High-Frequency Sequence and Microfacies and Their Impacts on Favorable Reservoir of Longwangmiao Formation in Central Sichuan Basin
-
摘要: 为明确川中地区龙王庙组沉积微相时空分布及其对储层的控制,利用地震、钻井及岩心资料,开展了精细的沉积、层序和储层研究,深入讨论了高频层序与沉积微相对有利储层的控制.龙王庙组主要发育鲕粒颗粒云岩、砂屑颗粒云岩、花斑状粉晶云岩等8种岩相,垂向上发育深水台地-滩间海型、颗粒滩型和局限潮坪型等3种岩相组合.龙王庙组构成1个三级层序,可分为2个四级层序(SQ1和SQ2),各四级层序可分为3~5个五级层序.高频层序格架内,颗粒滩和局限潮坪具明显的加积和朝东南方向进积趋势,SQ2颗粒滩和局限潮坪的发育优于SQ1.局限潮坪微相的窗格孔细晶-粉晶云岩和花斑状粉晶云岩孔隙度最好,主要分布于四级和五级层序的顶部;其次为高频层序中-上部的颗粒滩微相.与高频海平面变化相关的早期溶蚀是优质储层形成的关键,并为后期储层改造奠定了基础.Abstract: Based on seismic data, well-logging and cores, an integrated research on the microfacies and sequence stratigraphy and reservoir characteristics is made, in order to clarify the controls of the high-frequency sequence and microfacies on the reservoirs in the Longwangmiao Formaion, Central Sichuan basin. The Longwangmiao Formation is mainly composed of eight types of lithofacies such as ooid grainstone, intraclast grainstone and spotted-structure silt crystalline dolomite. They can be grouped into three types of facies associations which are deep-platform to inter-shoal, grain shoal, and restricted tidal flat. The Longwangmiao Formation consists of one third-order sequence and two fourth-order sequences, and either fourth-order sequence includes three to five fifth-order sequences. In the high-frequency sequence stratigraphic framework, tidal flat and grain shoal deposits show clear aggregation and southeastern progradation trends, and they are better developed in SQ2 than in SQ1. The fine to silt crystalline dolomite and spotted-structure silt crystalline dolomite that developed in restrict tidal flat are best in porosity, and they are mainly distributed in the upmost part of the fourth- and fifth-order sequences. The shoal deposits are the second best in reservoir quality and they mainly developed in the middle and upper parts of the sequences below the tidal flat. The early-stage dissolution related to high-frequency sea-level fluctuations is the basis for the formation of the best reservoir of the Longwangmiao Formation in the Central Sichuan basin, and laid the foundation for the later improvement.
-
图 2 川中地区龙王庙组典型微相类型岩心特征
a. 深灰色鲕粒颗粒云岩,高石6井,4 546.5 m;b. 深灰色鲕粒颗粒云岩,平行层理,高石10井,4 648.1 m;c. 灰色残余砂屑结构的粉晶云岩,发育针孔,磨溪12井,4 632.5 m;d. 灰色砾屑云岩,砾屑呈条形,约占40%,磨溪26井,4 918.8 m;e. 灰色砾屑云岩,砾屑呈椭球形,约占35%,磨溪16井,4 751.8 m;f. 残余似球粒结构的泥-粉晶云岩,发育不规则暗斑,疑为生物扰动构造,磨溪16井,4 769.3 m;g. 花斑状泥-粉晶云岩,不规则明暗斑块交替发育,高石10井,4 623.5 m;h. 窗格孔细晶-粉晶云岩,磨溪12井,4 675.6 m;i. 含泥生屑粒泥-泥晶云岩,磨溪39井,4 920.6 m;j. 深灰色泥质条带泥晶灰岩,发育底栖生物遗迹构造,磨溪13井,4 607.7 m
Fig. 2. Core photos of microfacies in the Longwangmiao Formation, Central Sichuan basin
图 3 川中地区龙王庙组典型岩相类型薄片特征
a. 鲕粒颗粒云岩,发育晶间孔,高石6井,4 547.0 m;b. 砂屑颗粒云岩,磨溪13井,4 597.2 m;c. 残余砂屑结构细晶-粗粉晶云岩,高石10井,4 627.0 m;d. 视域同c,在薄片与载物台之间加垫白纸后,显现出清晰的砂屑结构,砂屑分选中等,次棱状;e. 残余似球粒结构的细粉晶云岩,磨溪13井,4 631.5 m;f. 同e,在薄片与载物台之间加垫白纸后,显现出清晰的似球粒结构;g. 粉晶云岩,晶间孔和晶间溶孔发育不均,充填沥青,磨溪20井,4 616.3 m;h. 窗格孔细晶-粉晶云岩,溶孔和小洞顺层发育,磨溪20井,4 606.5 m;i. 泥质泥晶云岩,发育暗色粘土质纹层和微量细粉砂级陆源石英碎屑,磨溪21井,4 631.0 m
Fig. 3. Thin-section photos of microfacies of the Longwangmiao Formation, Central Sichuan basin
图 9 川中地区龙王庙组典型储层类型及孔隙特征
a. 发育窗格状孔洞的粉晶云岩,磨溪22井,4 944.5 m;b. 发育针孔和小洞的花斑状粉晶云岩,高石10井,4 632.1 m;c. 发育密集针孔和小洞的粉晶云岩,磨溪207井,4 646.3 m;d. 发育密集小洞的粉晶云岩,磨溪20井,4 606.5 m;e. 发育粒间和晶间溶孔的残余砂屑结构粉晶云岩,磨溪17井,4 665.0 m;f. 发育晶间和粒间溶孔和残余砂屑结构粉晶云岩,薄片下垫纸后显示孔隙大多发育于原始颗粒间,磨溪13井,4 596.6 m
Fig. 9. Types of reservoirs and pores of the Longwangmiao Formation, Central Sichuan basin
-
[1] Amel, H., Jafarian, A., Husinec, A., et al., 2015. Microfacies, Depositional Environment and Diagenetic Evolution Controls on the Reservoir Quality of the Permian Upper Dalan Formation, Kish Gas Field, Zagros Basin. Marine and Petroleum Geology, 67: 57-71. https://doi.org/10.1016/j.marpetgeo.2015.04.012 [2] Andrieu, S., Brigaud, B., Barbarand, J., et al., 2017. Linking Early Diagenesis and Sedimentary Facies to Sequence Stratigraphy on a Prograding Oolitic Wedge: The Bathonian of Western France (Aquitaine Basin). Marine and Petroleum Geology, 81: 169-195. https://doi.org/10.1016/j.marpetgeo.2017.01.005 [3] Dai, L.C., Wang, X.Z., Du, S.Y., et al., 2016. Characteristics and Genesis of Lower Cambrian Longwangmiao Beach-Facies Reservoirs in Central Part of Sichuan Basin. Marine Origin Petroleum Geology, 21(1): 19-28(in Chinese with English abstract). [4] Du, J.H., Zhang, B.M., Wang, Z.C., et al., 2016. Sedimentary Model and Reservoir Genesis of Dual Grain Banks at the Lower Cambrian Longwangmiao Fm. Carbonate Ramp in the Sichuan Basin. Natural Gas Industry, 36(6): 1-10(in Chinese with English abstract). [5] Gao, D., Lin, C.S., Yang, H.J., et al., 2013. Microfacies of Late Ordovician Lianglitage Formation and Their Control on Favorable Reservoir in Tazhong Area. Earth Science, 22(4): 819-831(in Chinese with English abstract). [6] Handford, C.R., 1988. Review of Carbonate Sand-Belt Deposition of Ooid Grainstones and Application to Mississippian Reservoir, Damme Field, Southwestern Kansas. AAPG Bulletin, 72(10): 1184-1199. https://doi.org/10.1306/703C9974-1707-11D7-8645000102C1865D [7] Hu, X.L., Fan, T.L., Gao, Z.Q., et al., 2014. Depositional Combination Characteristics and Distribution of Ordovician Carbonate Shoals in the Tarim Basin. Acta Sedimentologica Sinica, 32(3): 418-428(in Chinese with English abstract). [8] Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2012. Paleoecology of the Ordovician Reef-Shoal Depositional System in the Yijianfang Outcrop of the Bachu Area, West Tarim Basin. Journal of Earth Science, 23(4): 408-420. https://doi.org/10.1007/s12583-012-0264-3 [9] Jin, M.D., Tan, X.C., Zeng, W., et al., 2016. Reconstruction of the Tectonic Palaeogeomorphology of Longwangmiao Formation during the Caledonian-Hercynian Period in Moxi-Gaoshiti Area, Sichuan Basin and Its Geological Significance. Acta Sedimentologica Sinica, 34(4): 634-644(in Chinese with English abstract). [10] Liu, L.S., Hu, M.Y., Gao, D., et al., 2016. Sequence Strata and Reservoir Prediction for Longwangmiao Formation in Sichuan Moxi-Gaoshiti Area. Petroleum Geology & Oilfield Development in Daqing, 35(5): 42-47(in Chinese with English abstract). [11] Liu, S.G., Song, J.M., Zhao, Y.H., et al., 2014. Controlling Factors of Formation and Distribution of Lower Cambrian Longwangmiao Formation High-Quality Reservoirs in Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(6): 657-670(in Chinese with English abstract). [12] Liu, Z.L., Deng, K., Shi, Z.J., et al., 2020. Sedimentary Facies and Model of Shallow Water Carbonates Platform of the Lower Cambrian Longwangmiao Formation in Sichuan Basin. Journal of Palaeogeography, 22(3): 504-522(in Chinese with English abstract). [13] Ma, Y.S., 2007. Generation Mechanism of Puguang Gas Field in Sichuan Basin. Acta Petrolei Sinica, 28(2): 9-14, 21(in Chinese with English abstract). http://www.researchgate.net/publication/290583403_Generation_mechanism_of_Puguang_Gas_Field_in_Sichuan_Basin [14] Ma, Y.S., Mei, M.X., Zhou, R.X., et al., 2017. Forming Patterns for the Oolitic Bank within the Sequence-Stratigraphic Framework: An Example from the Cambrian Series 3 at the Xiaweidian Section in the Western Suburb of Beijing. Acta Petrologica Sinica, 33(4): 1021-1036(in Chinese with English abstract). [15] Martin, K.G., Totten, M.W., Raef, A., 2017. Characterization of a Reservoir Ooid Shoal Complex and Artificial Neural Networks Application in Lithofacies Prediction: Mississippian St. Louis Formation, Lakin Fields, Western Kansas. Journal of Petroleum Science and Engineering, 150: 1-12. https://doi.org/10.1016/j.petrol.2016.11.028 [16] Qiao, Z.F., Janson, X., Shen, A.J., et al., 2016. Lithofacies, Architecture, and Reservoir Heterogeneity of Tidal-Dominated Platform Marginal Oolitic Shoal: An Analogue of Oolitic Reservoirs of Lower Triassic Feixianguan Formation, Sichuan Basin, SW China. Marine and Petroleum Geology, 76: 290-309. https://doi.org/10.1016/j.marpetgeo.2016.05.030 [17] Ren, D.W., Jiang, W., Gao, D., et al., 2018. Control of Sedimentary Facies and High-Frequency Sequences on the Reservoir of Longwangmiao Formation in Moxi Area, Central Sichuan Basin. Geology and Resources, 27(1): 77-82(in Chinese with English abstract). [18] Ren, N.N., Han, B., Zhang, J.T., et al., 2018. Study on Correlation between Carbonate Reservoirs and Transgression or Regression of Sea Water, Uplifting or Sinking of Shoal Flat, and Dolomitized Karst-A Case Study of the Longwangmiao Formation of the Yangtze Platform. Acta Sedimentologica Sinica, 36(6): 1190-1205(in Chinese with English abstract). [19] Rong, H., Jiao, Y.Q., Wu, L.Q., et al., 2010. Oolitic Shoal Composition and Its Implication of Feixianguan Formation in Yudongzi Section of Erlangmiao, Jiangyou, Sichuan, China. Earth Science, 35(1): 125-136(in Chinese with English abstract). [20] Rong, H., Jiao, Y.Q., Wu, L.Q., et al., 2012. Effects of Diagenesis on the Acoustic Velocity of the Triassic Oolitic Shoals in the Yudongzi Outcrop of Erlangmiao Area, Northwest Sichuan Basin. Journal of Earth Science, 23(4): 542-558. https://doi.org/10.1007/s12583-012-0274-1 [21] Rong, H., Jiao, Y.Q., Wu, L.Q., et al., 2015. Relationship between Depositional Textures and Seismic Velocities of the Yijianfang Ordovician Reef Complexes in the Bachu Area, West Tarim Basin, China. Journal of Petroleum Science and Engineering, 133: 785-800. https://doi.org/10.1016/j.petrol.2015.04.023 [22] Shi, X.Y., Chen, J.Q., Mei, S.L., 1997. Cambrian Sequence Chronostratigraphic Frame Work of the North China Platform. Earth Science Frontiers, 4(Z2): 165-177(in Chinese with English abstract). [23] Song, W.H., 1996. Research on Reservoir-Formed Conditions of Large-Medium Gas Fields of Leshan-Longnüsi Palaeohigh. Natural Gas Industry, 16(S1): 13-26(in Chinese with English abstract). [24] Tao, X.Y., Wang, Z.Y., Fan, P., et al., 2014. The Depositional Features and Distribution Regularities of Marginal Platform Grain Shoals of Lianglitag Formation in Tazhong Area. Acta Sedimentologica Sinica, 32(2): 354-364(in Chinese with English abstract). [25] Wang, D., Hu, M.Y., Gao, D., et al., 2017. Development and Evolution of Inner-Platform Shoal with Control on the Reservoir in a Sequence Framework of Lower Cambrian Longwangmiao Formation, Moxi-Gaoshiti Area, Central Sichuan Basin. Marine Origin Petroleum Geology, 22(1): 47-54(in Chinese with English abstract). [26] Wang, Y.P., Yang, X.F., Wang, X.Z., et al., 2019. Reservoir Property and Genesis of Powder Crystal Dolomite in the Longwangmiao Formation, Moxi Area in Central Sichuan Basin. Geological Science and Technology Information, 38(1): 197-205(in Chinese with English abstract). [27] Wang, Y.W., Chen, H.H., Cao, Z.C., et al., 2019. Forming Mechanism of Ordovician Microbial Carbonate Reservoir in Northern Slope of Tazhong Uplift, Tarim Basin. Earth Science, 44(2): 559-571(in Chinese with English abstract). [28] Wei, G.Q., Yang, W., Du, J.H., et al., 2015. Tectonic Features of Gaoshiti-Moxi Paleo-Uplift and Its Controls on the Formation of a Giant Gas Field, Sichuan Basin, SW China. Petroleum Exploration and Development, 42(3): 257-265(in Chinese with English abstract). [29] Xing, F.C., Hu, H.R., Hou, M.C., et al., 2018. Carbonate Reservoirs Cycles and Assemblages under the Tectonic and Palaeogeography Control: A Case Study from Sichuan Basin. Earth Science, 43(10): 3540-3552(in Chinese with English abstract). [30] Xing, F.C., Lu, Y.C., Guo, T.L., et al., 2017. Sedimentary Texture Diversity of Different Carbonate Platform Margins and Its Significance for Petroleum Exploration: A Case Study of Carbonate Platform Margins in Feixianguan Period of the Early Triassic, NE Sichuan Basin, China. Acta Petrologica Sinica, 33(4): 1305-1316(in Chinese with English abstract). [31] Yang, W.Q., Liu, Z., Chen, H.R., et al., 2020. Depositional Combination of Carbonate Grain Banks of the Lower Cambrian Longwangmiao Formation in Sichuan Basin and Its Control on Reservoirs. Journal of Palaeogeography, 22(2): 251-265(in Chinese with English abstract). [32] Yang, X.F., Wang, X.Z., Tang, H., et al., 2015. Research Sedimentary Microfacies of the Longwangmiao Formation in Moxi Area, Central Sichuan Basin. Acta Sedimentologica Sinica, 33(5): 972-982(in Chinese with English abstract). [33] Yao, G.S., Zhou, J.G., Zou, W.H., et al., 2013. Characteristics and Distribution Rule of Lower Cambrian Longwangmiao Grain Beach in Sichuan Basin. Marine Origin Petroleum Geology, 18(4): 1-8(in Chinese with English abstract). [34] Zeng, H.L., Zhao, W.Z., Xu, Z.H., et al., 2018. Carbonate Seismic Sedimentology: A Case Study of Cambrian Longwangmiao Formation, Gaoshiti-Moxi Area, Sichuan Basin, China. Petroleum Exploration and Development, 45(5): 775-784(in Chinese with English abstract). [35] Zhou, J.G., Fang, C., Ji, H.C., et al., 2014. A Development Rule of Lower Cambrian Longwangmiao Grain Beaches in the Sichuan Basin. Natural Gas Industry, 34(8): 27-36(in Chinese with English abstract). [36] Zou, C.N., Du, J.H., Xu, C.C., et al., 2014. Formation, Distribution, Resource Potential and Discovery of the Sinian-Cambrian Giant Gas Field, Sichuan Basin, SW China. Petroleum Exploration and Development, 41(3): 278-293(in Chinese with English abstract). [37] 代林呈, 王兴志, 杜双宇, 等, 2016. 四川盆地中部龙王庙组滩相储层特征及形成机制. 海相油气地质, 21(1): 19-28. doi: 10.3969/j.issn.1672-9854.2016.01.004 [38] 杜金虎, 张宝民, 汪泽成, 等, 2016. 四川盆地下寒武统龙王庙组碳酸盐缓坡双颗粒滩沉积模式及储层成因. 天然气工业, 36(6): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201606002.htm [39] 高达, 林畅松, 杨海军, 等, 2013. 塔中地区良里塔格组沉积微相及其对有利储层的控制. 地球科学(中国地质大学学报), 38(4): 819-831. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201304016.htm [40] 胡晓兰, 樊太亮, 高志前, 等, 2014. 塔里木盆地奥陶系碳酸盐岩颗粒滩沉积组合及展布特征. 沉积学报, 32(3): 418-428. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201403003.htm [41] 金民东, 谭秀成, 曾伟, 等, 2016. 四川盆地磨溪-高石梯地区加里东-海西期龙王庙组构造古地貌恢复及地质意义. 沉积学报, 34(4): 634-644. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201604003.htm [42] 刘泠杉, 胡明毅, 高达, 等, 2016. 四川磨溪-高石梯地区龙王庙组层序划分及储层预测. 大庆石油地质与开发, 35(5): 42-47. doi: 10.3969/J.ISSN.1000-3754.2016.05.007 [43] 刘树根, 宋金民, 赵异华, 等, 2014. 四川盆地龙王庙组优质储层形成与分布的主控因素. 成都理工大学学报(自然科学版), 41(6): 657-670. doi: 10.3969/j.issn.1671-9727.2014.06.01 [44] 刘自亮, 邓昆, 施泽进, 等, 2020. 四川盆地下寒武统龙王庙组浅水碳酸盐岩台地沉积相特征及模式. 古地理学报, 22(3): 504-522. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202003010.htm [45] 马永生, 2007. 四川盆地普光超大型气田的形成机制. 石油学报, 28(2): 9-14, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200702001.htm [46] 马永生, 梅冥相, 周润轩, 等, 2017. 层序地层框架下的鲕粒滩形成样式: 以北京西郊下苇甸剖面寒武系第三统为例. 岩石学报, 33(4): 1021-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201704002.htm [47] 任大伟, 江维, 高达, 等, 2018. 川中磨溪地区龙王庙组沉积相与高频层序对储层的控制. 地质与资源, 27(1): 77-82. doi: 10.3969/j.issn.1671-1947.2018.01.010 [48] 任娜娜, 韩波, 张军涛, 等, 2018. 海水进退、滩坪出没、云化岩溶等与碳酸盐岩储层关系研究: 以上扬子地台龙王庙组为例. 沉积学报, 36(6): 1190-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201806013.htm [49] 荣辉, 焦养泉, 吴立群, 等, 2010. 江油二郎庙鱼洞子剖面飞仙关组鲕粒滩内部构成. 地球科学, 35(1): 125-136. doi: 10.3799/dqkx.2010.013 [50] 史晓颖, 陈建强, 梅仕龙, 1997. 华北地台东部寒武系层序地层年代格架. 地学前缘, 4(Z2): 165-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY7Z2.026.htm [51] 宋文海, 1996. 乐山-龙女寺古隆起大中型气田成藏条件研究. 天然气工业, 16(S1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG6S1.002.htm [52] 陶夏妍, 王振宇, 范鹏, 等, 2014. 塔中地区良里塔格组台缘颗粒滩沉积特征及分布规律. 沉积学报, 32(2): 354-364. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201402020.htm [53] 王頔, 胡明毅, 高达, 等, 2017. 川中磨溪-高石梯地区下寒武统龙王庙组层序格架内滩体的发育演化特征及对储层的控制. 海相油气地质, 22(1): 47-54. doi: 10.3969/j.issn.1672-9854.2017.01.006 [54] 王雅萍, 杨雪飞, 王兴志, 等, 2019. 川中磨溪地区龙王庙组晶粒白云岩储集性能及成因机制. 地质科技情报, 38(1): 197-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901021.htm [55] 王玉伟, 陈红汉, 曹自成, 等, 2019. 塔里木盆地塔中北坡奥陶系微生物碳酸盐岩储层形成机制与评价. 地球科学, 44(2): 559-571. doi: 10.3799/dqkx.2018.121 [56] 魏国齐, 杨威, 杜金虎, 等, 2015. 四川盆地高石梯-磨溪古隆起构造特征及对特大型气田形成的控制作用. 石油勘探与开发, 42(3): 257-265. doi: 10.11698/PED.2015.03.01 [57] 邢凤存, 胡华蕊, 侯明才, 等, 2018. 构造和古地理控制下的碳酸盐岩储集体旋回和集群性探讨: 以四川盆地为例. 地球科学, 43(10): 3540-3552. doi: 10.3799/dqkx.2018.310 [58] 邢凤存, 陆永潮, 郭彤楼, 等, 2017. 碳酸盐岩台地边缘沉积结构差异及其油气勘探意义: 以川东北早三叠世飞仙关期台地边缘带为例. 岩石学报, 33(4): 1305-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201704022.htm [59] 杨伟强, 刘正, 陈浩如, 等, 2020. 四川盆地下寒武统龙王庙组颗粒滩沉积组合及其对储集层的控制作用. 古地理学报, 22(2): 251-265. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202002004.htm [60] 杨雪飞, 王兴志, 唐浩, 等, 2015. 四川盆地中部磨溪地区龙王庙组沉积微相研究. 沉积学报, 33(5): 972-982. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201505013.htm [61] 姚根顺, 周进高, 邹伟宏, 等, 2013. 四川盆地下寒武统龙王庙组颗粒滩特征及分布规律. 海相油气地质, 18(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201304002.htm [62] 曾洪流, 赵文智, 徐兆辉, 等, 2018. 地震沉积学在碳酸盐岩中的应用: 以四川盆地高石梯-磨溪地区寒武系龙王庙组为例. 石油勘探与开发, 45(5): 775-784. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805004.htm [63] 周进高, 房超, 季汉成, 等, 2014. 四川盆地下寒武统龙王庙组颗粒滩发育规律. 天然气工业, 34(8): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201408006.htm [64] 邹才能, 杜金虎, 徐春春, 等, 2014. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现. 石油勘探与开发, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm