https://doi.org/10.1130/b31675.1 [82] Zhao, Z.F., Zheng, Y.F., Gao, T.S., et al., 2006. Isotopic Constraints on Age and Duration of Fluid-Assisted High-Pressure Eclogite-Facies Recrystallization during Exhumation of Deeply Subducted Continental Crust in the Sulu Orogen. Journal of Metamorphic Geology, 24(8): 687-702. https://doi.org/10.1111/j.1525-1314.2006.00662.x [83] Zheng, Y.F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Chinese Science Bulletin, 53(20): 3081-3104. https://doi.org/10.1007/s11434-008-0388-0 http://www.cqvip.com/Main/Detail.aspx?id=28405793 [84] Zheng, Y.F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 [85] Zheng, Y.F., Chen, Y.X., 2019. Crust-Mantle Interaction in the Continental Subduction Zone. Journal of Earth Sciences, 44(12): 3961-3983. [86] Zheng, Y.F., Chen, R.X., Zhao, Z.F., 2009. Chemical Geodynamics of Continental Subduction-Zone Metamorphism: Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples. Tectonophysics, 475(2): 327-358. https://doi.org/10.1016/j.tecto.2008.09.014 [87] Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Science China Earth Sciences, 58(7): 1045-1069. https://doi.org/10.1007/s11430-015-5097-3 [88] Zheng, Y.F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1-2): 105-161. https://doi.org/10.1016/s0012-8252(02)00133-2 doi: 10.1016/S0012-8252(02)00133-2 [89] Zheng, Y.F., Wu, Y.B., Chen, F.K., et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145-4165. https://doi.org/10.1016/j.gca.2004.01.007 [90] Zheng, Y.F., Zhao, Z.F., 2017. Introduction to the Structures and Processes of Subduction Zones. Journal of Asian Earth Sciences, 145: 1-15. https://doi.org/10.1016/j.jseaes.2017.06.034 [91] Zheng, Y.F., Zhao, Z.F., Chen, R.X., 2018. Ultrahigh-Pressure Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: Compositional Inheritance and Metamorphic Modification. Geological Society, London, Special Publications, 474(1): 89-132. https://doi.org/10.1144/sp474.9 http://www.researchgate.net/publication/325156732_Ultrahigh-pressure_metamorphic_rocks_in_the_Dabie-Sulu_orogenic_belt_compositional_inheritance_and_metamorphic_modification/download [92] Zhu, G., Liu, G.S., Niu, M.L., et al., 2009. Syn-Collisional Transform Faulting of the Tan-Lu Fault Zone, East China. International Journal of Earth Sciences, 98(1): 135-155. https://doi.org/10.1007/s00531-007-0225-8 [93] 戴立群, 赵子福, 2019. 大陆碰撞造山带镁铁质岩浆岩记录俯冲古洋壳物质再循环. 地球科学, 44(12): 4128-4134. doi: 10.3799/dqkx.2019.240 [94] 郭素淑, 李曙光, 2007. 淡色花岗岩的岩石学和地球化学特征及其成因. 地学前缘, 14(6): 290-298. doi: 10.3321/j.issn:1005-2321.2007.06.036 [95] 刘福来, 许志琴, 杨经绥, 等, 2004. 中国大陆科学钻探工程主孔及周边地区花岗质片麻岩的地球化学性质和超高压变质作用标志的识别. 岩石学报, 20(1): 9-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401001.htm [96] 赵子福, 代富强, 陈启, 2019. 大陆板片-地幔相互作用: 来自大别造山带碰撞后安山质火山岩的地球化学证据. 地球科学, 44(12): 4119-4127. doi: 10.3799/dqkx.2019.244 [97] 郑永飞, 陈伊翔, 2019. 大陆俯冲带壳幔相互作用. 地球科学, 44(12): 3961-3983. doi: 10.3799/dqkx.2019.982