Geochemistry, Chronology and Genesis of Marine Basalts in Houhongquan Area, Beishan, Gansu and Inner Mongolia
-
摘要: 甘蒙北山地区发育的海相二叠系地层是中亚造山带南缘最年轻的海相沉积地层之一,为进一步探讨二叠纪古亚洲洋的关闭及后期的碰撞造山作用的时间节点,选取甘蒙北山后红泉地区二叠系海相火山岩-碎屑岩地层的5条代表性剖面进行了岩性-岩相及分布特征研究,并对海相地层中的玄武岩进行了岩相学、元素地球化学以及全岩Sr-Nd同位素等研究,同时选择剖面典型岩石进行了LA-ICP-MS锆石U-Pb定年.获得流纹英安岩与含砂亮泥晶生屑灰岩年龄分别为273±1.7 Ma和275.8±1.4 Ma,结合已发表年龄数据及古生物资料,明确了火山岩的喷发时代介于早二叠世亚丁斯克期-中二叠世沃德期,应厘定为双堡塘组;地球化学研究表明,后红泉地区玄武岩SiO2含量介于47.48%~54.56%,主要为玄武岩和玄武安山岩,属钠质拉斑玄武岩;稀土总量(ΣREE)较高,为74.90×10-6~173.61×10-6,LREE/HREE为2.32~6.55,表现出轻稀土相对重稀土轻微富集,(La/Yb)N=1.30~6.20,在球粒陨石标准化分布曲线整体上呈现LREE轻度富集、配分曲线平缓的特征,相对富集La、Ce、Nd、Zr、Hf等元素,不同程度地亏损Ta、Nb、P、Ti等元素,δEu=0.83~1.20,无明显的Eu异常;(87Sr/86Sr)i为0.702 024~0.706 432,εNd(t)值介于1.99~6.54(除了-0.59和-0.83).因此,后红泉地区玄武岩岩浆是由接近原始地幔成分的石榴石二辉橄榄岩低程度熔融形成,其演化成岩过程中并未经地壳的强烈混染,而在岩浆源区发生了强烈的混染作用,推测软流圈地幔受到了陆源沉积岩、大陆地壳或蚀变大洋地壳改造,岩石圈拆沉作用可能是其产生的重要机制;说明古亚洲洋在早期已闭合,至早-中二叠世进一步拉张裂解形成了裂谷盆地.Abstract: The marine Permian strata developed in the Beishan area, Gansu and Inner Mongolia, is one of the youngest marine sedimentary strata in the southern margin of the Central Asian orogenic belt. To further explore the timeline of the Permian paleo-Asian Ocean closure and the later collisional orogeny, five representative sections of the Permian marine volcaniclastic-clastic strata in the Houhongquan, Beishan, Gansu and Inner Mongolia were selected for lithology-petrography and distribution characteristics studies, and petrography, elemental geochemistry and whole-rock Sr-Nd isotope studies were conducted on the basalts in the marine strata. In addition, a typical rock profile was selected for LA-ICP-MS zircon U-Pb dating. The ages of the rhyodacite and the sand-bearing bright micrite bioclastic limestone are 273±1.7 Ma and 275.8±1.4 Ma, respectively. Combined with published age data and paleontological data, it is clear that the eruption age of the volcanic rock is between the Artinskian age of Early Permian to the Ward stage of the Middle Permian. It should be determined as the Shuangbaotang Formation. The SiO2 contents of basalt in Houhongquan area ranges from 47.48% to 54.56%, mainly basalt and basalt andesite, belonging to sodium-tholeiitic basalt. The total content of rare earth elements (ΣREE) is relatively high, ranging 74.90×10-6-173.61×10-6, LREE/HREE is between 2.32-6.55, showing slight enrichment of light rare earth elements relative to heavy rare earth elements, with (La/Yb)N=1.30-6.20. On the whole, chondrite-normalized distribution curve shows slightly enriched LREE with the gentle distribution curve, relatively enriched elements such as La, Ce, Nd, Zr, Hf, and depleted Ta, Nb, P, Ti and other elements to varying degrees, δEu=0.83-1.20, no obvious Eu anomaly. (87Sr/86Sr)i is 0.702 024-0.706 432, the εNd(t)values between 1.99 and 6.54 (except -0.59 and -0.83). Therefore, the basalt magma in the Houhongquan area is formed by low-degree melting of the garnet peridotite, which is close to the original mantle composition. During its evolution and diagenesis, it was not strongly contaminated by the crust, but a strong contaminant occurred in the magma source area. It is speculated that the asthenospheric mantle has been modified by terrigenous sedimentary rocks, continental crust or altered oceanic crust, and lithospheric delamination may be an important mechanism for its generation. It shows that the Paleo-Asian Ocean was closed in the early period, and the rift basin was formed by further extension and rifting in the Early-Middle Permian.
-
Key words:
- Beishan /
- Permian /
- geochemical characteristics /
- chronological characteristics /
- tectonic setting /
- petrology
-
图 1 甘蒙北山地区构造地质简图
据聂风军等(2002);党犇等(2011);张新虎等(2013)修改. ①骆驼山-红石山-黑鹰山-雅干深大断裂;②明水-石板井-小黄山深断裂;③红柳河-牛圈子-洗肠井蛇绿岩带;④黑山-咸泉子深大断裂;⑤柳园-大奇山-帐房山深大断裂;⑥安山-旧寺墩深大断裂;⑦阿尔金-恩格尔乌苏深大断裂;⑧龙首山断裂;⑨查干础鲁断裂带;⑩吉兰泰断裂带;I.西伯利亚板块;II.哈萨克斯坦板块;III.塔里木板块;IV.华北板块;V.柴达木-祁连板块
Fig. 1. Tectonic and geological sketch map of the Beishan area, Gansu and Inner Mongolia
图 7 后红泉火山岩样品SiO2-(Na2O+K2O)图解(a)、Nb/Y-Zr/TiO2判别图解(b)、SiO2-K2O图解(c)和SiO2-FeO*/MgO图解(d)
a.底图据Bas et al.(1986);b.据Winchester and Floyd(1977);c.底图据Hastie et al. (2007);d. Miyashiro(1974);Le Maitre蓝色线,Rickwood总结了Peccerillo and Taylor(1976),Ewart(1982),Innocenti et al.(1982),Carr(1985)和Middlemost(1985)的分类界线,以绿色阴影条带表示
Fig. 7. SiO2-(Na2O+K2O)(a), Nb/Y-Zr/TiO2(b), SiO2-K2O(c), SiO2-FeO*/MgO(d) diagrams for the volcanic samples from Houhongquan profiles
图 8 后红泉玄武岩样品稀土元素球粒陨石标准化分布型式图(a)和微量元素原始地幔标准化蛛网图(b)
标准化值据Sun and Mcdonough (1989);Taylor and McDonough(1985),OIB、N-MORB、E-MORB及弧亚碱性玄武岩的分配样式参考Xia and Li (2019)
Fig. 8. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) for the basalts from Houhongquan area
图 9 后红泉地区二叠纪玄武岩样品微量元素比值及同位素图解
a. La/Yb-La图解(据Baker et al., 1997);b. Y/Nb-Zr/Nb图解(据Wilson,1989);c.SiO2-εNd(t) 图解;d.SiO2-(87Sr/86Sr)i图解;e. Nb/U-Nb/Th图解;f. Nb/Th-Th/U图解(据Pearce and Peate, 1995).PM.地幔柱;CC.大陆壳;OIB.洋岛玄武岩;IAB.岛弧玄武岩;N-MORB.正常洋中脊
Fig. 9. Trace element ratio and isotope diagrams for the Permian basalts from Houhongquan area
图 10 玄武岩Zr/Y-Zr (a)、Nb×2-Zr/4-Y (b)、Ti-V(c)判别图解和Sm/Yb-La/Sm图解(d)
a. 据Pearce and Norry (1979);A.火山弧玄武岩;B.MORB;C.板内玄武岩;D.MORB和火山弧玄武岩;E.MORB和板内玄武岩;b. 据Meschede (1986);AⅠ.板内碱性玄武岩;AⅡ.板内玄武岩和板内拉斑玄武岩;B.E型MORB;C.板内拉斑玄武岩和火山弧玄武岩;D.N型MORB和火山弧玄武岩;c.据Shervais (1982)汇编;BABB.弧后盆地玄武岩;d.底图据Mahoney and Coffin(1997);PM. 原始地幔;DMM.亏损地幔;CLM.大陆岩石圈地幔;LC.下地壳;CC.整个地壳;UC.上地壳
Fig. 10. Zr/Y-Zr (a), Nb×2-Zr/4-Y (b), Ti-V (c) discrimination diagrams of basalts and Sm/Yb vs. La/Sm diagram (d)
表 1 甘蒙北山地区二叠系划分及命名沿革表
Table 1. History of the stratigraphical subdivision and formations of the Permian strata in the Beishan area, Gansu and Inner Mongolia
郭敬信(1964) 朱伟元和沈光隆(1977) 甘肃省地层表编写组(1983) 内蒙古自治区地质矿产局(1991) 李文国(1996) 杨雨等(1997) 张新虎等(2013) 统 组 统 组 统 组 统 组 统 组 统 组 统 组 上二叠统 红柳峡群 上二叠统 方山口群 上二叠统 红岩井组 上二叠统 哈尔苏海群 上二叠统 哈尔苏海组 上二叠统 方山口组 上二叠统 红岩井组 方山口组 红岩井组 方山口组 金塔组 下二叠统 梧桐沟组 金塔组 下二叠统 金塔组 中二叠统 方山口组 下二叠统 金塔组 下二叠统 双堡塘组 中二叠统 双堡塘组 双堡塘组 双堡塘组 金塔组 双堡塘组 哲斯组 下二叠统 菊石滩组 双堡塘组 下二叠统 双堡塘组 双堡塘组 下二叠统 黄丘泉砂岩 红山井灰岩 双堡塘组 双堡塘组 表 2 后红泉剖面样品锆石U-Pb测试结果
Table 2. Zircon U-Pb dating results of the samples from Houhongquan profiles
测试编号 Pb(10-6) 232Th(10-6) 238U(10-6) 232Th/238U 同位素比值 同位素年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ XWG8含砂亮泥晶生屑灰岩 1 5 52 89 0.58 0.056 4 0.004 1 0.335 9 0.024 2 0.043 2 0.000 8 478 167.57 294 18.36 273 5.10 2 16 130 315 0.41 0.050 4 0.001 1 0.300 9 0.007 4 0.043 3 0.000 5 213 49.99 267 5.78 273 3.16 3 13 94 253 0.37 0.055 1 0.001 3 0.331 6 0.009 6 0.043 5 0.000 6 417 56.48 291 7.29 275 3.76 4 17 197 318 0.62 0.052 7 0.000 9 0.317 5 0.006 1 0.043 8 0.000 5 322 40.74 280 4.67 276 3.30 5 17 157 332 0.47 0.051 8 0.001 1 0.313 9 0.008 1 0.043 8 0.000 5 280 50.00 277 6.23 277 3.33 6 41 447 758 0.59 0.051 9 0.000 6 0.312 0 0.005 2 0.043 6 0.000 5 283 27.78 276 3.99 275 3.16 7 40 366 759 0.48 0.053 0 0.001 1 0.317 2 0.008 3 0.043 3 0.000 4 328 48.15 280 6.42 274 2.68 8 15 115 292 0.39 0.051 6 0.001 1 0.312 9 0.006 7 0.044 1 0.000 4 265 52.77 276 5.16 278 2.65 9 38 376 701 0.54 0.052 1 0.000 7 0.315 4 0.005 0 0.044 0 0.000 6 287 33.33 278 3.88 278 3.53 10 22 308 377 0.82 0.051 0 0.000 8 0.309 0 0.005 6 0.044 0 0.000 5 239 32.40 273 4.33 278 3.08 11 8 136 143 0.95 0.049 7 0.001 9 0.298 3 0.011 6 0.043 6 0.000 5 189 116.65 265 9.10 275 3.03 12 9 62 176 0.35 0.052 2 0.001 8 0.310 7 0.010 1 0.043 3 0.000 5 295 79.62 275 7.80 273 3.28 13 31 423 547 0.77 0.052 2 0.000 8 0.319 8 0.004 9 0.044 5 0.000 6 295 35.18 282 3.79 281 3.48 14 41 390 771 0.51 0.051 8 0.000 6 0.315 2 0.004 4 0.044 2 0.000 5 276 23.15 278 3.43 279 3.12 15 15 127 302 0.42 0.053 4 0.001 1 0.321 6 0.007 6 0.043 6 0.000 5 346 44.44 283 5.82 275 2.95 16 8 51 159 0.32 0.050 6 0.001 4 0.310 2 0.009 9 0.044 3 0.000 6 233 60.18 274 7.66 280 3.97 17 11 87 216 0.40 0.049 8 0.001 0 0.303 4 0.007 0 0.044 2 0.000 5 183 15.74 269 5.45 279 3.24 18 12 171 206 0.83 0.057 0 0.003 1 0.336 6 0.017 1 0.043 0 0.000 5 500 120.35 295 13.00 271 3.30 19 22 247 418 0.59 0.054 9 0.001 0 0.330 1 0.006 7 0.043 7 0.000 6 409 43.52 290 5.09 276 3.92 20 14 121 288 0.42 0.051 5 0.001 0 0.306 5 0.007 5 0.043 1 0.000 5 265 46.29 271 5.81 272 3.39 XWG12流纹英安岩 1 17 238 298 0.80 0.055 8 0.001 7 0.333 9 0.010 6 0.043 4 0.000 4 443 66.66 293 8.06 274 2.66 2 13 178 239 0.74 0.054 0 0.001 5 0.322 0 0.008 8 0.043 5 0.000 6 372 64.81 283 6.72 274 3.46 3 12 129 212 0.61 0.048 1 0.007 4 0.287 7 0.046 2 0.043 2 0.000 5 106 325.89 257 36.43 273 2.79 4 25 336 449 0.75 0.050 7 0.001 6 0.302 2 0.009 7 0.043 3 0.000 5 228 72.21 268 7.55 273 3.24 5 38 437 708 0.62 0.052 3 0.001 2 0.309 8 0.009 8 0.042 8 0.000 5 298 53.70 274 7.62 270 3.00 6 13 124 236 0.53 0.056 2 0.002 7 0.333 9 0.017 0 0.043 0 0.000 4 457 105.55 293 12.97 271 2.74 7 15 187 274 0.68 0.052 6 0.001 6 0.315 6 0.010 0 0.043 5 0.000 4 309 66.66 279 7.71 274 2.76 8 32 504 545 0.92 0.052 6 0.000 9 0.312 7 0.007 0 0.043 1 0.000 7 309 38.89 276 5.40 272 4.18 9 25 343 433 0.79 0.053 9 0.002 4 0.323 0 0.018 6 0.043 3 0.000 7 369 99.99 284 14.29 273 4.32 10 18 258 325 0.79 0.050 8 0.001 9 0.302 0 0.010 7 0.043 2 0.000 5 232 87.02 268 8.31 273 2.95 11 11 122 193 0.63 0.050 6 0.004 4 0.299 4 0.026 2 0.042 9 0.000 8 220 199.98 266 20.51 271 5.10 12 17 233 304 0.77 0.053 7 0.001 7 0.318 3 0.010 8 0.043 0 0.000 5 367 72.22 281 8.31 271 3.37 13 22 290 376 0.77 0.058 3 0.001 0 0.351 3 0.011 0 0.043 6 0.001 1 539 43.51 306 8.27 275 6.61 14 29 423 501 0.84 0.055 3 0.001 3 0.328 4 0.006 8 0.043 2 0.000 5 433 51.85 288 5.22 273 3.38 表 3 后红泉地区二叠纪玄武岩主量(%)及微量(10-6)元素结果
Table 3. Major (%) and trace element (10-6) data of the Permian basalts from Houhongquan area
样品 XWG XWG XWG XWG XWG XWG XWG XWG XWG XWG XWG 许伟等(2019) 编号 9 10 22 23 24 35 36 38 42 43 45 岩性 杏仁状(安山)玄武岩 杏仁状(安山)玄武岩 杏仁状安山岩 杏仁状玄武岩 杏仁状玄武岩 杏仁状粒玄岩 杏仁状玄武岩 杏仁状玄武岩 杏仁状玄武岩 杏仁状玄武岩 杏仁状玄武岩 16HHQ-H5 16HHQ-H11 16HHQ-H13 16HHQ-H17 16HHQ-H18 名称 玄武岩 玄武岩 玄武岩 玄武岩 玄武岩 主量元素 SiO2 47.76 49.46 50.66 49.78 53.12 48.70 50.08 50.28 49.80 47.48 53.10 48.6 48.72 47.5 54.56 51.04 Al2O3 15.36 14.12 17.84 16.30 16.75 15.15 13.78 15.63 17.01 16.89 15.57 14.7 15.56 15.69 13.91 12.98 Fe2O3 3.45 2.00 2.61 2.64 2.36 4.71 4.13 2.49 4.24 3.37 3.92 3.85 2.91 2.86 5.88 4.25 FeO 4.98 6.65 6.63 7.01 5.82 6.42 7.15 6.77 6.01 6.50 5.15 6.6 5.76 6.24 2.74 3.61 TiO2 1.41 1.82 1.58 1.78 1.17 1.85 2.39 1.71 2.07 2.06 1.40 1.86 1.75 1.84 1.4 1.32 K2O 0.01 0.01 0.82 0.97 0.93 0.36 0.73 0.18 1.19 0.43 0.24 0.35 0.4 0.44 0.1 0.18 Na2O 2.76 4.37 3.30 3.27 3.64 3.27 3.62 2.99 3.85 3.14 3.34 3.56 2.61 3.58 3.12 3.43 CaO 12.21 10.18 7.09 6.81 6.89 7.84 9.12 8.36 7.47 7.91 8.20 10.9 10.95 9.72 9.38 10.76 MgO 5.62 4.96 5.60 7.06 5.50 8.36 5.75 7.76 6.13 7.56 5.95 5.12 7.08 7 3.57 4.77 MnO 0.17 0.16 0.16 0.14 0.13 0.20 0.21 0.15 0.18 0.21 0.16 0.14 0.2 0.18 0.1 0.11 P2O5 0.20 0.36 0.29 0.34 0.30 0.22 0.29 0.20 0.30 0.31 0.21 0.28 0.3 0.52 0.32 0.29 LOI 5.48 4.45 3.57 3.86 3.44 3.10 3.08 3.48 2.35 4.29 3.76 3.74 3.45 4.16 4.65 6.94 CO2 5.38 4.77 0.46 0.20 0.62 0.28 1.21 0.23 0.14 0.92 0.97 - - - - - σ 1.61 2.97 2.22 2.65 2.06 2.31 2.67 1.38 3.74 2.84 1.27 2.73 1.58 3.59 0.9 1.62 SI 33.41 27.57 29.54 33.70 30.14 36.16 26.89 38.43 28.62 36.00 31.99 26.28 37.74 34.79 23.17 29.37 Mg# 0.55 0.51 0.53 0.57 0.55 0.58 0.49 0.61 0.53 0.59 0.55 0.5 0.63 0.61 0.47 0.56 稀土元素 La 8.72 15.05 13.19 15.29 18.89 9.42 9.61 7.65 12.54 11.65 9.06 15.2 9.95 24.2 13.7 12.4 Ce 21.72 36.50 29.87 44.53 50.63 28.13 26.66 21.08 39.75 37.91 22.37 36.6 27.3 65.6 33.1 30.6 Pr 3.64 5.51 4.60 6.01 6.31 4.65 4.40 3.51 5.37 4.96 4.00 5.06 4.08 9.35 4.68 4.25 Nd 16.40 23.66 19.80 25.36 28.21 20.43 20.79 15.77 24.45 22.15 19.13 22.2 18.6 40 20.5 19 Sm 4.22 5.58 4.82 5.87 6.41 5.51 5.73 4.93 6.20 6.44 4.39 5.88 4.94 8.94 5.2 4.85 Eu 1.53 1.91 2.07 2.06 1.77 1.87 2.06 1.59 1.97 1.98 1.52 1.87 1.74 2.54 1.56 1.49 Gd 4.55 5.6 5.74 7.43 6.53 6.83 6.81 5.35 7.34 6.28 4.63 6.28 5.18 7.76 5.32 4.97 Tb 0.89 1.04 0.82 1.11 1.06 1.27 1.16 0.93 1.07 1.02 0.81 1.04 0.86 1.13 0.92 0.84 Dy 4.25 5.32 5.29 6.64 6.25 7.87 8.07 6.46 6.41 6.51 5.74 6.58 5.42 6.23 5.88 5.4 Ho 1.14 1.24 1.11 1.35 1.22 1.66 1.62 1.36 1.50 1.34 1.13 1.42 1.17 1.18 1.2 1.13 Er 3.45 3.57 3.38 4.08 3.79 4.8 4.65 4.12 4.21 4.28 3.28 3.96 3.1 3.02 3.29 3.1 Tm 0.51 0.57 0.51 0.67 0.63 0.79 0.69 0.58 0.69 0.70 0.51 0.59 0.47 0.44 0.5 0.47 Yb 3.35 3.59 3.26 4.02 4.19 4.81 4.65 3.97 4.30 4.30 3.29 3.8 3 2.8 3.21 3.07 Lu 0.53 0.59 0.55 0.69 0.67 0.74 0.77 0.70 0.74 0.70 0.59 0.58 0.45 0.42 0.48 0.46 ΣREE 74.90 109.73 95.01 125.11 136.57 98.77 97.67 78.00 116.54 110.23 80.44 111.06 86.26 173.61 99.54 92.03 LREE 56.23 88.21 74.35 99.12 112.22 70.00 69.24 54.53 90.27 85.11 60.46 86.81 66.61 150.63 78.74 72.59 HREE 18.67 21.52 20.66 25.99 24.35 28.77 28.43 23.47 26.27 25.12 19.98 24.25 19.65 22.98 20.8 19.44 LREE/HREE 3.01 4.10 3.60 3.81 4.61 2.43 2.44 2.32 3.44 3.39 3.03 3.58 3.39 6.55 3.79 3.73 δEu 1.06 1.03 1.20 0.95 0.83 0.93 1.01 0.94 0.89 0.94 1.02 0.94 1.05 0.93 0.91 0.93 δCe 0.93 0.96 0.92 1.12 1.11 1.02 0.98 0.98 1.16 1.20 0.89 1 1.03 1.05 0.99 1.01 (La/Yb)N 1.75 2.83 2.73 2.56 3.04 1.32 1.39 1.30 1.97 1.83 1.86 2.87 2.38 6.2 3.06 2.9 (La/Sm)N 1.30 1.70 1.72 1.64 1.85 1.08 1.05 0.98 1.27 1.14 1.30 1.63 1.27 1.7 1.66 1.61 微量元素 Sr 379 207 472 401 375 206 237 184 496 226 212 184 445 546 290 285 Li 10.1 23.9 24.6 27.3 14.2 9.6 18.4 14.4 19.4 23.9 15.7 8.8 14.3 14.7 16 16.8 Be 0.75 1.22 1.27 1.38 1.26 1.10 1.21 0.89 1.58 1.39 0.85 - - - - - V 97.8 98.2 220.2 211.5 161.7 298.4 354.1 258.4 252.1 246.5 245.6 350 290 265 242 233 Cr 144.1 93.75 78.64 123.3 105.0 250.5 174.2 236.3 150.8 166.3 146.7 93.2 272 246 146 148 Ga 11.1 12.50 21.00 20.22 20.02 19.92 18.38 19.08 21.44 19.76 17.33 21.9 17.2 18 13.5 14.1 Co 32.42 28.29 29.31 30.46 27.90 40.79 41.87 39.93 34.65 36.70 31.25 35.3 38 35.3 25.3 27.1 Ni 52.14 38.49 25.54 43.63 38.87 49.26 40.65 54.69 50.21 63.48 37.48 26.7 68.8 60.6 51.2 51.2 Ba 36 56 159 209 229 63 107 36 154 96 49 78 74 195 24 46 Sc 26.25 22.00 29.83 30.54 25.78 46.59 42.92 40.87 35.78 34.30 38.61 25.7 24.4 24.5 23.2 20.3 Rb 4.39 3.39 38.03 52.70 44.76 19.68 71.68 6.20 38.56 5.30 4.34 21.2 11.8 9.53 3.64 4.57 Hf 3.10 4.80 4.78 6.64 6.10 4.55 4.97 4.26 6.20 4.78 3.41 4.5 3.81 5.82 4.38 4.18 Zr 149 222 179 238 229 171 197 156 276 229 149 167 151 266 173 161 Nb 4.5 11.0 11.6 13.4 15.0 6.8 6.5 5.9 15.1 6.6 6.0 6.9 5.6 5.7 6.5 6 Cs 0.27 0.31 0.43 0.44 0.52 0.29 0.51 0.33 1.84 0.92 0.43 0.41 0.44 0.18 0.18 0.28 Cd 0.21 0.27 0.23 0.23 0.25 0.18 0.23 0.19 0.22 0.31 0.19 - - - - - Th 0.97 1.37 1.28 1.34 2.20 0.96 1.01 0.86 0.90 0.88 1.01 1.07 0.45 1.44 1.47 1.3 U 0.72 0.58 0.53 0.68 0.80 0.43 0.74 0.37 0.54 0.49 0.46 0.31 0.28 0.66 0.56 0.3 Ta 0.28 1.04 0.71 0.96 0.92 0.67 0.53 0.60 1.01 0.53 0.55 0.56 0.45 0.48 0.53 0.5 W 0.24 0.33 0.33 0.44 0.42 0.31 0.28 0.28 0.26 0.32 0.28 - - - - - Pb 1.2 1.3 5.2 6.3 7.5 2.8 4.4 3.6 6.2 3.2 5.4 5.9 2.9 3.3 5.7 4.1 Bi 0.06 0.10 0.28 0.26 0.28 0.14 0.13 0.10 0.08 0.10 0.22 - - - - - Y 25.5 30.5 30.4 45.8 48.5 55.2 57.9 46.5 49.8 49.6 31.9 33 26.1 27.2 29 26.3 表 4 后红泉剖面火山岩样品Sr-Nd同位素分析结果
Table 4. Sr-Nd isotopic compositions of the volcanic sample from Houhongquan profiles
样品号 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr ±2σ (87Sr/86Sr)i Sm(10-6) Nd(10-6) 147Sm/144Nd 143Nd/144Nd ±2σ εNd(t) 数据来源 XWG9 4.39 379 0.033 5 0.705 57 0.000 02 0.705 44 4.22 16.40 0.156 6 0.512 778 0.000 008 4.13 本研究 XWG10 3.39 207 0.047 4 0.705 58 0.000 02 0.705 39 5.58 23.66 0.143 5 0.512 784 0.000 008 4.70 XWG22 38.03 472 0.233 1 0.707 33 0.000 01 0.706 43 4.82 19.80 0.148 2 0.512 521 0.000 010 -0.59 XWG23 52.70 401 0.380 2 0.705 18 0.000 02 0.703 71 5.87 25.36 0.140 9 0.512 787 0.000 012 4.86 XWG24 44.76 375 0.345 7 0.707 78 0.000 01 0.706 43 6.41 28.21 0.138 3 0.512 491 0.000 009 -0.83 XWG35 19.68 206 0.276 4 0.704 59 0.000 02 0.703 51 5.51 20.43 0.164 2 0.512 915 0.000 008 6.54 XWG36 71.68 237 0.875 3 0.705 42 0.000 01 0.702 02 5.73 20.79 0.167 7 0.512 593 0.000 064 0.13 XWG38 6.20 184 0.097 7 0.704 91 0.000 02 0.704 53 4.93 15.77 0.190 3 0.512 961 0.000 007 6.53 XWG42 38.56 496 0.225 2 0.706 55 0.000 02 0.705 68 6.20 24.45 0.154 3 0.512 888 0.000 009 6.36 XWG43 5.30 226 0.067 9 0.704 62 0.000 02 0.704 36 6.44 22.15 0.177 0 0.512 890 0.000 013 5.61 XWG45 4.34 212 0.059 2 0.705 41 0.000 02 0.705 18 4.39 19.13 0.139 7 0.512 743 0.000 009 4.04 16HHQ-H11 11.8 445 0.076 7 0.705 96 0.000 01 0.705 85 4.9 18.6 0.160 3 0.512 886 0.000 009 6.2 许伟等(2019) 16HHQ-H13 9.5 546 0.050 5 0.706 17 0.000 01 0.706 28 5.2 40.5 0.078 1 0.512 922 0.000 002 10 16HHQ-H18 4.6 285 0.043 2 0.706 49 0.000 01 0.706 31 4.9 19 0.157 0 0.512 697 0.000 004 2.7 16HHQ-H5 21.2 184 0.333 1 0.708 66 0.000 01 0.707 29 5.9 22.2 0.161 8 0.512 629 0.000 003 1.2 注:计算参数为(87Sr/86Sr)i=(87Sr/86Sr)S-(87Rb/86Sr)S×(eλt-1);λ=1.42×10-11/a; ε(Sr)=[(143Nd/144Nd)S/(143Nd/144Nd)CHUR-1]×10 000; ε(Nd)=[(143Nd/144Nd)S/(143Nd/144Nd)CHUR-1]×10 000;t代表样品形成时间; (147Sm/144Nd)CHUR=0.196 7;(143Nd/144Nd)CHUR=0.512 638. -
[1] Allègre, C.J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38: 1-25. doi: 10.1016/0012-821X(78)90123-1 [2] Baker, J. A., Menzies, M. A., Thirlwall, M. F., et al., 1997. Petrogenesis of Quaternary Intraplate Volcanism, Sana'a, Yemen: Implications for Plume-Lithosphere Interaction and Polybaric Melt Hybridization. Journal of Petrology, 38(10): 1359-1390. https://doi.org/10.1093/petroj/38.10.1359 [3] Bas, M. J. L., Maitre, R. W. L., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745 [4] Bu, J.J., He, W. H., Zhang, K.X., et al., 2020. Evolution of the Paleo-Asian Ocean: Evidences from Paleontology and Stratigraphy. Earth Science, 45(3): 711-727 (in Chinese with English abstract). [5] Carr, P.E., 1985. Geochemistry of Late Permian Shoshonitic Lavas from the Southern Sydney Basin. In: Sutherland, F.L., FrankJin, B.J., Waltho, A.E., eds., Volcanism in Eastern Australia. Geol. Soc. Aust. N.S.W. Div. Publ., 1: 165-183. [6] Dang, B., Zhao, H., Lin, G.C., et al., 2011. Geochemistry and Tectonic Setting of Permian Volcanic Rocks in Yingen-Ejin Banner Basin and Its Neighboring Areas, Western Inner Mongolia. Geological Bulletin of China, 30(6): 923-931 (in Chinese with English abstract). http://www.researchgate.net/publication/291105458_Application_of_magnetotelluric_sounding_for_Carboniferous-Permian_petroleum_geological_survey_in_Yingen-Ejin_Banner_basin_western_Inner_Mongolia [7] Ewart, A., 1982. The Mineralogy and Petrology of Tertiary-Recent Orogenic Volcanic Rocks: With a Special Reference to the Andesitic-Basaltic Compositional Range. In: Thorpe, R.S., ed., Andesites: Orogenic Andesites and Related Rocks. Wiley, Chichester, 25-95. [8] Gansu Province Stratigraphic Chart Compilation Group, 1983. Regional Stratigraphic Chart of the Northwest Region: Gansu Province. Geological Publishing House, Beijing (in Chinese). [9] Gao, L., 2017. The Geological Characteristics and Geotectonic Significance of Shuangbaotang Formation of Lower Permian in Northern Alax Area, Inner Mongolia (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [10] Guo, J.X., 1964. Paleozoic Strata in Beishan (Mazong Mountain), Gansu. Lanzhou Institute of Geology, Chinese Academy of Sciences, Lanzhou (in Chinese). [11] Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341-2357. https://doi.org/10.1093/petrology/egm062 [12] Hou, K.J., Li, Y.H., Tian, Y.R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2009GeCAS..73R.552H [13] Innocenti, F., Manetti, P., Mazuuoli, R., et al., 1982. Anatolia and North-Western Iran. In: Thorpe, R.S., ed., Andisites. Wiley, Chichester, 327-349. [14] Kieffer, B., Arndt, N., Lapierre, H., et al., 2004. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell. Journal of Petrology, 45(4): 793-834. https://doi.org/10.1093/petrology/egg112 [15] Li, H.Y., Zhou, Z.G., Li, P.J., et al., 2016. Geochemical Features and Significance of Late Ordovician Gabbros in East Ujimqin Banner, Inner Mongolia. Geological Review, 62(2): 300-316. http://search.cnki.net/down/default.aspx?filename=DZLP201602005&dbcode=CJFD&year=2016&dflag=pdfdown [16] Li, M., Xin, H.T., Tian, J., et al., 2020. Composition, Age and Polarity of Gongpoquan Arc and Its Tectonic Significance in Beishan Orogen. Earth Science, 45(7): 2393-2412 (in Chinese with English abstract). [17] Li, W.G., 1996. Lithography in Inner Mongolia Autonomous Region. China University of Geosciences Press, Wuhan (in Chinese). [18] Ling, W.L., Duan, R.C., Xie, X.J., et al., 2009. Contrasting Geochemistry of the Cretaceous Volcanic Suites in Shandong Province and Its Implications for the Mesozoic Lower Crust Delamination in the Eastern North China Craton. Lithos, 113(3-4): 640-658. doi: 10.1016/j.lithos.2009.07.001 [19] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 [20] Mahoney, J. J., Coffin, M. F., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In: Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, New York, 335-355. [21] Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. doi: 10.1016/0009-2541(86)90004-5 [22] Middlemost, E. A. K., 1985. Magams and Magamtic Rocks. Longman, London, 1-266. [23] Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. doi: 10.2475/ajs.274.4.321 [24] Nie, F.J., Jiang, S.H., Bai, D.M., et al., 2002. Metallogenic Regularity and Prospecting Direction of Metal Deposits in Beishan Area. Geological Publishing House, Beijing (in Chinese). [25] Niu, Y.Z., Lu, J.C., Liu, C.Y., et al., 2018. Chronostratigraphy and Regional Comparison of Marine Permian System in the Beishan Region, North China. Acta Geologica Sinica, 92(6): 1131-1148 (in Chinese with English abstract). [26] Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192 [27] Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Vocanic Arc Magmas. Annual Review Earth and Planetary Sicences, 23: 251-285. doi: 10.1146/annurev.ea.23.050195.001343 [28] Peccerillo, R., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 63-81. doi: 10.1007/BF00384745 [29] Saunders, A. D., Storey, M., Kent, R. W., et al., 1992. Consequences of Plume-Lithosphere Interactions. Geological Society, London, Special Publications, 68: 41-60. doi: 10.1144/GSL.SP.1992.068.01.04 [30] Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59: 101-118. doi: 10.1016/0012-821X(82)90120-0 [31] Slama, J., Kosler, J., Condon, D. J., et al., 2008. Plesovice Zircon-A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249: 1-35. doi: 10.1016/j.chemgeo.2007.11.005 [32] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [33] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochenical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publishing House, Oxford, 1-312. [34] The Inner Mongolia Autonomous Region Bureau of Geology and Mineral Resources, 1991. Regional Geology Chronicles of Inner Mongolia Autonomous Region. Geological Publishing House, Beijing (in Chinese). [35] Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London, 464. [36] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2 [37] Wu, Y.B., Zheng, Y.F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589 [38] Xia, L.Q., Li, X.M., 2019. Basalt Geochemistry as a Diagnostic Indicator of Tectonic Setting. Gondwana Research, 65: 43-67. doi: 10.1016/j.gr.2018.08.006 [39] Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2007. The Discrimination between Continental Basalt and Island Arc Basalt Based on Geochemical Method. Acta Petrologica et Mineralogica, 26(1): 77-89 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yskwxzz200701011 [40] Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2010. Paleozoic Multiple Accretionary and Collision-Alprocesses of the Beishan Orogenic Collage. American Journal of Science, 310: 1553-1594. doi: 10.2475/10.2010.12 [41] Xiao, W.J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth & Planetary Sciences, 43(43): 11-16. http://www.researchgate.net/profile/Brian_Windley/publication/275032652_A_Tale_of_Amalgamation_of_Three_Permo-Triassic_Collage_Systems_in_Central_Asia_Oroclines_Sutures_and_Terminal_Accretion/links/552fd9e00cf2f2a588aab3aa.pdf [42] Xu, W., Xu, X.Y., Niu, Y.Z., et al., 2019. Geochronology and Petrogenesis of the Permian Marine Basalt in the Southern Beishan Region and Their Tectonic Implications. Acta Geologica Sinica, 93(8): 1928-1953 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201908008.htm [43] Yang, H.Q., Li, Y., Li, W.M., et al., 2008. General Discussion on Metallogenitic Tectonic Setting of Beishan Mountain Northwestern China. Northwestern Geology, 41(1): 22-28 (in Chinese with English abstract). http://www.researchgate.net/publication/283466594_General_discussion_on_metallogenitic_tectonic_setting_of_beishan_mountain_Northwestern_China [44] Yang, L.Y., 2014. The Geological Characteristics and Tectonic Evolution of Permian in the North of Alashan Area, Inner Mongolian Autonomous Region(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [45] Yang, Y., Fan, G.L., Yao, G.J., et al., 1997. Lithography in Gansu Province. China University of Geosciences Press, Wuhan (in Chinese). [46] Zhang, X.H., Liu, J.H., Liang, M.H., et al., 2013. Regional Mineralization and Prospecting in Gansu Province. Geological Publishing House, Beijing (in Chinese). [47] Zhang, Z.C., Wang, F.S., Hao, Y.L., 2005. Picrites from the Emeishan Large Igneous Province: Evidence for the Mantle Plume Activity. Bulletin of Mineralogy, Petrology and Geochemistry, 24(1): 17-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200501004.htm [48] Zhang, Z. W., 2018. Study on the Petrography and Geochemistry Characteristics of Volcanic Rocks in the Northern Part of the Tarim Basin(Dissertation). China University of Mining & Technology, Xuzhou (in Chinese with English abstract). [49] Zhao, Z.H., Xiong, X.L., Wang, Q., et al., 2008. Some Aspects on Geochemistry of Nb and Ta. Geochimica, 37(4): 304-320 (in Chinese with English abstract). http://www.cqvip.com/QK/71135X/201107/27597080.html [50] Zhou, J.B., Wilde, S. A., Zhao, G.C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186: 76-93. https://doi.org/10.1016/j.earscirev.2017.01.012 [51] Zhu, W.Y., Shen, G. L., 1977. Characteristics of the Late Permian Terrestrial Strata and Paleoflora in Beishan Area, Gansu. Journal of the Lanzhou University (Science Edition), (1): 99-109 (in Chinese). [52] 卜建军, 何卫红, 张克信, 等, 2020. 古亚洲洋的演化: 来自古生物地层学方面的证据. 地球科学, 45(3): 711-727. doi: 10.3799/dqkx.2019.068 [53] 党犇, 赵虹, 林广春, 等, 2011. 内蒙古西部银根-额济纳旗盆地及邻区二叠纪火山岩的地球化学特征和构造环境. 地质通报, 30(6): 923-931. doi: 10.3969/j.issn.1671-2552.2011.06.014 [54] 甘肃省地层表编写组, 1983. 西北地区区域地层表: 甘肃省分册. 北京: 地质出版社. [55] 高磊, 2017. 内蒙古阿拉善北缘下二叠统双堡塘组地质特征对比及其大地构造意义(硕士学位论文). 北京: 中国地质大学. [56] 郭敬信, 1964. 甘肃北山(马鬃山区)古生代地层. 兰州: 中国科学院兰州地质研究所. [57] 侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 [58] 李敏, 辛后田, 田健, 等, 2020. 北山造山带公婆泉岩浆弧的组成、时代及其大地构造意义. 地球科学, 45(7): 2393-2412. doi: 10.3799/dqkx.2020.123 [59] 李文国, 1996. 内蒙古自治区岩石地层. 武汉: 中国地质大学出版社. [60] 聂凤军, 江思宏, 白大明, 等, 2002. 北山地区金属矿床成矿规律及找矿方向. 北京: 地质出版社. [61] 牛亚卓, 卢进才, 刘池阳, 等, 2018. 甘蒙北山地区海相二叠系时代及其区域对比. 地质学报, 92(6): 1131-1148. doi: 10.3969/j.issn.0001-5717.2018.06.003 [62] 内蒙古自治区地质矿产局, 1991. 内蒙古自治区区域地质志. 北京: 地质出版社. [63] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [64] 夏林圻, 夏祖春, 徐学义, 等, 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩. 岩石矿物学杂志, 26(1): 77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011 [65] 许伟, 徐学义, 牛亚卓, 等, 2019. 北山南部二叠纪海相玄武岩地球化学特征及其构造意义. 地质学报, 93(8): 1928-1953. doi: 10.3969/j.issn.0001-5717.2019.08.008 [66] 杨合群, 李英, 李文明, 等, 2008. 北山成矿构造背景概论. 西北地质, 41(1): 22-28. doi: 10.3969/j.issn.1009-6248.2008.01.002 [67] 杨立业, 2014. 内蒙古阿拉善北部二叠系地质特征与构造演化(硕士学位论文). 北京: 中国地质大学. [68] 杨雨, 范国琳, 姚国金, 等, 1997. 甘肃省岩石地层. 武汉: 中国地质大学出版社. [69] 张新虎, 刘建宏, 梁明宏, 等, 2013. 甘肃省区域成矿及找矿. 北京: 地质出版社. [70] 张招崇, 王福生, 郝艳丽, 2005. 峨眉山大火成岩省中的苦橄岩: 地幔柱活动证据. 矿物岩石地球化学通报, 24(1): 17-22. doi: 10.3969/j.issn.1007-2802.2005.01.003 [71] 张志伟, 2018. 塔北二叠纪火山岩岩相学及地球化学特征研究(硕士学位论文). 徐州: 中国矿业大学. [72] 赵振华, 熊小林, 王强, 等, 2008. 铌与钽的某些地球化学问题. 地球化学, 37(4): 304-320. doi: 10.3321/j.issn:0379-1726.2008.04.005 [73] 朱伟元, 沈光隆, 1977. 甘肃北山地区晚二叠世陆相地层及其古植物群特征. 兰州大学学报(自然科学版), (1): 99-109. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK197701006.htm