Formation Mechanism of Shuiwangzhuang Gold Deposit in Jiaodong Peninsula: Constraints from S-H-O Isotopes and Fluid Inclusions
-
摘要: 为探讨胶东水旺庄金矿床成因,对载金黄铁矿和石英进行了S-H-O同位素组成及流体包裹体的测试分析,研究表明:黄铁矿δ34S介于7.0‰~8.5‰,流体的δD介于-91.7‰~-82.6‰,δ18O介于2.6‰~5.6‰,发育气-液两相流体包裹体、含CO2流体包裹体和含子矿物流体包裹体等3类,流体盐度介于1.2%~13.8%(NaCleq),均一温度主要集中于290~350 ℃,成矿期流体为中高温、低盐度的H2O-CO2-NaCl±CH4体系,具有深部岩浆来源特征.流体的不混溶或沸腾作用导致了金的沉淀富集.受中生代太平洋板块俯冲及后撤影响,胶东地区发生了大规模岩浆活动和强烈的地壳隆升,所产生的热隆-伸展构造为该区大规模金矿集中爆发成矿提供了有利条件.在主拆离断层中主要形成破碎带蚀变岩型金矿床,在主拆离断层下盘主要形成石英脉型金矿床.Abstract: In order to discuss the genesis of the Shuiwangzhuang gold deposit in Jiaodong Peninsula, S-H-O isotopic compositions of gold-bearing pyrite and quartz were carried out, and the fluid inclusions in quartz during ore-forming period were analyzed in this study. The results show that the δ34S of pyrite ranges from 7.0‰ to 8.5‰, with an average value of 7.7‰. The sulfur may be mainly from mantle sulfur and mixed with a small amount of crust sulfur. The δD of fluid in quartz ranges from -91.7 ‰ to -82.6 ‰, and δ18OH2O ranges from 2.6 ‰ to 5.6 ‰, indicating that the ore-forming fluid is mainly magmatic water, and meteoric water was mixed in at the later stage of mineralization. Three types of fluid inclusions in quartz are recognized during the main metallogenic period, including gas-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and liquid rich fluid inclusions with daughter mineral. The salinity of fluid is between 1.2% and 13.8% (NaCleq), and the homogenization temperature is mainly concentrated between 290 and 350 ℃, indicating the main ore-forming fluid is H2O-CO2-NaCl±CH4 system with medium-high temperature and low salinity. The immiscibility (phase separation) or boiling of fluid leads to the precipitation and enrichment of gold. In the Mesozoic, under the influence of the subduction and rollback of the paleo-Pacific plate, large-scale magmatic activities and strong crustal uplift occurred in Jiaodong Peninsula, and the resulting thermal uplift-extensional structure provided favorable conditions for the concentrated mineralization of large-scale gold deposits. In the main detachment fault, the high degree of rock fragmentation is conducive to atmospheric water infiltration, circulation and mixing with deep fluid to form altered rock type gold deposit in fracture zone. In the footwall of main detachment fault, the fracture scale is small and the connectivity with the surface is poor, which is not conducive to the infiltration of meteoric water. The ore-forming fluid is mainly deep-source fluid, forming quartz vein type gold deposit.
-
图 1 胶东地区区域地质及金矿床分布
据宋明春等(2020)修改.1.第四系;2.白垩系火山‒沉积岩系;3.古元古界和新元古界变质基底;4.新元古代含榴辉岩的花岗质片麻岩;5.太古宙花岗‒绿岩带;6.白垩纪崂山型花岗岩;7.白垩纪伟德山型花岗岩;8.白垩纪郭家岭型花岗岩;9.侏罗纪花岗岩类;10.三叠纪花岗岩类;11.整合/不整合地质界限;12.断层;13.以往探明的浅部金矿床位置(金矿符号大小依次代表资源储量≥100 t的超大型金矿床、20 t≤资源储量 < 100 t的大型金矿床、5 t≤资源储量 < 20 t的中型金矿床和资源储量 < 5 t的小型金矿床);14.新探明的深部金矿床位置(金矿符号大小含义同图例13);15.蚀变岩型/石英脉型/蚀变角砾岩型金矿;ME1.胶西北成矿小区;ME2.栖‒蓬‒福成矿小区;ME3.牟‒乳成矿小区;F1.三山岛断裂;F2.焦家断裂;F3.招平断裂;F4.西林‒陡崖断裂;F5.金牛山断裂
Fig. 1. Regional geological sketch map and distribution of gold deposits in the Jiaodong Peninsula
图 2 胶西北地区地质和金矿分布
据刘国栋等(2017)修改.1.第四系;2.白垩系;3.早前寒武纪变质岩系;4.白垩纪崂山型花岗岩;5.白垩纪伟德山型花岗岩;6.白垩纪郭家岭型花岗岩;7.侏罗纪栾家河型(文登型)花岗岩;8.侏罗纪玲珑型花岗岩;9.地质界限;10.断裂;11.浅部/深部大、中、小金矿床;12.金矿田位置及编号;F1.三山岛断裂;F2.焦家断裂;F3.招平断裂;KT1.三山岛金矿田;KT2.焦家金矿田;KT3.鞍石金矿田;KT4.玲珑金矿田;KT5.灵北金矿田;KT6.大庄子金矿田;KT7.大尹格庄金矿田;KT8.旧店金矿田
Fig. 2. Geological map and distribution of gold deposits in northwestern Jiaodong Peninsula
图 3 招平断裂带北段地质简图(a)和水旺庄金矿床26线剖面图(b)
a.据范家盟等(2018); b.据刘国栋等(2017).1.新生代第四系;2.新太古代细粒奥长花岗岩;3.古元古代细粒变辉长岩;4.中生代玲珑型花岗岩之片麻状细中粒含石榴二长花岗岩;5.中生代玲珑型花岗岩之含斑粗中粒二长花岗岩;6.伟晶岩;7.绢英岩化花岗岩;8.黄铁绢英岩化花岗岩;9.黄铁绢英岩化花岗质碎裂岩;10.黄铁绢英岩化碎裂岩;11.钻孔/孔深;12.矿体;13.矿床范围及名称
Fig. 3. Regional geological map of north segment of Zhaoping fault belt (a) and geological section of the No. 26 exploration line in the Shuiwangzhuang gold deposit (b)
图 9 胶东地区主要金矿床及围岩硫同位素组成
水旺庄数据为本文测得,其余资料据张竹如和陈世祯(1999);毛景文等(2005);宋明春等(2013)
Fig. 9. Diagram showing sulfur isotopic compositions of typical gold deposits and country rocks in Jiaodong area
图 10 水旺庄金矿床δ18OH2O-δD图解
水旺庄数据为本文测得,其余资料据杨忠芳等(1991);张理刚等(1994)
Fig. 10. δ18OH2O-δD diagram of the Shuiwangzhuang and other typical gold deposits in Jiaodong Peninsula
表 1 水旺庄金矿床流体包裹体显微测温结果
Table 1. Micro thermometric data of quartz fluid inclusions in the Shuiwangzhuang gold deposit
样品编号 包裹体类型 大小(μm) 气液比(%) 完全均一温度(℃) 盐度(wt% NaCl) 17S23 Ⅰ型 8~25 15~30 186~315 4.18~13.83 Ⅱ型 6~18 10~70 318~389 4.87~10.29 Ⅲ型 15~17 10~30 子晶未化 17S19 Ⅰ型 4~24 10~35 180~315 2.07~12.73 Ⅱ型 8~22 15~60 268~410 5.59~9.39 Ⅲ型 10~18 20~30 子晶未化 17S21 Ⅰ型 6~24 5~40 172~315 1.22~11.58 Ⅱ型 8~20 15~35 271~379 5.05~9.54 17S20 Ⅰ型 6~16 15~30 213~312 2.74~10.98 17S57 Ⅰ型 4~10 15~35 185~250 4.65~6.59 17S55 Ⅲ型 10~15 15~30 子晶未化 表 2 水旺庄金矿床H-O同位素组成
Table 2. Hydrogen and oxygen isotopic compositions of the Shuiwangzhuang gold deposit
样品编号 取样位置
(m)测试矿物 δDV-SMOW(‰) δ18OV-SMOW(‰) δ18OH2O(‰) 18ZKC6-1 -1 895 石英 -91.7 9.5 2.57 18ZKC6-2 -1 900 -89.1 10.5 3.56 42ZKC11 -1 612 -82.6 11.9 4.95 34ZKC9-1 -1 479 -87.5 12.0 5.05 34ZKC9-3 -1 534 -89.3 12.6 5.65 34ZKC9-4 -1 553 -86.3 10.9 3.96 34ZKC9-7 -1 667 -87.0 11.8 4.85 表 3 水旺庄金矿床硫同位素组成
Table 3. Sulfur isotopic compositions of pyrite in the Shuiwangzhuang gold deposit
序号 样品编号 取样位置(m) 岩性 测试
对象δ34SV-CDT (‰) 1 18ZKC6-1 -1 895 SJH 黄铁矿 7.5 2 18ZKC6-2 -1 900 SJH 8.0 3 42ZKC11-1 -1 612 SγJH 7.5 4 34ZKC9-2 -1 479 SγJH 8.1 5 34ZKC9-3 -1 534 SJH 7.0 6 34ZKC9-7 -1 553 SJH 8.5 7 34ZKC9-6 -1 667 SJH 7.4 注:SγJH.黄铁绢英岩化花岗质碎裂岩;SJH.黄铁绢英岩化碎裂岩. -
[1] Bao, Z.Y., Sun, Z.Q., Liu, G.D., et al., 2014. Geological Characteristics and Prospecting Direction of Deposits in Shuiwangzhuang Area in Potouqing Fault. Shandong Land and Resources, 30(2): 31-35 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=SDDI201402009&dbcode=CJFD&year=2014&dflag=pdfdown [2] Chen, Y.J., Franco, P., Lai, Y., et al., 2004. Metallogenic Time and Tectonic Setting of the Jiaodong Gold Province, Eastern China. Acta Petrologica Sinica, 20(4): 907-922 (in Chinese with English abstract). [3] Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972. Oxygen Isotope Exchange between Quartz and Water. Journal of Geophysical Research, 77(17): 3057-3067. https://doi.org/10.1029/JB077i017p03057 [4] Deng, J., Liu, X.F., Wang, Q.F., et al., 2014. Origin of the Jiaodong-Type Xinli Gold Deposit, Jiaodong Peninsula, China: Constraints from Fluid Inclusion and C-D-O-S-Sr Isotope Compositions. Ore Geology Reviews, 65: 674-686. https://doi.org/10.1016/j.oregeorev.2014.04.018 [5] Fan, H. R., Zhai, M. G., Xie, Y. H., et al., 2003. Ore-Forming Fluids Associated with Granite-Hosted Gold Mineralization at the Sanshandao Deposit, Jiaodong Gold Province, China. Mineralium Deposita, 38(6): 739-750. https://doi.org/10.1007/s00126-003-0368-x [6] Fan, J.M., Zhou, M.L., Huo, G., et al., 2018. New Prospecting Progess of Gold Deposits and New Understanding of Ore-Controlling Structures in North Section of Zhaoping Fracture Zone. Shangdong Land and Resources, 34(10): 24-32 (in Chinese with English abstract). [7] Goldfarb, R.J., Groves, D.I., Gardoll, S., 2001. Orogenic Gold and Geologic Time: A Global Synthesis. Ore Geology Reviews, 18: 1-75. https://doi.org/10.1016/S0169-1368(01)00016-6 [8] Hall, G.E.M., Jefferson, C.W., Michelb, F.A., 1988. Determination of W and Mo in Natural Spring Waters by ICP-AES (Inductively Coupled Plasma Emission Spectrography) and ICP-MS (Inductively Coupled Plasma Mass Spectrometry): Application to South Nahanni River Area N.W.T. Canada. Journal of Geochemical Exploration, 30: 63-84. https://doi.org/10.1016/0375-6742(88)90050-7 [9] Hoefs, J., 2009. Stable Isotope Geochemistry (Sixth Edition). Springer, Berlin, 72. [10] Ionov, D.A., Dupuy, C., O'Reilly, S.Y., et al., 1993. Carbonated Peridotite Xenoliths from Spitsbergen: Implications for Trace Element Signature of Mantle Carbonate Metasomatism. Earth and Planetary Science Letters, 119: 283-297. https://doi.org/10.1016/0012-821X(93)90139-Z [11] Li, J., 2012. The Study on Metallization and Metallogenetic Model of Mo-Cu-Pb-Zn Complex Deposits and Comparison with Gold Metallization in Jiaodong Area (Dissertation). Chengdu University of Technology, Chengdu, 1-127 (in Chinese with English abstract). [12] Li, J., Song, M.C., Liang, J.L., et al., 2020. Source of Ore-Forming Fluids of the Jiaojia Deeply-Seated Gold Deposit: Evidences from Trace Elements and Sulfur-Helium-Argon Isotopes of Pyrite. Acta Petrologica Sinica, 36(1): 297-313 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.23 [13] Li, L., Santosh, M., Li, S.R., 2015. The 'Jiaodong Type' Gold Deposits: Characteristics, Origin and Prospecting. Ore Geology Reviews, 65: 589-611. https://doi.org/10.1016/j.oregeorev.2014.06.021 [14] Li, S.Z., Kusky, T.M., Zhao, G.C., et al., 2010. Two-Stage Triassic Exhumation of HP-UHP Terranes in the Western Dabie Orogen of China: Constraints from Structural Geology. Tectonophysics, 490: 267-293. https://doi.org/10.1016/j.tecto.2010.05.010 [15] Liu, G.D., Song, G.Z., Bao, Z.Y., et al., 2019. New Breakthrough of Deep Prospecting in the Northern Section of the Zhaoping Fault Zone and the New Understanding of Fault Distribution in the Jiaodong District. Geotectonica et Metallogenia, 43(2): 226-234 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201902003.htm [16] Liu, G.D., Wen, G.J., Liu, C.J., et al., 2017. Discovery, Characteristics and Prospecting Direction of Shuiwangzhuang Deep Super-Large Gold Deposit in the Northern Section of Zhaoping Fault. Gold Science and Technology, 25(3): 38-45 (in Chinese with English abstract). [17] Mao, J.W., Li, H.M., Wang, Y.T., et al., 2005. The Relationship between Mantle-Derived Fluid and Gold Ore-Formation in the Eastern Shandong Peninsula: Evidences from D-O-C-S Isotopes. Acta Geologica Sinica, 79(6): 839-857 (in Chinese with English abstract). [18] Naden, J., Shepherd, T. J., 1989. Role of Methane and Carbon Dioxide in Gold Deposition. Nature, 342(6251): 793-795. https://doi.org/10.1038/342793a0 [19] Song, M.C., 2015. The Main Achievements and Key Theory and Methods of Deep-Seated Prospecting in the Jiaodong Gold Concentration Area, Shandong Province. Geological Bulletin of China, 34(9): 1758-1771 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201509017.htm [20] Song, M.C., Li, J., Li, S.Y., et al., 2018a. Late Mesozoic Thermal Upwelling-Extension Structure and Its Dynamics Background in Eastern Shandong Province. Journal of Jilin University (Earth Science Edition), 48(4): 941-964 (in Chinese with English abstract). [21] Song, M.C., Song, Y.X., Ding, Z.J., et al., 2018b. Jiaodong Gold Deposits: Essential Characteristics and Major Controversy. Gold Science and Technology, 26(4): 406-422 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HJKJ201804006.htm [22] Song, M.C., Li, S.Z., Santosh, M., et al. 2015. Types, Characteristics and Metallogenesis of Gold Deposits in the Jiaodong Peninsula, Eastern North China Craton. Ore Geology Reviews, 65: 612-625. https://doi.org/10.1016/j.oregeorev.2014.06.019 [23] Song, M.C., Lin, S.Y., Yang, L.Q., et al., 2020. Metallogenic Model of Jiaodong Peninsula Gold Deposits, Mineral Deposits, 39(2): 215-236 (in Chinese with English abstract). [24] Song, M.C., Song, Y.X., Shen, K., et al., 2013. Geochemical Features of Deeply-Seated Gold Deposit and Discussions on Some Associated Problems in Jiaojia Gold Ore Field, Shandong Peninsula, China. Geochimica, 42(3): 274-289 (in Chinese with English abstract). [25] Song, Y.X., Song, M.C., Ding, Z.J., et al., 2017. Major Advances on Deep Prospecting in Jiaodong Gold Ore Cluster and Its Metallogenic Characteristics. Gold Science and Technology, 25(3): 4-18 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-HJKJ201703003.htm [26] Sun, W.D., Ling, M.X., Wang, F.Y., et al., 2008. Pacific Plate Subduction and Mesozoic Geological Event in Eastern China. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 218-225 (in Chinese with English abstract). [27] Wang, Q.F., Deng, J., Zhao, H.S., et al., 2019. Review on Orogenic Gold Deposits. Earth Science, 44(6): 2155-2186 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906029.htm [28] Wang, Y.W., Zhu, F.S., Gong, R.T., 2002. Tectonic Isotope Geochemistry―Further Study on Sulfur Isotope of Jiaodong Gold Concentration Area. Gold, 23(4): 1-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJZZ200204000.htm [29] Wang, Z.L., Yang, L.Q., Guo, L.N., et al., 2014. P-T Conditions and Mechanisms for Precipitation of Gold in the Xincheng Deposit, Jiaodong Peninsula, China: A Fluid Inclusion Study. Ore Geology Reviews, 88(S2): 1167-1168. https://doi: 10.1016/j.oregeorev.2014.06.006 [30] Yang, L.Q., Deng, J., Wang, Z.L., et al., 2014. Mesozoic Gold Metallogenic System of the Jiaodong Gold Province, Eastern China. Acta Petrologicaogica Sinica, 30(9): 2447-2467 (in Chinese with English abstract). [31] Yang, Z.F., Xu, J.K., Zhao, L.S., et al., 1991. Geochemical Studies of Hydrogen and Oxygen Isotopes and Ore- Forming Fluid Compositions of Fluid Inclusions in Quartz from Two Types of Gold Deposits in Jiaodong. Acta Mineralogica Sinica, 11(4): 363-369 (in Chinese with English abstract). [32] Zhai, M.G., Fan, H.R., Yang, J.H., et al., 2004. Large-Scale Cluster of Gold Deposits in East Shandong: Anorogenic Metallogenesis. Earth Science Frontiers, 11(1): 85-98 (in Chinese with English abstract). [33] Zhang, H.Q., 2005. Fluid Inclusions in Gold-Bearing Quartz Veins of Jiaojia-Type Gold Deposits in the Jiaodong, Shandong. Geological Bulletin of China, 24(5): 456-461 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200505011.htm [34] Zhang, L.G., Chen, Z.S., Liu, J.X., et al., 1994. Water-Rock Exchange in the Jiaojia Type Gold Deposit: A Study of Hydrogen and Oxygen Isotopic Compositions of Ore-Formation Fluids. Mineral Deposits, 13(3): 193-200 (in Chinese with English abstract). [35] Zhang, L.Z., Chen, L., Wang, G.P., et al., 2020. Garnet U-Pb Dating Constraints on the Timing of Breccia Pipes Formation and Genesis of Gold Mineralization in Yixingzhai Gold Deposit, Shanxi Province. Earth Science, 45(1): 108-117 (in Chinese with English abstract). [36] Zhang, T., Zhang, Y.Q., 2008. Late Mesozoic Tectono-Magmatic Evolution History of the Jiaobei Uplift, Shandong Peninsula. Acta Geologica Sinica, 82(9): 1210-1228 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252708770.html [37] Zhang, Z.Q., Lai, Y., Chen, Y.J., 2007. Fluid Inclusion Study of the Linglong Gold Deposit, Shandong Province, China. Acta Petrologica Sinica, 23(9): 2207-2216 (in Chinese with English abstract). [38] Zhang, Z.R., Chen, S.Z., 1999. Superlarge Gold Deposit Exploration Perspective in Jiaolai Basin of Jiaodong Gold Metallogenetic Domain. Geochimica, 28(3): 203-212 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199903000.htm [39] Zhu, R. X., Fan, H. R., Li, J. W., et al., 2015. Decratonic Gold Deposits. Science in China (Series D: Earth Sciences), 45(8): 1153-1168. doi: 10.1007/s11430-015-5139-x [40] Zhu, Z.X., Zhao, X.F., Lin, Z.W., et al., 2020. In Situ Trace Elements and Sulfur Isotope Analysis of Pyrite from Jinchiling Gold Deposit in the Jiaodong Region: Implications for Ore Genesis. Earth Science, 45(3): 945-959 (in Chinese with English abstract). [41] 鲍中义, 孙忠全, 刘国栋, 等, 2014. 破头青断裂水旺庄矿区矿床地质特征及找矿方向. 山东国土资源, 30(2): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201402009.htm [42] 陈衍景, Franco, P., 赖勇, 等, 2004. 胶东矿集区大规模成矿时间和构造环境. 岩石学报, 20(4): 907-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404013.htm [43] 范家盟, 周明岭, 霍光, 等, 2018. 招平断裂带北段金矿找矿新进展及控矿构造新认识. 山东国土资源, 34(10): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201810003.htm [44] 李杰, 2012. 胶东地区钼-铜-铅锌多金属矿成矿作用及成矿模式——兼论与胶东金成矿作用的关系(博士学位论文). 成都: 成都理工大学, 1-127. [45] 李杰, 宋明春, 梁金龙, 等, 2020. 焦家深部金矿床成矿流体来源: 来自黄铁矿微量元素及S-He-Ar同位素的约束. 岩石学报, 36(1): 297-313. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001023.htm [46] 刘国栋, 宋国政, 鲍中义, 等, 2019. 胶东招平断裂北段深部找矿新突破及对断裂空间展布的新认识. 大地构造与成矿学, 43(2): 226-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201902003.htm [47] 刘国栋, 温桂军, 刘彩杰, 等, 2017. 招平断裂北段水旺庄深部超大型金矿床的发现、特征和找矿方向. 黄金科学技术, 25(3): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201703006.htm [48] 毛景文, 李厚民, 王义天, 等, 2005. 地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据. 地质学报, 79(6): 839-857. doi: 10.3321/j.issn:0001-5717.2005.06.013 [49] 宋明春, 2015. 胶东金矿深部找矿主要成果和关键理论技术进展. 地质通报, 34(9): 1758-1771. doi: 10.3969/j.issn.1671-2552.2015.09.017 [50] 宋明春, 李杰, 李世勇, 等, 2018a. 鲁东晚中生代热隆-伸展构造及其动力学背景. 吉林大学学报(地球科学版), 48(4): 941-964. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201804001.htm [51] 宋明春, 宋英昕, 丁正江, 等, 2018b. 胶东金矿床: 基本特征和主要争议. 黄金科学技术, 26(4): 406-422. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201804006.htm [52] 宋明春, 林少一, 杨立强, 等, 2020. 胶东金矿成矿模式, 矿床地质, 39(2): 215-236. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002002.htm [53] 宋明春, 宋英昕, 沈昆, 等, 2013. 胶东焦家深部金矿矿床地球化学特征及有关问题讨论. 地球化学, 42(3): 274-289. doi: 10.3969/j.issn.0379-1726.2013.03.009 [54] 宋英昕, 宋明春, 丁正江, 等, 2017. 胶东金矿集区深部找矿重要进展及成矿特征. 黄金科学技术, 25(3): 4-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201703003.htm [55] 孙卫东, 凌明星, 汪方跃, 等, 2008. 太平洋板块俯冲与中国东部中生代地质事件. 矿物岩石地球化学通报, 27(3): 218-225. doi: 10.3969/j.issn.1007-2802.2008.03.002 [56] 王庆飞, 邓军, 赵鹤森, 等, 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用. 地球科学, 44(6): 2155-2186. doi: 10.3799/dqkx.2019.105 [57] 王义文, 朱奉三, 宫润谭, 2002. 构造同位素地球化学——胶东金矿集中区硫同位素再研究. 黄金, 23(4): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ200204000.htm [58] 杨立强, 邓军, 王中亮, 等, 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447-2467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm [59] 杨忠芳, 徐景奎, 赵伦山, 等, 1991. 胶东两大成因系列金矿石英包裹体氢氧同位素及成矿流体组分地球化学研究. 矿物学报, 11(4): 363-369. doi: 10.3321/j.issn:1000-4734.1991.04.010 [60] 翟明国, 范宏瑞, 杨进辉, 等, 2004. 非造山带型金矿-胶东型金矿的陆内成矿作用. 地学前缘, 11(1): 85-98. doi: 10.3321/j.issn:1005-2321.2004.01.005 [61] 张海泉, 2005. 山东省胶东地区焦家式金矿床中含金石英大脉流体包裹体的特征. 地质通报, 24(5): 456-461. doi: 10.3969/j.issn.1671-2552.2005.05.011 [62] 张理刚, 陈振胜, 刘敬秀, 等, 1994. 焦家式金矿水-岩交换作用: 成矿流体来源及成因. 矿床地质, 13(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ403.000.htm [63] 张立中, 陈蕾, 王国平, 等, 2020. 石榴石U-Pb定年对山西义兴寨金矿床角砾岩筒时间的限制和金矿成因的指示. 地球科学, 45(1): 108-117. doi: 10.3799/dqkx.2018.547 [64] 张田, 张岳桥, 2008. 胶北隆起晚中生代构造-岩浆演化历史. 地质学报, 82(9): 1210-1228. doi: 10.3321/j.issn:0001-5717.2008.09.006 [65] 张祖青, 赖勇, 陈衍景, 2007. 山东玲珑金矿流体包裹体地球化学特征. 岩石学报, 23(9): 2207-2216. doi: 10.3969/j.issn.1000-0569.2007.09.019 [66] 张竹如, 陈世祯, 1999. 胶东金成矿域胶莱盆地中超大型金矿床找矿远景. 地球化学, 28(3): 203-212. doi: 10.3321/j.issn:0379-1726.1999.03.001 [67] 朱日祥, 范宏瑞, 李建威, 等, 2015. 克拉通破坏型金矿床. 中国科学(D辑: 地球科学), 45(8): 1153-1168. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508006.htm [68] 朱照先, 赵新福, 林祖苇, 等, 2020. 胶东金翅岭金矿床黄铁矿原位微量元素和硫同位素特征及对矿床成因的指示. 地球科学, 45(3): 945-959. doi: 10.3799/dqkx.2019.057