• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    特提斯喜马拉雅中东部桑秀组酸性火山岩岩石成因:东冈瓦纳大陆裂解的响应?

    田京京 丁枫 郝盛蓝 裴向军 李天涛 孙瑶 谢显刚

    田京京, 丁枫, 郝盛蓝, 裴向军, 李天涛, 孙瑶, 谢显刚, 2021. 特提斯喜马拉雅中东部桑秀组酸性火山岩岩石成因:东冈瓦纳大陆裂解的响应?. 地球科学, 46(11): 3926-3944. doi: 10.3799/dqkx.2020.363
    引用本文: 田京京, 丁枫, 郝盛蓝, 裴向军, 李天涛, 孙瑶, 谢显刚, 2021. 特提斯喜马拉雅中东部桑秀组酸性火山岩岩石成因:东冈瓦纳大陆裂解的响应?. 地球科学, 46(11): 3926-3944. doi: 10.3799/dqkx.2020.363
    Tian Jingjing, Ding Feng, Hao Shenglan, Pei Xiangjun, Li Tiantao, Sun Yao, Xie Xiangang, 2021. Petrogenesis of Acidic Volcanic Rocks in Sangxiu Formation, East-Central Segment of Tethyan-Himalaya: Response to Break-up of Eastern Gondwana Continent?. Earth Science, 46(11): 3926-3944. doi: 10.3799/dqkx.2020.363
    Citation: Tian Jingjing, Ding Feng, Hao Shenglan, Pei Xiangjun, Li Tiantao, Sun Yao, Xie Xiangang, 2021. Petrogenesis of Acidic Volcanic Rocks in Sangxiu Formation, East-Central Segment of Tethyan-Himalaya: Response to Break-up of Eastern Gondwana Continent?. Earth Science, 46(11): 3926-3944. doi: 10.3799/dqkx.2020.363

    特提斯喜马拉雅中东部桑秀组酸性火山岩岩石成因:东冈瓦纳大陆裂解的响应?

    doi: 10.3799/dqkx.2020.363
    基金项目: 

    国家自然科学基金青年项目 41907238

    国家重点研发计划项目 2017YFC1501002

    国家重点研发计划项目 2018YFC1508804

    国家自然科学基金创新群体项目 41521002

    四川省研究生教育改革创新项目"大型-超大型铜多金属矿床成矿过程与机理实践教学基地" 2016-ZX-351

    冈底斯-喜马拉雅铜矿资源基地调查项目"西藏绒布地区H46E020004, H46E020005, H46E020006幅1:5万区域地质调查" DD20160015-06

    成都理工大学珠峰科学研究计划项目 80000-2021ZF11410

    详细信息
      作者简介:

      田京京(1991-), 男, 博士研究生, 主要从事区域地质调查、地质灾害、工程边坡稳定性评价与工程治理方面的研究工作.ORCID: 0000-0003-3420-4450.E-mail: 1431657926@qq.com

      通讯作者:

      丁枫, ORCID: 0000-0001-5006-4270.E-mail: 22847785@qq.com

    • 中图分类号: P597

    Petrogenesis of Acidic Volcanic Rocks in Sangxiu Formation, East-Central Segment of Tethyan-Himalaya: Response to Break-up of Eastern Gondwana Continent?

    • 摘要: 关于特提斯喜马拉雅构造带中东部地区桑秀组酸性火山岩是否是地壳深熔形成以及与东冈瓦纳大陆裂解事件存在关联长期以来有较大争议,以羊卓雍错地区桑秀组酸性火山岩为研究对象,在详实的野外地质调查及样品采集基础上,通过室内镜下岩石学特征、LA-ICP-MS锆石U-Pb定年、全岩地球化学和锆石Hf同位素地球化学研究.结果表明:羊卓雍错地区桑秀组底部两个酸性火山岩样品(RYA01、DYA01)加权平均年龄为139.1±1.3 Ma(1σ,MSWD=1.08)和137.3±1.4 Ma(1σ,MSWD=0.98),代表了特提斯喜马拉雅地区早白垩世时期火山活动.岩石地球化学和Hf同位素地球化学特征表明,酸性火山岩具有高含量的SiO2、低镁指数值、较高的A/CNK比值,富集Al、LREE和Th,强烈亏损Nb,锆石εHft)值介于-20.1~-10.5之间,平均值为-13.5.综合研究表明,羊卓雍错地区桑秀组酸性火山是印度大陆北缘伸展减薄的环境下幔源岩浆底侵诱发上覆地壳并发生部分熔融形成的岩浆产物,结合酸性火山岩锆石年龄结果以及前人对东冈瓦纳大陆研究成果,认为羊卓雍错地区桑秀组酸性火山岩与东冈瓦纳大陆裂解有关,属于Kerguelen地幔柱岩浆活动早期产物.

       

    • 图  1  青藏高原构造单元划分(a)及羊卓雍错地区大地构造背景图(b)

      a.据Ma et al.(2013)修改;b.据Zhu et al.(2009)修改

      Fig.  1.  Tectonic units of the Tibetan plateau (a) and the geotectonic background map of the YamzhoYumco area (b)

      图  2  研究区地质简图

      Fig.  2.  Geological sketch map of the research area

      图  3  柔扎村桑秀组地层剖面图

      Fig.  3.  Stratigraphic section of the Sangxiu Formation in the Rouzha Village

      图  4  松拉村桑秀组地层剖面图

      Fig.  4.  Stratigraphic section of the Sangxiu Formation in the Songla Village

      图  5  羊卓雍错地区桑秀组酸性火山岩野外形态特征

      a,b. 英安斑岩;c,d. 气孔杏仁状英安岩;e,f. 蚀变流纹质英安斑岩;g,h. 蚀变流纹斑岩

      Fig.  5.  Field morphological characteristics of acid volcanic rocks of Sangxiu Formation, YamzhoYumco area

      图  6  羊卓雍错地区桑秀组酸性火山岩镜下特征

      a,b.英安斑岩;c.杏仁状英安岩;d.蚀变流纹质英安斑岩;e,f. 蚀变流纹斑岩. Pl.斜长石;Qtz.石英;Kfs.钾长石;Am.角闪石;Cb.碳酸盐矿物;Cal.方解石;Mag.磁铁矿;Bt.黑云母

      Fig.  6.  Microscopic characteristics of acid volcanic rocks of Sangxiu Formation, YamzhoYumco area

      图  7  羊卓雍错地区桑秀组酸性火山岩(RYA01、DYA01)锆石(CL)图像及测试位置

      Fig.  7.  Zircon CL images and test position of the Sangxiu Formation acid volcanic rock samples(RYA01, DYA01)from the YamzhoYumco area

      图  8  羊卓雍错地区桑秀组酸性火山岩(RYA01、DYA01)U-Pb年龄谐和图

      Fig.  8.  U-Pb concordia diagrams of the Sangxiu Formation acid volcanic rock samples(RYA01, DYA01)from the Yamzho Yumco area

      图  9  羊卓雍错地区桑秀组酸性火山岩Na2O+K2O vs.SiO2 (a)、A/NK vs. A/CNK (b)、SiO2 vs.AR (c)、K2O vs.SiO2 (d) 图解

      Middlemost(1994)Le Maitre(2002)

      Fig.  9.  Na2O+K2O vs.SiO2 (a), A/NK vs.A/CNK (b), SiO2 vs.AR (c) and K2O vs.SiO2 (d) plots of the Sangxiu Formation acid volcanic rock samples from the YamzhoYumco area

      图  10  羊卓雍错地区桑秀组酸性火山岩样品的球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)

      Sun and Mcdonough(1989)

      Fig.  10.  Chondrite-normalized REE patterns and primitive mantle-normalized trace element spider diagram of the Sangxiu Formation acid volcanic rock samples from the YamzhoYumco area

      图  11  羊卓雍错地区桑秀组酸性火山岩锆石U-Pb年龄-εHf(t)图解

      Fig.  11.  Plot of U-Pb vs. εHf(t) for the Sangxiu Formation acid volcanic rocks from the YamzhoYumco area

      图  12  羊卓雍错地区桑秀组酸性火山岩104Ga/Al vs.Nb图解(a)和104Ga/Al vs.Zr图解(b)

      Fig.  12.  104Ga/Al vs. Nb (a) and 104Ga/Al vs. Zr (b) plots of the Sangxiu Formation acid volcanic rock samples from the YamzhoYumco area

      图  13  羊卓雍错地区桑秀组酸性火山岩La/Sm vs.La图解(a) and (La/Yb)N vs. δEu图解(b)

      a,b.据Pearce et al.(1984)

      Fig.  13.  La/Sm vs. La (a) and (La/Yb)N vs. δEu (b) plots of the Sangxiu Formation acid volcanic rock samples from the YamzhoYumco area

      图  14  羊卓雍错地区桑秀组酸性火山岩Th/Yb vs. Ta/Yb图解(a)和(La/Nb)PM vs. (Th/Ta)PM图解(b)

      Zhu et al.(2007)

      Fig.  14.  Th/Yb vs. Ta/Yb (a) and (La/Nb)PM vs. (Th/Ta)PM (b) plots of the Sangxiu Formation acid volcanic rock samples from the YamzhoYumco area

      图  15  羊卓雍错地区桑秀组酸性火山岩Hf vs. Zr(a)和Nb vs.Y(b)构造环境判别图

      a.据Condie (1986);b.据Pearce et al. (1984)

      Fig.  15.  Hf vs. Zr(a) and Nb vs.Y (b) tectonic discrimination plots of the Sangxiu Formation acid volcanic rock samples from the YamzhoYumco region

      图  16  东冈瓦纳大陆裂解模式图(a), 羊卓雍错地区桑秀组酸性火山岩演化模式图(b)

      a.据Aarnes et al.(2011)

      Fig.  16.  Dissociation pattern of the East Gondwana continent (a) and evolution pattern of the Sangxiu Formation acid volcanic rocks from the YamzhoYumco area (b)

      表  1  羊卓雍错地区桑秀组酸性火山岩锆石U-Pb年龄结果

      Table  1.   U-Pb dating results of the Sangxiu Formation acid volcanic rocks zircon from the YamzhoYumco area

      分析点 含量(10-6) Th/U 同位素比值 年龄(Ma) 谐和度(%)
      Pb Th U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      RYA01:英安岩
      1 50 616 549 1.12 0.139 6 0.006 7 0.021 7 0.000 3 132.7 6.0 138.4 1.7 95
      3 24 255 329 0.78 0.136 4 0.008 3 0.021 9 0.000 4 129.9 7.4 139.9 2.4 92
      4 29 267 337 0.79 0.148 6 0.008 4 0.021 4 0.000 3 140.6 7.4 136.5 2.1 97
      5 50 573 694 0.83 0.141 1 0.012 1 0.022 0 0.000 6 134.0 10.7 140.0 3.5 95
      7 20 159 552 0.29 0.144 3 0.008 0 0.021 3 0.000 3 136.9 7.1 135.8 2.0 99
      8 15 147 283 0.52 0.159 3 0.010 7 0.022 0 0.000 4 150.1 9.3 140.0 2.7 93
      12 458 138 223 0.62 0.141 4 0.011 1 0.022 0 0.000 4 134.3 9.8 140.2 2.7 95
      13 15 209 312 0.67 0.132 5 0.008 3 0.021 8 0.000 4 126.3 7.4 139.3 2.3 90
      16 21 269 287 0.94 0.143 7 0.009 0 0.021 6 0.000 4 136.3 8.0 137.6 2.4 99
      17 24 356 511 0.70 0.142 5 0.007 1 0.022 7 0.000 3 135.3 6.3 144.4 2.1 93
      25 32 252 655 0.38 0.147 4 0.012 3 0.022 1 0.000 7 139.7 10.9 140.7 4.4 99
      DYA01:流纹岩
      1 18 217 311 0.70 0.138 9 0.010 2 0.021 1 0.000 5 132.1 9.1 134.9 2.9 97
      3 22 333 253 1.31 0.136 6 0.009 7 0.020 9 0.000 5 130.0 8.7 133.1 2.8 97
      5 19 241 276 0.87 0.146 1 0.012 6 0.021 2 0.000 4 138.4 11.2 135.4 2.4 97
      8 26 366 329 1.11 0.150 1 0.012 7 0.021 4 0.000 4 142.0 11.2 136.8 2.5 96
      13 24 325 350 0.93 0.140 4 0.008 7 0.022 0 0.000 3 133.4 7.7 140.0 2.1 95
      16 47 678 677 1.00 0.133 4 0.006 8 0.021 8 0.000 3 127.2 6.1 139.2 2.0 90
      19 38 556 430 1.29 0.133 7 0.007 1 0.021 4 0.000 3 127.4 6.3 136.7 1.9 92
      20 32 457 519 0.88 0.147 1 0.007 4 0.021 9 0.000 3 139.4 6.6 139.5 2.0 99
      25 41 585 532 1.10 0.147 6 0.006 4 0.021 3 0.000 3 139.8 5.6 136.0 2.0 97
      下载: 导出CSV

      表  2  羊卓雍错地区桑秀组酸性火山岩样品主量(%)、微量(10-6)和稀土(10-6)元素分析结果

      Table  2.   Major (%), trace elment (10-6) and rare earth element (10-6) compositions of the Sangxiu Formation acid volcanic rocks samples from the YamzhoYumco area

      样号 RYA01 RYA02 RYA03 SYA01 SYA02 SYA03 SYA04 DYA01 DYA02
      SiO2 72.21 73.59 68.82 70.06 72.07 71.03 70.53 71.83 72.75
      Al2O3 14.01 12.60 14.72 14.31 13.05 13.87 14.62 13.27 13.38
      Fe2O3 1.24 0.74 3.26 1.70 0.88 1.55 2.28 0.93 0.80
      FeO 2.87 3.24 3.28 4.58 4.94 3.79 2.77 3.87 4.20
      MnO 0.04 0.73 0.08 0.11 0.13 0.09 0.04 0.06 0.05
      MgO 0.62 0.60 0.99 1.47 0.82 0.91 0.65 1.01 0.79
      CaO 1.93 1.90 2.31 2.65 1.11 0.95 0.55 1.10 0.79
      Na2O 3.65 4.04 2.38 1.21 3.98 6.42 7.10 2.91 2.56
      K2O 2.30 1.46 2.63 2.66 1.85 0.27 0.22 3.87 3.49
      TiO2 0.88 0.82 1.21 0.91 0.92 0.83 0.89 0.86 0.87
      P2O5 0.26 0.26 0.32 0.34 0.23 0.29 0.33 0.29 0.29
      Mg# 21.71 21.50 22.12 30.02 20.32 23.83 19.37 27.67 22.25
      TFeO 3.99 3.91 6.21 6.11 5.73 5.18 4.82 4.71 4.92
      A/NK 2.35 2.29 2.94 3.70 2.24 2.07 2.00 1.96 2.21
      A/CNK 1.78 1.70 2.01 2.19 1.88 1.82 1.86 1.68 1.96
      δ 1.21 0.99 0.97 0.55 1.17 1.60 1.95 1.59 1.23
      AR 2.19 2.22 1.83 1.59 2.40 2.65 2.86 2.79 2.49
      LOSS 2.72 3.48 5.05 5.14 1.63 1.96 3.26 2.49 1.97
      100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
      Rb 123.40 77.62 112.01 115.26 39.23 2.85 10.55 122.64 139.06
      Ba 963.70 666.30 489.64 553.39 404.00 344.74 102.76 856.89 1 028.38
      Sr 121.38 122.81 67.95 80.26 166.79 146.50 77.36 84.77 55.01
      U 1.33 1.51 1.30 2.66 1.65 1.91 1.53 1.36 1.31
      Ta 1.79 2.06 1.31 1.57 1.45 1.45 0.93 1.64 0.91
      Nb 24.93 24.62 16.56 19.33 21.62 23.36 10.71 20.66 23.76
      Cd 0.08 0.06 0.06 0.06 0.15 0.08 0.06 0.04 0.07
      Co 8.22 9.56 16.18 13.22 12.14 10.58 12.63 7.95 8.81
      Cr 31.08 30.41 39.56 27.45 44.57 37.85 28.03 24.89 27.09
      Cs 3.09 2.41 2.73 3.08 0.61 0.33 0.47 3.91 2.76
      Cu 13.95 11.53 11.16 11.78 27.07 19.43 10.58 8.74 10.51
      Ga 24.51 19.56 22.75 21.54 21.02 22.32 21.58 19.98 22.41
      Ni 9.66 13.25 15.80 14.41 17.88 22.36 10.88 9.31 10.01
      Pb 24.08 22.71 12.71 23.92 24.49 26.58 19.65 22.70 18.21
      V 59.92 54.07 97.66 57.75 72.30 56.85 60.62 48.37 50.36
      Zn 69.41 68.45 72.73 78.51 106.86 93.69 59.18 56.08 59.31
      Zr 561.42 519.63 517.08 519.25 318.25 357.74 523.65 508.98 528.73
      Y 39.13 38.29 37.93 41.66 31.82 35.76 36.96 54.40 54.20
      Hf 14.56 13.43 13.25 13.35 10.61 9.19 13.09 13.43 14.07
      Th 31.05 29.67 18.67 28.02 12.62 9.85 22.40 20.76 28.02
      La 92.05 85.58 71.48 74.03 40.93 53.07 73.89 101.04 101.42
      Ce 175.41 160.29 139.34 151.47 85.19 110.35 148.57 209.51 210.66
      Pr 21.90 20.13 16.75 18.03 12.12 14.39 17.40 26.66 27.15
      Nd 80.27 72.31 73.62 78.47 46.56 58.21 75.34 107.65 110.72
      Sm 14.62 13.32 13.48 14.28 9.34 11.43 13.63 19.71 20.00
      Eu 2.57 2.23 2.81 2.32 1.63 1.96 2.81 3.49 3.69
      Gd 11.68 10.65 12.24 12.52 7.78 9.23 11.97 15.27 15.63
      Tb 2.09 1.91 1.73 1.81 1.52 1.48 1.64 2.19 2.24
      Dy 8.74 8.32 7.78 8.36 6.89 7.83 7.58 10.96 10.71
      Ho 1.60 1.56 1.41 1.56 1.31 1.44 1.35 1.98 1.92
      Er 3.79 3.81 3.84 4.31 3.27 3.94 3.57 5.64 5.46
      Tm 0.53 0.53 0.46 0.54 0.47 0.69 0.44 0.89 0.86
      Yb 2.80 2.88 3.42 4.27 2.84 4.11 3.22 5.14 5.17
      Lu 0.42 0.43 0.40 0.47 0.44 0.60 0.39 0.78 0.73
      ΣREE 418.47 383.95 348.76 372.44 220.29 278.73 361.80 510.92 516.35
      LREE 386.82 353.86 317.48 338.60 195.77 249.41 331.64 468.07 473.62
      HREE 31.65 30.09 31.28 33.84 24.52 29.32 30.16 42.86 42.73
      LREE/HREE 12.22 11.76 10.15 10.01 7.98 8.51 11.00 10.92 11.08
      LaN/YbN 23.58 21.31 14.99 12.44 10.34 9.26 16.46 14.11 14.07
      δEu 0.58 0.55 0.66 0.52 0.57 0.57 0.66 0.59 0.62
      δCe 0.93 0.91 0.95 0.99 0.93 0.96 0.98 0.97 0.96
      注:本文数据由西南冶金测试中心测定,测试结果进行LOSS剔除归一化到百分之百,然后完成地球化学投图.
      下载: 导出CSV

      表  3  羊卓雍错地区桑秀组酸性火山岩锆石Hf同位素分析结果

      Table  3.   Hf isotope analysis results of the Sangxiu Formation acid volcanic rock zircon from the YamzhoYumco area

      样品编号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ Hfi εHf(t) TDM1(Ga) TDM2(Ga)
      RYA01-5 140 0.045 545 0.001 305 0.282 339 0.000 026 0.28 -12.4 1.30 1.98
      RYA01-7 136 0.025 520 0.000 697 0.282 122 0.000 025 0.28 -20.1 1.58 2.46
      RYA01-8 140 0.030 026 0.000 832 0.282 281 0.000 025 0.28 -14.4 1.36 2.10
      RYA01-13 139 0.040 188 0.001 118 0.282 312 0.000 026 0.28 -13.3 1.33 2.04
      RYA01-16 138 0.041 413 0.001 112 0.282 303 0.000 029 0.28 -13.7 1.34 2.06
      RYA01-17 144 0.035 762 0.000 939 0.282 305 0.000 024 0.28 -13.5 1.33 2.05
      DYA01-3 133 0.021 136 0.000 651 0.282 369 0.000 024 0.28 -11.4 1.24 1.91
      DYA01-5 135 0.028 942 0.000 897 0.282 265 0.000 022 0.28 -15.1 1.39 2.14
      DYA01-13 140 0.035 074 0.000 937 0.282 390 0.000 023 0.28 -10.5 1.22 1.86
      DYA01-16 139 0.048 181 0.001 298 0.282 371 0.000 020 0.28 -11.3 1.25 1.91
      DYA01-19 137 0.044 244 0.001 217 0.282 315 0.000 022 0.28 -13.3 1.33 2.03
      下载: 导出CSV

      表  4  特提斯喜马拉雅中东部地区桑秀组火山岩U-Pb年龄数据

      Table  4.   U-Pb dating results of the Sangxiu Formation volcanic rock zircon from the central-eastern Tethyan-Himalaya

      样品编号 岩性 地层 地区 年龄(Ma) 数据来源
      ZL1 火山岩 桑秀组 工布学乡 135.1±0.7 马义明(2016)
      ZL23 124.4±0.7
      SX(10)-1 流纹质英安岩 日莫瓦 133.0±3.0 朱弟成等(2005)
      08JBT04 流纹岩 131.0±5.0 Zhu et al.(2009)
      RYA01 英安岩 柔扎村 139.1±1.3 本文数据
      DYA01 日莫瓦 137.3±1.4
      PM4/8 玄武岩 哲古 141.0±1.0 吴丰(2017)
      PM4/27 142.0±1.0
      S- 英安岩 隆子 134.9±2.3 任冲(2015)
      下载: 导出CSV
    • [1] Aarnes, I., Svensen, H., Polteau, S., et al., 2011. Contact Metamorphic Devolatilization of Shales in the Karoo Basin, South Africa, and the Effects of Multiple Sill Intrusions. Chemical Geology, 281(3/4): 181-194. https://doi.org/10.1016/j.chemgeo.2010.12.007
      [2] Bian, W. W., 2019. Paleomagnetic Constraints on the Breakup of Eastern Gondwana and the India-Asia Collision (Dissertation). China University of Geosciences, Beijing, 34-36 (in Chinese with English abstract).
      [3] Coffin, M. F., Rabinowitz, P. D., 1987. Reconstruction of Madagascar and Africa: Evidence from the Davie Fracture Zone and Western Somali Basin. Journal of Geophysical Research: Solid Earth, 92(B9): 9385-9406. https://doi.org/10.1029/JB092iB09p09385
      [4] Condie, K.C., 1986. Geochemistry and Tectonic Setting of Early Proterozoic Supercrustal Rocks in the Southwestern United States. Journal of Geology, 94: 845-861. doi: 10.1086/629091
      [5] Ding, F., Gao, J.G., Xu, K.Z., 2020. Geochemistry, Geochronology and Geological Significances of the Basic Dykes in Rongbu Area, Southern Tibet. Acta Petrologica Sinica, 36(2): 391-408. doi: 10.18654/1000-0569/2020.02.04
      [6] Dong, S.L., Zhang, Z., Zhang, L.K., et al., 2018. Geochemistry, Hf-Sr-Nd Isotopes and Petrogenesis of Acidic Volcanic Rocks in Quzhuomu Region of Southern Tibet. Earth Science, 43(8): 2701-2714 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808013.htm
      [7] Guffanti, M., Clynne, M. A., Muffler, L. J. P., 1996. Thermal and Mass Implications of Magmatic Evolution in the Lassen Volcanic Region, California, and Minimum Constraints on Basalt Influx to the Lower Crust. Journal of Geophysical Research: Solid Earth, 101(B2): 3003-3013. https://doi.org/10.1029/95JB03463
      [8] Hodges, K. V., 2000. Tectonics of the Himalaya and Southern Tibet from Two Perspectives. Geological Society of America Bulletin, 112(3): 324-350. https://doi.org/10.1130/0016-7606(2000)112324:tothas>2.0.co;2 doi: 10.1130/0016-7606(2000)112324:tothas>2.0.co;2
      [9] Huang, Y., Liang, W., Zhang, L.K., et al., 2018. The Initial Break-up between Tethyan-Himalaya and Indian Terrane: Evidences from Late Cretaceous OIB-Type Basalt in Southern Tibet. Earth Science, 43(8): 2651-2663 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808009.htm
      [10] Jia, X.L., 2019. Magmatic Events and Geological Significance of Mesozoic in the Central Tethyan Himalaya (Dissertation). China University of Geosciences, Beijing, 16-17 (in Chinese with English abstract).
      [11] Le Maitre, R.W., 2002. Igneous Rocks: A Classification and Glossary of Terms. Cambridge University Press, New York, 1-29. https://doi.org/10.1017/CBO9780511535581
      [12] Li, J.F., Fu, J.M., Ma, C.Q., et al., 2020. Petrogenesis and Tectonic Setting of the Shaziling Pluton in Jiuyishan Area, Nanling: Evidence from Zircon U-Pb Geochronology, Petrogeochemistry, and Sr-Nd-Hf Isotopes. Earth Science, 45(2): 374-388 (in Chinese with English abstract).
      [13] Li, Y., Ding, F., Yang, L., et al., 2019. Geochemical Characteristics and Geological Significance of Basalts in the Sangxiu Formation, Rongbu Area, Southern Tibet. Arabian Journal of Geosciences, 12(24): 1-16. https://doi.org/10.1007/s12517-019-4880-4
      [14] Lin, B., Tang, J.X., Zheng, W.B., et al., 2014. Petrochemical Features, Zircon U-Pb Dating and Hf Isotopic Composition of the Rhyolite in Zhaxikang Deposit, Southern Xizang (Tibet). Geological Review, 60(1): 178-189 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DZLP201401019&dbcode=CJFD&year=2014&dflag=pdfdown
      [15] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
      [16] Liu, Z., Zhou, Q., Lai, Y., et al., 2015. Petrogenesis of the Early Cretaceous Laguila Bimodal Intrusive Rocks from the Tethyan Himalaya: Implications for the Break-up of Eastern Gondwana. Lithos, 236/237: 190-202. https://doi.org/10.1016/j.lithos.2015.09.006
      [17] Ma, L., Wang, Q., Wyman, D. A., et al., 2013. Late Cretaceous Crustal Growth in the Gangdese Area, Southern Tibet: Petrological and Sr-Nd-Hf-O Isotopic Evidence from Zhengga Diorite-Gabbro. Chemical Geology, 349/350: 54-70. https://doi.org/10.1016/j.chemgeo.2013.04.005
      [18] Ma, Y. M., 2016. Paleomagnetism and Geochronology of Cretaceous Rocks from the Lhasa Terrane and the Tethyan Himalaya (Dissertation). China University of Geosciences, Beijing, 48 (in Chinese with English abstract).
      [19] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [20] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      [21] Ren, C., 2015. Geochemistry, Geochronology and Its Geological Significances of Early Cretaceous Magmatic Rocks of Comei District in Tibet (Dissertation). China University of Geosciences, Beijing, 28-30 (in Chinese with English abstract).
      [22] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [23] Tian, Y. H., Gong, J. F., Chen, H. L., et al., 2019. Early Cretaceous Bimodal Magmatism in the Eastern Tethyan Himalayas, Tibet: Indicative of Records on Precursory Continental Rifting and Initial Breakup of Eastern Gondwana. Lithos, 324/325: 699-715. https://doi.org/10.1016/j.lithos.2018.12.001
      [24] Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. https://doi.org/10.1016/0024-4937(92)90029-X
      [25] Wang, G.H., Dong, W.T., 2000. Extensional Movement and Extending Action in Southern Tibet since Hercynian. Geoscience, 14(2): 133-139. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200002003.htm
      [26] Wang, Y., Qian, Q., Liu, L., et al., 2000. Major Geochemical Characteristics of Bimodal Volcanic Rocks in Different Geochemical Environments. Acta Petrologica Sinica, 16(2): 169-173 (in Chinese with English abstract). http://www.researchgate.net/publication/230585284_Major_geochemical_characteristics_of_bimodal_volcanic_rocks_in_different_geochemical_environments
      [27] Wang, Y.Y., Gao, L.E., Zeng, L.S., et al., 2016. Multiple Phases of Cretaceous Mafic Magmatism in the Gyangze-Kangma Area, Tethyan Himalaya, Southern Tibet. Acta Petrologica Sinica, 32(12): 3572-3596. http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201612002.htm
      [28] Wu, F., 2017. Characteristics and Geological Significance of the Volcanic Rocks in Upper Jurassic-Lower Cretaceous Sangxiu Formation of the Zhegu Area, South Tibet (Dissertation). China University of Geosciences, Beijing, 30-37 (in Chinese with English abstract).
      [29] Xia, Y., Zhu, D.C., Zhao, Z.D., et al., 2012. Whole-Rock Geochemistry and Zircon Hf Isotope of the OIB-Type Mafic Rocks from the Comei Large Igneous Province in Southeastern Tibet. Acta Petrologica Sinica, 28(5): 1588-1602 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB201205023.htm
      [30] Xu, W., Zhang, Q., Xu, X.Y., et al., 2019. Geochronology, Petrogenesis and Tectonic Implications of Devonian High-K Acid Magmatic Rocks from Yemajing Area in Beishan Orogen. Earth Science, 44(8): 2775-2793 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908022.htm
      [31] Zeng, Y. C., Xu, J. F., Chen, J. L., et al., 2019. Breakup of Eastern Gondwana as Inferred from the Lower Cretaceous Charong Dolerites in the Central Tethyan Himalaya, Southern Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 515: 70-82. https://doi.org/10.1016/j.palaeo.2017.10.010
      [32] Zhong, H.M., Tong, J.S., Xia, J., et al., 2005. Characteristics and Tectonic Setting of Volcanic Rocks of the Sangxiu Formation in the Southern Part of Yamzho Yumco, Southern Tibet. Geological Bulletin of China, 24(1): 72-79 (in Chinese with English abstract). http://www.researchgate.net/publication/313703094_Characteristics_and_tectonic_setting_of_volcanic_rocks_of_the_sangxiu_formation_in_the_southern_part_of_yamzho_lumro
      [33] Zhou, Q., Liu, Z., Lai, Y., et al., 2018. Petrogenesis of Mafic and Felsic Rocks from the Comei Large Igneous Province, South Tibet: Implications for the Initial Activity of the Kerguelen Plume. GSA Bulletin, 130(5/6): 811-824. https://doi.org/10.1130/b31653.1
      [34] Zhu, D.C., 2003. Volcanic Rocks in the Central Belt of Tethyan Himalayas since the Late Paleozoic and Their Inplications (Dissertation). Chinese Academy of Geological Sciences, Beijing, 21-26 (in Chinese with English abstract).
      [35] Zhu, D. C., Chung, S. L., Mo, X. X., et al., 2009. The 132 Ma Comei-Bunbury Large Igneous Province: Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia. Geology, 37(7): 583-586. https://doi.org/10.1130/g30001a.1
      [36] Zhu, D.C., Mo, X. X., Zhao, Z.D., et al., 2008. Whole-Rock Elemental and Zircon Hf Isotopic Geochemistry of Mafic and Ultramafic Rocks from the Early Cretaceous Comei Large Igneous Province in SE Tibet: Constraints on Mantle Source Characteristics and Petrogenesis. Himalayan Journal of Sciences, 5(7): 178-180. https://doi.org/10.3126/hjs.v5i7.1350
      [37] Zhu, D.C., Pan, G.T., Mo, X. X., et al., 2005. Zircon SHRIMP Age and Significance of Dacite Sangxiu Formation of the Tethys Himalaya. Chinese Science Bulletin, (4): 375-379 (in Chinese). doi: 10.1007/BF02897481/email/correspondent/c1/new
      [38] Zhu, D. C., Pan, G. T., Mo, X. X., et al., 2007. Petrogenesis of Volcanic Rocks in the Sangxiu Formation, Central Segment of Tethyan Himalaya: A Probable Example of Plume-Lithosphere Interaction. Journal of Asian Earth Sciences, 29(2/3): 320-335. https://doi.org/10.1016/j.jseaes.2005.12.004
      [39] Zhu, D.C., Xia, Y., Qiu, B.B., et al., 2013. Why do We Need to Propose the Early Cretaceous Comei Large Igneous Province in Southeastern Tibet?. Acta Petrologica Sinica, 29(11): 3659-3670 (in Chinese with English abstract). http://www.researchgate.net/publication/283868756_Why_do_we_need_to_propose_the_Early_Cretaceous_Comei_large_igneous_province_in_southeastern_Tibet
      [40] 边伟伟, 2019. 东冈瓦纳大陆裂解及印度-亚洲大陆碰撞的古地磁学约束(博士学位论文). 北京: 中国地质大学, 34-36.
      [41] 董随亮, 张志, 张林奎, 等, 2018. 藏南曲卓木地区酸性火山岩地球化学、Hf-Sr-Nd同位素特征及其成因. 地球科学, 43(8): 2701-2714. doi: 10.3799/dqkx.2018.165
      [42] 黄勇, 梁维, 张林奎, 等, 2018. 特提斯喜马拉雅-印度地体初始裂解: 来自藏南地区晚白垩世OIB型玄武岩的证据. 地球科学, 43(8): 2651-2663. doi: 10.3799/dqkx.2017.573
      [43] 贾晓龙, 2019. 特提斯喜马拉雅中段中生代岩浆事件及其地质意义(硕士学位论文). 北京: 中国地质大学, 16-17.
      [44] 李剑锋, 付建明, 马昌前, 等, 2020. 南岭九嶷山地区砂子岭岩体成因与构造属性: 来自锆石U-Pb年代学、岩石地球化学及Sr、Nd、Hf同位素证据. 地球科学, 45(2): 374-388. doi: 10.3799/dqkx.2019.013
      [45] 林彬, 唐菊兴, 郑文宝, 等, 2014. 藏南扎西康矿区流纹岩的岩石地球化学、锆石U-Pb测年和Hf同位素组成. 地质论评, 60(1): 178-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201401019.htm
      [46] 马义明, 2016. 拉萨地体与特提斯喜马拉雅白垩纪古地磁学和年代学研究(博士学位论文). 北京: 中国地质大学, 48.
      [47] 任冲, 2015. 西藏措美地区早白垩世岩浆岩地质年代学、地球化学及地质意义(硕士学位论文). 北京: 中国地质大学, 28-30.
      [48] 王焰, 钱青, 刘良, 等, 2000. 不同构造环境中双峰式火山岩的主要特征. 岩石学报, 16(2): 169-173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002003.htm
      [49] 吴丰, 2017. 藏南哲古地区上侏罗统-下白垩统桑秀组火山岩特征及其地质意义(硕士学位论文). 北京: 中国地质大学, 30-37.
      [50] 夏瑛, 朱弟成, 赵志丹, 等, 2012. 藏东南措美大火成岩省中OIB型镁铁质岩的全岩地球化学和锆石Hf同位素. 岩石学报, 28(5): 1588-1602. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205023.htm
      [51] 许伟, 张乔, 徐学义, 等, 2019. 北山野马井地区泥盆纪富钾酸性岩浆岩地球化学特征及其地质意义. 地球科学, 44(8): 2775-2793. doi: 10.3799/dqkx.2019.048
      [52] 钟华明, 童劲松, 夏军, 等, 2005. 藏南羊卓雍错南部桑秀组火山岩的特征及构造环境. 地质通报, 24(1): 72-79. doi: 10.3969/j.issn.1671-2552.2005.01.011
      [53] 朱弟成, 2003. 特提斯喜马拉雅带中段晚古生代以来的火山岩及其意义(博士学位论文). 北京: 中国地质科学院, 21-26.
      [54] 朱弟成, 潘桂棠, 莫宣学, 等, 2005. 特提斯喜马拉雅桑秀组英安岩锆石SHRIMP年龄及其意义. 科学通报, (4): 375-379. doi: 10.3321/j.issn:0023-074X.2005.04.013
      [55] 朱弟成, 夏瑛, 裘碧波, 等, 2013. 为什么要提出西藏东南部早白垩世措美大火成岩省. 岩石学报, 29(11): 3659-3670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311001.htm
    • 加载中
    图(16) / 表(4)
    计量
    • 文章访问数:  557
    • HTML全文浏览量:  173
    • PDF下载量:  42
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-05
    • 网络出版日期:  2021-12-04
    • 刊出日期:  2021-11-30

    目录

      /

      返回文章
      返回