Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning
-
摘要: 矿物智能识别是地球科学与信息科学的重要交叉方向,显示出强大的生命力.本文在调研国内外研究动态的基础上,把矿物智能识别划分为4个阶段,即矿物采集、数据获取、模型构建、分类判别;根据测试方法和获得的数据类型,把矿物智能识别分为基于化学成分、显微光学图片、光谱分析的3条基本路线;总结了应用于矿物智能识别的机器学习方法和技术,包括统计学习、线性回归模型、距离度量模型、树结构模型、神经网络模型及其与样本问题相关的新技术.在此基础上,提出消除地质学与人工智能的鸿沟、建设可用于学习的高质量矿物数据集、完善适合矿物智能识别的机器学习方法、增进模型可解释性、加强工业推广的实践是该领域未来的重点发展方向.Abstract: Mineral intelligent identification is a developing interdisciplinary research field between earth science and information science, where machine learning shows great vitality. This paper divides the procedure of mineral intelligent identification into four stages, including mineral collection, data acquisition, model building and category discriminant. Based on the test methods and data types, the mineral intelligent identification can be achieved by three different research routes, namely, chemical-composition-based, microscopic-optical-image-based and spectral-image-based. Various methods of machine learning for mineral intelligent recognition are reviewed in detail including statistical learning, similarity measurement, decision tree, artificial neural network and few new technologies related to testing sample. We suggest that the future directions in this field are to eliminate the gap between geology and artificial intelligence, to build high-quality mineral datasets that can be learned by the machine, to explore and consummate machine learning methods suitable for mineral intelligence identification, to increase the ability of model explanation, and to strengthen the practice of industrial application.
-
Key words:
- machine learning /
- mineral identification /
- mineralogy /
- artificial intelligence /
- geology
-
图 2 矿物智能识别的机器学习方法发展趋势
各方法的参考文献见表 2和正文描述
Fig. 2. The development trend of the various methods of machine learning applied in the mineral intelligent identification
表 1 基于不同矿物数据集的矿物智能识别研究路线
Table 1. Summary of three research routes based on different datasets for the mineral intelligent identification
表 2 矿物智能识别的不同机器学习方法对比表
Table 2. Summary of various methods of machine learning applied in the mineral intelligent identification
-
[1] Akkaş, E., Akin, L., Evren Çubukçu, H., et al., 2015. Application of Decision Tree Algorithm for Classification and Identification of Natural Minerals Using SEM-EDS. Computers & Geosciences, 80: 38-48. https://doi.org/10.1016/j.cageo.2015.03.015 [2] Ali, A., Khan, M. Z., Rehan, I., et al., 2016. Quantitative Classification of Quartz by Laser Induced Breakdown Spectroscopy in Conjunction with Discriminant Function Analysis. Journal of Spectroscopy, 2016: 1-7. https://doi.org/10.1155/2016/1835027 [3] Aligholi, S., Khajavi, R., Razmara, M., 2015. Automated Mineral Identification Algorithm Using Optical Properties of Crystals. Computers & Geosciences, 85: 175-183. https://doi.org/10.1016/j.cageo.2015.09.014 [4] Aligholi, S., Lashkaripour, G. R., Khajavi, R., et al., 2017. Automatic Mineral Identification Using Color Tracking. Pattern Recognition, 65: 164-174. https://doi.org/10.1016/j.patcog.2016.12.012 [5] Alvey, D. C., Morton, K., Harmon, R. S., et al., 2010. Laser-Induced Breakdown Spectroscopy-Based Geochemical Fingerprinting for the Rapid Analysis and Discrimination of Minerals: The Example of Garnet. Applied Optics, 49(13): 168-180. https://doi.org/10.1364/AO.49.00C168 [6] Anderson, T. I., Vega, B., Kovscek, A. R., 2020. Multimodal Imaging and Machine Learning to Enhance Microscope Images of Shale. Computers & Geosciences, 145: 104593. https://doi.org/10.1016/j.cageo.2020.104593 [7] Baykan, N. A., Yılmaz, N., 2010. Mineral Identification Using Color Spaces and Artificial Neural Networks. Computers & Geosciences, 36(1): 91-97. https://doi.org/10.1016/j.cageo.2009.04.009 [8] Bergen, K. J., Johnson, P. A., de Hoop, M. V., et al., 2019. Machine Learning for Data-Driven Discovery in Solid Earth Geoscience. Science, 363(6433): eaau0323. https://doi.org/10.1126/science.aau0323 [9] Borges, H. P., de Aguiar, M. S., 2019. Mineral Classification Using Machine Learning and Images of Microscopic Rock Thin Section. Mexican International Conference on Artificial Intelligence: Advances in Soft Computing, Cham. [10] Carey, C., Boucher, T., Mahadevan, S., et al., 2015. Machine Learning Tools Formineral Recognition and Classification from Raman Spectroscopy. Journal of Raman Spectroscopy, 46(10): 894-903. https://doi.org/10.1002/jrs.4757 [11] Clegg, S. M., Sklute, E., Dyar, M. D., et al., 2009. Multivariate Analysis of Remote Laser-Induced Breakdown Spectroscopy Spectra Using Partial Least Squares, Principal Component Analysis, and Related Techniques. Spectrochimica Acta Part B: Atomic Spectroscopy, 64(1): 79-88. https://doi.org/10.1016/j.sab.2008.10.045 [12] Clelland, W. D., Fens, T. W., 1991. Automated Rock Characterization with SEM/Image-Analysis Techniques. SPE Formation Evaluation, 6(4): 437-443. https://doi.org/10.2118/20920-pa [13] Cochrane, C. J., Blacksberg, J., 2015. A Fast Classification Scheme in Raman Spectroscopy for the Identification of Mineral Mixtures Using a Large Database with Correlated Predictors. IEEE Transactions on Geoscience and Remote Sensing, 53(8): 4259-4274. https://doi.org/10.1109/TGRS.2015.2394377 [14] Dyar, M. D., Carmosino, M. L., Breves, E. A., et al., 2012. Comparison of Partial Least Squares and Lasso Regression Techniques as Applied to Laser-Induced Breakdown Spectroscopy of Geological Samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 70: 51-67. https://doi.org/10.1016/j.sab.2012.04.011 [15] El Haddad, J., de Lima Filho, E. S., Vanier, F., et al., 2019. Multiphase Mineral Identification and Quantification by Laser-Induced Breakdown Spectroscopy. Minerals Engineering, 134: 281-290. https://doi.org/10.1016/j.mineng.2019.02.025 [16] Flesche, H., Nielsen, A. A., Larsen, R., 2000. Supervised Mineral Classification with Semiautomatic Training and Validation Set Generation in Scanning Electron Microscope Energy Dispersive Spectroscopy Images of Thin Sections. Mathematical Geology, 32(3): 337-366. https://doi.org/10.1023/A:1007538028119 [17] Gallagher, M., Deacon, P., 2002. Neural Networks and the Classification of Mineralogical Samples Using X-Ray Spectra. Proceedings of the 9th International Conference on Neural Information Processing, Singapore. [18] Gibbons, E., Léveillé, R., Berlo, K., 2020. Data Fusion of Laser-Induced Breakdown and Raman Spectroscopies: Enhancing Clay Mineral Identification. Spectrochimica Acta Part B: Atomic Spectroscopy, 170: 105905. https://doi.org/10.1016/j.sab.2020.105905 [19] Gomes, O. D. F. M., Iglesias, J. C. A., Paciornik, S., et al., 2013. Classification of Hematite Types in Iron Ores through Circularly Polarized Light Microscopy and Image Analysis. Minerals Engineering, 52: 191-197. https://doi.org/10.1016/j.mineng.2013.07.019 [20] Gomes, O., Paciornik, S., Iglesias, J. C. A., 2010. A Simple Methodology for Identifying Hematite Grains under Polarized Reflected Light Microscopy. Proceedings of 17th International Conference on Systems, Signals and Image Processing, IWSSIP, Rio de Janeiro. [21] Gu, Y., 2003. Automated Scanning Electron Microscope Based Mineral Liberation Analysis an Introduction to JKMRC/FEI Mineral Liberation Analyser. Journal of Minerals and Materials Characterization and Engineering, 2(1): 33-41. https://doi.org/10.4236/jmmce.2003.21003 [22] Guo, Y. J., Zhou, Z., Lin, H. X., et al., 2020. The Mineral Intelligence Identification Method Based on Deep Learning Algorithms. Earth Science Frontiers, 27(5): 39-47 (in Chinese with English abstract). [23] Hao, H. Z., Guo, R. H., Gu, Q., et al., 2019. Machine Learning Application to Automatically Classify Heavy Minerals in River Sand by Using SEM/EDS Data. Minerals Engineering, 143: 105899. https://doi.org/10.1016/j.mineng.2019.105899 [24] Harmon, R. S., Remus, J., McMillan, N. J., et al., 2009. LIBS Analysis of Geomaterials: Geochemical Fingerprinting for the Rapid Analysis and Discrimination of Minerals. Applied Geochemistry, 24(6): 1125-1141. https://doi.org/10.1016/j.apgeochem.2009.02.009 [25] Holden, E. J., Moss, S., Russell, J. K., et al., 2009. An Image Analysis Method to Determine Crystal Size Distributions of Olivine in Kimberlite. Computational Geosciences, 13(3): 255-268. https://doi.org/10.1007/s10596-008-9115-9 [26] Iglesias, J. C. Á., Santos, R. B. M., Paciornik, S., 2019. Deep Learning Discrimination of Quartz and Resin in Optical Microscopy Images of Minerals. Minerals Engineering, 138: 79-85. https://doi.org/10.1016/j.mineng.2019.04.032 [27] Ishikawa, S. T., Gulick, V. C., 2013a. An Automated Classification of Mineral Spectra. 44th Lunar and Planetary Science Conference, The Woodlands. [28] Ishikawa, S. T., Gulick, V. C., 2013b. An Automated Mineral Classifier Using Raman Spectra. Computers & Geosciences, 54: 259-268. https://doi.org/10.1016/j.cageo.2013.01.011 [29] Itano, K., Ueki, K., Iizuka, T., et al., 2020. Geochemical Discrimination of Monazite Source Rock Based on Machine Learning Techniques and Multinomial Logistic Regression Analysis. Geosciences, 10(2): 63. https://doi.org/10.3390/geosciences10020063. [30] Iyas, M. R., Setiawan, N. I., Warmada, I. W., 2020. Mask R-CNN for Rock-Forming Minerals Identification on Petrography, Case Study at Monterado, West Kalimantan. E3S Web of Conferences, 200: 06007. https://doi.org/10.1051/e3sconf/202020006007 [31] Izadi, H., Sadri, J., Bayati, M., 2017. An Intelligent System for Mineral Identification in Thin Sections Based on a Cascade Approach. Computers & Geosciences, 99: 37-49. https://doi.org/10.1016/j.cageo.2016.10.010 [32] Izadi, H., Sadri, J., Mehran, N. A., 2013. Intelligent Mineral Identification Using Clustering and Artificial Neural Networks Techniques. First Iranian Conference on Pattern Recognition and Image Analysis (PRIA), Birjand. [33] Khajehzadeh, N., Haavisto, O., Koresaar, L., 2016. On-Stream and Quantitative Mineral Identification of Tailing Slurries Using LIBS Technique. Minerals Engineering, 98: 101-109. https://doi.org/10.1016/j.mineng.2016.08.002 [34] Larsen, R., Nielsen, A. A., Flesche, H., 2000. Sensitivity Study of a Semi-Automatic Training Set Generator. Pattern Recognition Letters, 21(13-14): 1175-1182. https://doi.org/10.1016/S0167-8655(00)00079-9 [35] Launeau, P., Cruden, A. R., Bouchez, J. L., 1994. Mineral Recognition in Digital Images of Rocks: A New Approach Using Multichannel Classification. The Canadian Mineralogist, 32(4): 919-933. http://ci.nii.ac.jp/naid/10008769038 [36] Li, M. C., Liu, C. Z., Zhang, Y., et al., 2020. A Deep Learning and Intelligent Recognition Method of Image Data for Rock Mineral and Its Implementation. Geotectonica et Metallogenia, 44(2): 203-211 (in Chinese with English abstract). [37] Li, N., Hao, H. Z., Gu, Q., et al., 2017. A Transfer Learning Method for Automatic Identification of Sandstone Microscopic Images. Computers & Geosciences, 103: 111-121. https://doi.org/10.1016/j.cageo.2017.03.007 [38] Li, N., Hao, H. Z., Jiang, Z. W., et al., 2020. A Multi-Task Multi-Class Learning Method for Automatic Identification of Heavy Minerals from River Sand. Computers & Geosciences, 135: 104403. https://doi.org/10.1016/j.cageo.2019.104403 [39] Liu, J. C., Gibson, S. J., Mills, J., et al., 2019. Dynamic Spectrum Matching with One-Shot Learning. Chemometrics and Intelligent Laboratory Systems, 184: 175-181. https://doi.org/10.1016/j.chemolab.2018.12.005 [40] Liu, J., Osadchy, M., Ashton, L., et al., 2017. Deep Convolutional Neural Networks for Raman Spectrum Recognition: A Unified Solution. The Analyst, 142(21): 4067-4074. https://doi.org/10.1039/c7an01371j [41] Liu, X. K., Song, H. J., 2020. Automatic Identification of Fossils and Abiotic Grains during Carbonate Microfacies Analysis Using Deep Convolutional Neural Networks. Sedimentary Geology, 410: 105790. https://doi.org/10.1016/j.sedgeo.2020.105790 [42] Lopez-Reyes, G., Sobron, P., Lefebvre, C., et al., 2014. Multivariate Analysis of Raman Spectra for the Identification of Sulfates: Implications for ExoMars. American Mineralogist, 99(8-9): 1570-1579. https://doi.org/10.2138/am.2014.4724 [43] Lou, W., Zhang, D. X., Bayless, R. C., 2020. Review of Mineral Recognition and Its Future. Applied Geochemistry, 122: 104727. https://doi.org/10.1016/j.apgeochem.2020.104727 [44] Maitre, J., Bouchard, K., Bédard, L. P., 2019. Mineral Grains Recognition Using Computer Vision and Machine Learning. Computers & Geosciences, 130: 84-93. https://doi.org/10.1016/j.cageo.2019.05.009 [45] Marschallinger, R., 1997. Automatic Mineral Classification in the Macroscopic Scale. Computers & Geosciences, 23(1): 119-126. https://doi.org/10.1016/S0098-3004(96)00074-X [46] Marschallinger, R., Hofmann, P., 2010. The Application of Object Based Image Analysis to Petrographic Micrographs. In: Méndez-Vilas, A., Díaz, J., eds., Microscopy: Science, Technology, Applications and Education. Formatex Research Center, Badajoz. [47] Nie, J. S., Peng, W. B., 2014. Automated SEM-EDS Heavy Mineral Analysis Reveals no Provenance Shift between Glacial Loess and Interglacial Paleosol on the Chinese Loess Plateau. Aeolian Research, 13: 71-75. https://doi.org/10.1016/j.aeolia.2014.03.005 [48] Nielsen, A. A., Flesche, H., Larsen, R., et al., 1998. Semi-Automatic Supervised Classification of Minerals from X-Ray Mapping Images. Proceedings of the Fourth Annual Conference of the International Association of Mathematical Geology, Ischia. [49] Peng, W.H., Bai, L., Shang, S.W., et al., 2019. Common Mineral Intelligent Recognition Based on Improved InceptionV3. Geological Bulletin of China, 38(12): 2059-2066 (in Chinese with English abstract). [50] Pires de Lima, R., Duarte, D., Nicholson, C., et al., 2020. Petrographic Microfacies Classification with Deep Convolutional Neural Networks. Computers & Geosciences, 142: 104481. https://doi.org/10.1016/j.cageo.2020.104481 [51] Ramil, A., López, A. J., Pozo-Antonio, J. S., et al., 2018. A Computer Vision System for Identification of Granite-Forming Minerals Based on RGB Data and Artificial Neural Networks. Measurement, 117: 90-95. https://doi.org/10.1016/j.measurement.2017.12.006 [52] Reid, A., Gottlieb, P., Macdonald, K, J., et al., 1985. QEM*SEM Image Analysis of Ore Minerals: Volume Fraction, Liberation and Observational Variances. Applied Mineralogy, Proceedings of the Second International Congress on Applied Mineralogy in the Minerals Industry, Los Angeles. [53] Remus, J. J., Harmon, R. S., Hark, R. R., et al., 2012. Advanced Signal Processing Analysis of Laser-Induced Breakdown Spectroscopy Data for the Discrimination of Obsidian Sources. Applied Optics, 51(7): B65-B73. doi: 10.1364/AO.51.000B65 [54] Ross, B. J., Fueten, F., Yashkir, D. Y., 2001. Automatic Mineral Identification Using Genetic Programming. Machine Vision and Applications, 13(2): 61-69. https://doi.org/10.1007/PL00013273 [55] Ruisanchez, I., Potokar, P., Zupan, J., et al., 1996. Classification of Energy Dispersion X-Ray Spectra of Mineralogical Samples by Artificial Neural Networks. Journal of Chemical Information and Computer Sciences, 36(2): 214-220. https://doi.org/10.1021/ci950068b [56] Sandmann, D., 2015. Method Development in Automated Mineralogy (Dissertation). University of Freiberg, Freiberg. [57] Sevetlidis, V., Pavlidis, G., 2019. Effective Raman Spectra Identification with Tree-Based Methods. Journal of Cultural Heritage, 37: 121-128. https://doi.org/10.1016/j.culher.2018.10.016 [58] Singh, J. P., Thakur, S. N., 2007. Laser-Induced Breakdown Spectroscopy. Elsevier, Amsterdan. [59] Stefaniak, E. A., Worobiec, A., Potgieter-Vermaak, S., et al., 2006. Molecular and Elemental Characterisation of Mineral Particles by Means of Parallel Micro-Raman Spectrometry and Scanning Electron Microscopy/Energy Dispersive X-Ray Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(7): 824-830. https://doi.org/10.1016/j.sab.2006.04.009 [60] Tang, D. G., Milliken, K. L., Spikes, K. T., 2020. Machine Learning for Point Counting and Segmentation of Arenite in Thin Section. Marine and Petroleum Geology, 120: 104518. https://doi.org/10.1016/j.marpetgeo.2020.104518 [61] Thompson, S., Fueten, F., Bockus, D., 2001. Mineral Identification Using Artificial Neural Networks and the Rotating Polarizer Stage. Computers & Geosciences, 27(9): 1081-1089. https://doi.org/10.1016/S0098-3004(00)00153-9 [62] Tiwary, A. K., Ghosh, S., Singh, R., et al., 2020. Automated Coal Petrography Using Random Forest. International Journal of Coal Geology, 232: 103629. https://doi.org/10.1016/j.coal.2020.103629 [63] Tovey, N. K., Krinsley, D. H., 1991. Mineralogical Mapping of Scanning Electron Micrographs. Sedimentary Geology, 75(1-2): 109-123. https://doi.org/10.1016/0037-0738(91)90053-G [64] Tsuji, T., Yamaguchi, H., Ishii, T., et al., 2010. Mineral Classification from Quantitative X-Ray Maps Using Neural Network: Application to Volcanic Rocks. Island Arc, 19(1): 105-119. https://doi.org/10.1111/j.1440-1738.2009.00682.x [65] Wu, C. W., Shi, R. J., Zeng, W. D., 2020. Mineral Raman Spectral Recognition Based on Siamese Network. Laser & Optoelectronics Progress, 57(9): 271-277 (in Chinese with English abstract). [66] Xu, S. T., Zhou, Y. Z., 2018. Artificial Intelligence Identification of Ore Minerals under Microscope Based on Deep Learning Algorithm. Acta Petrologica Sinica, 34(11): 3244-3252 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201811010.htm [67] Xu, Y. Y., Li, Z. X., Xie, Z., et al., 2020. Prediction of Copper Mineralization Based on Semi-Supervised Neural Network. Earth Science, 45(12): 4563-4573 (in Chinese with English abstract). [68] Ye, R. Q., Niu, R. Q., Zhang, L. P., et al., 2011. Mineral Contents Determination and Accuracy Evaluation Based on Classification of Petrographic Images. Journal of China University of Mining & Technology, 40(5): 810-815, 822 (in Chinese with English abstract). http://www.cqvip.com/QK/93316X/201105/39774881.html [69] Zhang, X. L., Wu, C. L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644 (in Chinese with English abstract). [70] Zhang, X., Yu, M. X., Zhu, L. Q., et al., 2020. Raman Mineral Recognition Method Based on All-Optical Diffraction Deep Neural Network. Infrared and Laser Engineering, 49(10): 168-175 (in Chinese with English abstract). [71] Zhang, Y., Li, M. C., Han, S., et al., 2019. Intelligent Identification for Rock-Mineral Microscopic Images Using Ensemble Machine Learning Algorithms. Sensors, 19(18): 3914. https://doi.org/10.3390/s19183914 [72] Zhao, Q. M., Wang, R., Teng, Q. Z., et al., 2015. Particle Composition Analysis Based on Rock Slice Orthogonal Polarization Sequence Diagram. Journal of Terahertz Science and Electronic Information Technology, 13(2): 285-290 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XXYD201502021.htm [73] Zhao, Y. Y., Shen, Y., Wang, F., 2020. Intelligent Recognition of Ore Minerals Based on CART and PU Algorithm. Journal of Shenyang Normal University (Natural Science Edition), 38(2): 176-182 (in Chinese with English abstract). [74] Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358 (in Chinese with English abstract). [75] Zupan, J. R., Novič, M., Ruisánchez, I., 1997. Kohonen and Counterpropagation Artificial Neural Networks in Analytical Chemistry. Chemometrics and Intelligent Labosratory Systems, 38(1): 1-23. https://doi.org/10.1016/S0169-7439(97)00030-0 [76] 郭艳军, 周哲, 林贺洵, 等, 2020. 基于深度学习的智能矿物识别方法研究. 地学前缘, 27(5): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202005006.htm [77] 李明超, 刘承照, 张野, 等, 2020. 耦合颜色和纹理特征的矿物图像数据深度学习模型与智能识别方法. 大地构造与成矿学, 44(2): 203-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202002005.htm [78] 彭伟航, 白林, 商世为, 等, 2019. 基于改进InceptionV3模型的常见矿物智能识别. 地质通报, 38(12): 2059-2066. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201912015.htm [79] 吴承炜, 史如晋, 曾万聃, 2020. 基于Siamese网络的矿物拉曼光谱识别. 激光与光电子学进展, 57(9): 271-277. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202009036.htm [80] 徐述腾, 周永章, 2018. 基于深度学习的镜下矿石矿物的智能识别实验研究. 岩石学报, 34(11): 3244-3252. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811010.htm [81] 徐永洋, 李孜轩, 谢忠, 等, 2020. 基于半监督神经网络的铜矿预测方法. 地球科学, 45(12): 4563-4573. doi: 10.3799/dqkx.2020.297 [82] 叶润青, 牛瑞卿, 张良培, 等, 2011. 基于图像分类的矿物含量测定及精度评价. 中国矿业大学学报, 40(5): 810-815, 822. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201105024.htm [83] 张夏林, 吴冲龙, 周琦, 等, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384 [84] 张旭, 于明鑫, 祝连庆, 等, 2020. 基于全光衍射深度神经网络的矿物拉曼光谱识别方法. 红外与激光工程, 49(10): 168-175. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202010020.htm [85] 赵启明, 王睿, 滕奇志, 等, 2015. 基于岩石薄片偏光序列图的颗粒成分分析. 太赫兹科学与电子信息学报, 13(2): 285-290. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201502021.htm [86] 赵永翼, 申莹, 王菲, 2020. 基于CART和PU算法的矿石矿物的智能识别. 沈阳师范大学学报(自然科学版), 38(2): 176-182. doi: 10.3969/j.issn.1673-5862.2020.02.013 [87] 左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358. doi: 10.3799/dqkx.2020.111