• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于多尺度循环注意力网络的遥感影像场景分类方法

    马欣悦 王梨名 祁昆仑 郑贵洲

    马欣悦, 王梨名, 祁昆仑, 郑贵洲, 2021. 基于多尺度循环注意力网络的遥感影像场景分类方法. 地球科学, 46(10): 3740-3752. doi: 10.3799/dqkx.2020.365
    引用本文: 马欣悦, 王梨名, 祁昆仑, 郑贵洲, 2021. 基于多尺度循环注意力网络的遥感影像场景分类方法. 地球科学, 46(10): 3740-3752. doi: 10.3799/dqkx.2020.365
    Ma Xinyue, Wang Liming, Qi Kunlun, Zheng Guizhou, 2021. Remote Sensing Image Scene Classification Method Based on Multi-Scale Cyclic Attention Network. Earth Science, 46(10): 3740-3752. doi: 10.3799/dqkx.2020.365
    Citation: Ma Xinyue, Wang Liming, Qi Kunlun, Zheng Guizhou, 2021. Remote Sensing Image Scene Classification Method Based on Multi-Scale Cyclic Attention Network. Earth Science, 46(10): 3740-3752. doi: 10.3799/dqkx.2020.365

    基于多尺度循环注意力网络的遥感影像场景分类方法

    doi: 10.3799/dqkx.2020.365
    基金项目: 

    国家自然科学基金项目 42130309

    国家重点研发计划项目 KZ21KA0002

    国家重点研发计划项目 2020111052

    详细信息
      作者简介:

      马欣悦(1998-), 女, 硕士研究生, 研究方向为遥感影像解译、机器学习.ORCID: 0000-0002-6765-6384.E-mail: Maxy@cug.edu.cn

      通讯作者:

      郑贵洲(1963-), ORCID: 0000-0002-2890-6395.E-mail: zhenggz@cug.edu.cn

    • 中图分类号: P237

    Remote Sensing Image Scene Classification Method Based on Multi-Scale Cyclic Attention Network

    • 摘要: 高分辨率遥感影像场景分类一直是遥感领域的研究热点.针对遥感场景对尺度的需求具有多样性的问题,提出了一种基于多尺度循环注意力网络的遥感影像场景分类方法.首先,通过Resnet50提取遥感影像多个尺度的特征,采用注意力机制得到影像不同尺度下的关注区域,对关注区域进行裁剪和缩放并输入到网络.然后,融合原始影像不同尺度的特征及其关注区域的影像特征,输入到全连接层完成分类预测.此分类方法在UC Merced Land-Use和NWPU-RESISC45公开数据集上进行了验证,平均分类精度较基础模型Resnet50分别提升了1.89%和2.70%.结果表明,多尺度循环注意力网络可以进一步提升遥感影像场景分类的精度.

       

    • 图  1  遥感影像场景分类流程图

      Fig.  1.  Flow chart of scene classification of remote sensing image

      图  2  多尺度循环注意力网络结构

      Fig.  2.  Multi-scale cyclic attention network structure

      图  3  APN作用机制

      Fig.  3.  Mechanism of APN

      图  4  UC Merced Land-Use数据集部分样本示例

      Fig.  4.  Samples of UC Merced Land-Use dataset

      图  5  NWPU-RESISC45数据集部分样本示例

      Fig.  5.  Samples of NWPU-RESISC45 dataset

      图  6  不同尺度组合的图像训练网络的分类精度变化曲线(UC Merced Land-Use)

      Fig.  6.  Classification accuracy curve of image training network with different scale combinations (UC Merced Land-Use)

      图  7  不同尺度组合的图像训练网络的分类精度变化曲线图(NWPU-RESISC45)

      Fig.  7.  Classification accuracy curve of image training network with different scale combinations (NWPU-RESISC45)

      图  8  在UC Merced Land-Use数据集上的类别间错分率对比

      a.单尺度模型的混淆矩阵(OA=98.1%);b. 多尺度模型的混淆矩阵(OA=98.57%)

      Fig.  8.  Comparison of misclassification rates between categories on UCM dataset

      图  9  在UC Merced Land-Use数据集上的易混淆类别

      Fig.  9.  Misclassified samples on UC Merced Land-Use dataset

      图  10  在NWPU-RESISC45数据集上的类别间错分率对比

      a.单尺度模型的混淆矩阵(OA= 90.62%);b.多尺度模型的混淆矩阵(OA= 91.18%)

      Fig.  10.  Comparison of misclassification rates between categories on NWPU dataset

      图  11  在NWPU-RESISC45数据集上易混淆类别

      Fig.  11.  Misclassified samples on NWPU dataset

      表  1  Resnet50网络配置

      Table  1.   Resnet50 network configuration

      layer name 50-layer
      Conv1 7×7, 64, stride 2
      Conv2_x 3×3 Max Pool, stride 2
      $ \left[\begin{array}{c}1\times \mathrm{1, 64}\\ 3\times \mathrm{3, 64}\\ 1\times \mathrm{1, 256}\end{array}\right] $ × 3
      Conv3_x $ \left[\begin{array}{c}1\times \mathrm{1, 128}\\ 3\times \mathrm{3, 128}\\ 1\times \mathrm{1, 512}\end{array}\right] $× 4
      Conv4_x $ \left[\begin{array}{c}1\times \mathrm{1, 256}\\ 3\times \mathrm{3, 256}\\ 1\times \mathrm{1, 1}\mathrm{ }024\end{array}\right] $ × 6
      Conv5_x $ \left[\begin{array}{c}1\times \mathrm{1, 512}\\ 3\times \mathrm{3, 512}\\ 1\times \mathrm{1, 2}\mathrm{ }048\end{array}\right] $ × 3
      GAP, k-d FC, softmax
      下载: 导出CSV

      表  2  两个数据集的相关信息

      Table  2.   Information about two datasets

      Datasets Scene Images per class Total images Sizes Training rate
      UC Merced Land-Use 21 100 2 100 256×256 80%
      NWPU-RESISC45 45 700 31 500 256×256 10%
      下载: 导出CSV

      表  3  基于UC Merced Land-Use不同尺度特征的分类精度

      Table  3.   Classification accuracy of different scale features on UCM dataset

      number scale A-OA (%)
      1 S_128_256 97.85$ \pm $0.67
      2 S_160_256 98.10$ \pm $0.39
      3 S_192_256 98.51$ \pm $0.11
      4 S_224_256 98.33$ \pm $00.14
      5 S_256 98.18$ \pm $00.09
      6 S_288_256 98.10$ \pm $00.39
      下载: 导出CSV

      表  4  基于NWPU-RESISC45不同尺度特征的分类精度

      Table  4.   Classification accuracy of different scale features on NWPU-RESISC45 dataset

      number scale A-OA (%)
      1 S_128_256 91.04$ \pm $0.03
      2 S_160_256 90.86$ \pm $0.19
      3 S_192_256 91.18$ \pm $0.02
      4 S_224_256 90.19$ \pm $0.31
      5 S_256 90.25$ \pm $0.20
      6 S_288_256 90.85$ \pm $0.27
      下载: 导出CSV

      表  5  不同方法对UC Merced Land-Use的分类精度

      Table  5.   Classification accuracy of different methods for UC Merced Land-Use

      Method OA (%)
      BoVW(Yang and Newsam, 2010 76.80
      GoogleNet(Nogueira et al., 2017 92.80
      CaffeNet(Xia et al., 2017 95.02$ \pm $0.81
      Resnet50(Zhang et al., 2019 96.62$ \pm $0.26
      GLM16(Yuan et al., 2019 94.97$ \pm $1.16
      VGG-VD16+MSCP(He et al., 2018 98.36$ \pm $0.58
      AlexNet + MSCP(He et al., 2018 97.29$ \pm $0.63
      The model of this paper 98.51$ \pm $0.11
      下载: 导出CSV

      表  6  不同方法对NWPU-RESISC45的分类精度

      Table  6.   Classification accuracy of different methods for NWPU-RESISC45

      Method OA (%)
      BoVW(Cheng et al., 2017 41.72$ \pm $0.21
      Fine-tuned AlexNet(Cheng et al., 2017 81.22$ \pm $0.19
      Fine-tuned GoogleNet (Cheng et al., 2017) 82.57$ \pm $0.12
      Fine-tuned VGGNet-16(Cheng et al., 2017) 87.15$ \pm $0.45
      Resnet50(Zhao et al., 2020 88.48$ \pm $0.21
      VGG-VD16+MSCP(He et al., 2018 85.33$ \pm $0.17
      AlexNet + MSCP(He et al., 2018 81.70$ \pm $0.23
      The model of this paper 91.18$ \pm $0.02
      下载: 导出CSV
    • [1] Bahdanau, D., Cho, K., Bengio, Y., 2014. Neural Machine Translation by Jointly Learning to Align and Translate. Computer Science, arXiv: 1409.0473. https://arxiv.org/abs/1409.0473
      [2] Castelluccio, M., Poggi, G., Sansone, C., et al., 2015. Land Use Classification in Remote Sensing Images by Convolutional Neural Networks. Acta Ecologica Sinica, 28(2): 627-635. http://pdfs.semanticscholar.org/4191/fe93bfd883740a881e6a60e54b371c2f241d.pdf
      [3] Chen, Q.H., Liu, Z.M., Liu, X.G., et al., 2010. Element-Oriented Land-Use Classification of Mining Area by High Spatial Resolution Remote Sensing Image. Earth Science, 35(3): 453-458(in Chinese with English abstract). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5631116
      [4] Chen, S.Z., Tian, Y.L., 2014. Pyramid of Spatial Relatons for Scene-Level Land Use Classification. IEEE Transactions on Geoscience and Remote Sensing, 53(4): 1947-1957. https://doi.org/10.1109/TGRS.2014.2351395
      [5] Cheng, G., Han, J., Lu, X., 2017. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proceedings of the IEEE, 105(10): 1865-1883. https://doi.org/10.1109/JPROC.2017.2675998
      [6] Cheng, G., Ma, C. C., Zhou, P. C., et al., 2016. Scene Classification of High Resolution Remote Sensing Images Using Convolutional Neural Networks. In Proceedings 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 767-770. https://doi.org/10.1109/IGARSS.2016.7729193
      [7] Cheng, G.X., Niu, R.Q., Zhang, K.X., et al., 2018. Opencast Mining Area Recognition in High-Resolution Remote Sensing Images Using Convolutional Neural Networks. Earth Science, 43(Suppl. 2): 256-262(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2021.htm
      [8] Fu, J.L., Zheng, H.L., Mei, T., 2017. Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-Grained Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu Hawaii, 4476-4484. https://doi.org/10.1109/CVPR.2017.476
      [9] Gómez-Chova, L., Tuia, D., Moser, G., et al., 2015. Multimodal Classification of Remote Sensing Images: A Review and Future Directions. Proceedings of the IEEE, 103(9): 1560-1584. https://doi.org/10.1109/JPROC.2015.2449668
      [10] Han, X.B., Zhong, Y.F., Cao, L.Q., et al., 2017. Pre-Trained AlexNet Architecture with Pyramid Pooling and Supervision for High Spatial Resolution Remote Sensing Image Scene Classification. Remote Sensing, 9(8): 848. https://doi.org/10.3390/rs9080848
      [11] He, K.M., Zhang, X.Y., Ren, S Q., et al., 2016. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas Nevada, 770-778. https://doi.org/10.1109/CVPR.2016.90
      [12] He, N.J., Fang, L.Y., Li, S.T., et al., 2018. Remote Sensing Scene Classification Using Multilayer Stacked Covariance Pooling. IEEE Transactions on Geoscience and Remote Sensing, 56(12): 6899-6910. https://doi.org/10.1109/TGRS.2018.2845668
      [13] Jia, Y.Q., Shelhamer, E., Donahue, J., et al., 2014. Caffe: Convolutional Architecture for Fast Feature Embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando Florida USA, 675-678. https://doi.org/10.1145/2647868.2654889
      [14] Ketkar, N., 2017. Introduction to PyTorch. Deep Learning with Python. Apress, Berkeley, CA, 195-208. https://doi.org/10.1007/978-1-4842-2766-4_12
      [15] Li, G.D., Zhang, C.J., Wang, M.K., et al., 2019. Transfer Learning Using Convolutional Neural Network for Scene Classification within High Resolution Remote Sensing Image. Science of Surveying and Mapping, 44(4): 116-123, 174(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CHKD201904021.htm
      [16] Li, W.K., Zhang, W., Qin, J.H., et al., 2020. "Expansion-Fusion" Extraction of Surface Gully Area Based on DEM and High-Resolution Remote Sensing Images. Earth Science, 45(6): 1948-1955(in Chinese with English abstract).
      [17] Lienou, M., Maitre, H., Datcu, M., 2009. Semantic Annotation of Satellite Images Using Latent Dirichlet Allocation. IEEE Geoscience and Remote Sensing Letters, 7(1): 28-32. https://doi.org/10.1109/LGRS.2009.2023536
      [18] Luo, W., Li, H. L., Liu, G. H., 2011. Automatic Annotation of Multispectral Satellite Images Using Author-Topic Model. IEEE Geoscience and Remote Sensing Letters, 9(4): 634-638. https://doi.org/10.1109/LGRS.2011.2177064
      [19] Nogueira, K., Penatti, O. A. B., dos Santos, J.A., 2017. Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification. Pattern Recognition, 61: 539-556. https://doi.org/10.1016/j.patcog.2016.07.001
      [20] Oliva, A., Torralba, A., 2001. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. International Journal of Computer Vision, 42(3): 145-175. https://doi.org/10.1023/A:1011139631724
      [21] Pan, S. J., Yang, Q., 2009. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10): 1345-1359. https://doi.org/10.1109/TKDE.2009.191
      [22] Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR. Computer Science, arXiv: 1409.1556.
      [23] Szegedy, C., Liu, W., Jia, Y.Q., et al., 2015. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, IEEE, 1-9. https://doi.org/10.1109/CVPR.2015.7298594
      [24] Xia, G. S., Hu, J. W., Hu, F., et al., 2017. AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3965-3981. https://doi.org/10.1109/TGRS.2017.2685945
      [25] Yang, Y., Newsam, S., 2010. Bag-of-Visual-Words and Spatial Extensions for Land-Use Classification. In Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, San Jose California, 270-279. https://doi.org/10.1145/1869790.1869829
      [26] Yang, Y., Newsam, S., 2013. Geographic Image Retrieval Using Local Invariant Features. IEEE Transactions on Geoscience and Remote Sensing, 51(2): 818-832. https://doi.org/10.1109/TGRS.2012.2205158
      [27] Yu, D.H., Zhang, B.M., Zhao, C., et al., 2020. Scene Classification of Remote Sensing Image Using Ensemble Convolutional Neural Network. Journal of Remote Sensing, 24(6): 717-727(in Chinese with English abstract).
      [28] Yu, S.C., Yu, D.Q., Wang, L.C., et al., 2019. Remote Sensing Study of Dongting Lake Beach Changes before and after Operation of Three Gorges Reservoir. Earth Science, 44(12): 4275-4283(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912037.htm
      [29] Yuan, Y., Fang, J., Lu, X.Q., et al., 2019. Remote Sensing Image Scene Classification Using Rearranged Local Features. IEEE Transactions on Geoscience and Remote Sensing, 57(3): 1779-1792. https://doi.org/10.1109/TGRS.2018.2869101
      [30] Zhang, D., Li, N., Ye, Q.L., 2019. Positional Context Aggregation Network for Remote Sensing Scene Classification. IEEE Geoscience and Remote Sensing Letters, 17(6): 943-947. https://doi.org/10.1109/LGRS.2019.2937811
      [31] Zhao, Z.C., Li, J.Q., Luo, Z., et al., 2020. Remote Sensing Image Scene Classification Based on an Enhanced Attention Module. IEEE Geoscience and Remote Sensing Letters, (99): 1-5. https://doi.org/10.1109/LGRS.2020.3011405
      [32] 陈启浩, 刘志敏, 刘修国, 等, 2010. 面向基元的高空间分辨率矿区遥感影像土地利用分类. 地球科学, 35(3): 453-458. doi: 10.3799/dqkx.2010.055
      [33] 程国轩, 牛瑞卿, 张凯翔, 等, 2018. 基于卷积神经网络的高分遥感影像露天采矿场识别. 地球科学, 43(增刊2): 256-262. doi: 10.3799/dqkx.2018.987
      [34] 李冠东, 张春菊, 王铭恺, 等, 2019. 卷积神经网络迁移的高分影像场景分类学习. 测绘科学, 444): 116-123, 174. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201904021.htm
      [35] 李文凯, 张唯, 秦家豪, 等, 2020. 基于DEM和高分辨率遥感影像的"膨胀-融合"式地表沟壑提取. 地球科学, 45(6): 1948-1955. doi: 10.3799/dqkx.2020.004
      [36] 余东行, 张保明, 赵传, 等, 2020. 联合卷积神经网络与集成学习的遥感影像场景分类. 遥感学报, 24(6): 717-727. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202006006.htm
      [37] 余姝辰, 余德清, 王伦澈, 等, 2019. 三峡水库运行前后洞庭湖洲滩面积变化遥感认识. 地球科学, 44(12): 4275-4283. doi: 10.3799/dqkx.2019.182
    • 加载中
    图(11) / 表(6)
    计量
    • 文章访问数:  524
    • HTML全文浏览量:  307
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-11-11
    • 网络出版日期:  2021-11-03
    • 刊出日期:  2021-11-03

    目录

      /

      返回文章
      返回