Identification and Characteristics of the Sedimentary Environment since the Quaternary in Zi River Delta, Dongting Basin
-
摘要: 沉积相及特征研究有助于更全面地认识河湖环境演化规律,但在洞庭盆地资水三角洲地区还未有相关表述.本研究基于第四纪典型钻孔(BMS01和BMS02)沉积样品,开展了丰富的岩石学、年代学与沉积学研究,运用粒度频率分布曲线对研究区第四纪堆积物沉积相进行分析,用粒度参数计算结果和Fisher判别模型进行了判别.结果表明Fisher模型判别公式适用于平原区河流相、湖相及非稳定相沉积环境的判别.在资水三角洲区域内的应用,判别函数总体识别正确率为94.9%,误判率为5.1%,高出正确率的一般标准(75%).综合判别结果及地质研究资料,运用C-M图和粒度散点图揭示了第四纪以来区域的多旋回沉积特征及演化过程,并阐述了地层的形成机制.研究结果可以为第四纪地层划分与对比、地下水资源评价和地层原生劣质水研究提供基础资料.Abstract: The study of sedimentary facies and characteristics contributes to a more comprehensive understanding of river and lake environmental evolution, but there are no description of such studies in the Zi River delta, Dongting basin. Based on the Quaternary sedimentary samples of typical borehole (BMS01 and BMS02), and combined with the petrology, chronology and sedimentology study, this study uses particle size frequency distribution curves for the discriminant analysis of sedimentary facies of Quaternary deposits in the studied area. Grain size parameters of the calculation results and the Fisher discriminant model were used for verification. The results show that the Fisher model is suitable for the identification of fluvial facies, lacustrine facies and unstable facies in plain area. In the application of the discriminant function in the study area, the overall recognition accuracy rate of the discriminant function was 94.9%, and the misjudgment rate was 5.1%, which was higher than the general standard of 75% accuracy. Based on the comprehensive identification results and geological research data, this paper expounds the regional polycyclic sedimentary characteristics and evolution process since the Quaternary by using C-M diagram and particle size scatter diagram, and explains the formation mechanism of the strata. The research results could provide basic data for the classification and correlation of Quaternary strata, the evaluation of groundwater resources and the study of natural and inferior groundwater.
-
Key words:
- sedimentary facies /
- discriminant analysis /
- sedimentary evolution /
- Fisher model /
- Quaternary /
- environmental geology
-
图 1 洞庭盆地构造略图及钻孔位置分布
地质构造图参考自罗清(2001)、中国地质调查局武汉地质调查中心(2015)
Fig. 1. The tectonic and borehole location distribution in Dongting basin
图 2 洞庭盆地第四纪覆盖区地层划分比对
图a柏道远等(2010b);图b赵举兴等(2016);图c方鸿琪(1959)
Fig. 2. Division and comparison of Quaternary coverage area in the Dongting basin
图 6 标准偏差和偏态的对比
Fig. 6. Plot of inclusive graphic skewness and inclusive graphic standard deviation
表 1 洞庭湖第四纪岩石地层单位覆盖区划分
Table 1. Division of Quaternary lithostratigraphical units in the Dongting basin coverage area
全新统 上更新统 中更新统 下更新统 参考引文 赤沙组(Qh3c) 团洲组(Qh2t) 沅江组(Qh1y) 安乡组(Qp3a) 洞庭湖组(Qp2dt) 湘阴组(Qp1xy) 华田组(Qp1ht) 皮建高等, 2001 未定, 包括冲积、湖积、湖冲积等(Qhal, Qhl, Qhlal) 坡头组(Qp3p) 洞庭湖组(Qp2dt) 汨罗组(Qp1m) 华田组(Qp1ht) 柏道远等, 2010a 赤沙组(Qh3c) 团洲组(Qh2t) 沅江组(Qh1y) 坡头组(Qp3p) 洞庭湖组(Qp2dt) 汨罗组(Qp1m) 华田组(Qp1ht) 陈渡平等, 2014 未定 安乡组(Qp3a) 洞庭湖组(Qp2dt) 湘阴组(Qp1xy) 华田组(Qp1ht) 赵举兴等, 2016 湖积、湖冲积等(Qhl, Qhlal) 安乡组(Qp3a) 洞庭湖组(Qp2dt) 湘阴组(Qp1xy) 华田组(Qp1ht) 本文钻孔划分 表 2 BMS01钻孔第四纪地层岩性特征
Table 2. The lithologic characteristic of borehole BMS01 in Quaternary
地质时代 地层组别 代号 地层岩性特征 全新世 全新统 Qhl, Qhlal 该层表层为褐黄色、灰黄色耕植土,中下层为灰黄色可塑粘土,零星可见铁锰结合,整体上由一期沉积旋回组成,与下层安乡组假整合接触,厚8.70 m. 晚更新世 安乡组 Qp3a 该层主要为河流相冲积物组成,顶层和底层岩性分别为褐黄色粉砂和粘土层.中层主要为黄褐、灰黄色粗砂夹带砾石,成分主要为石英砂岩,硅质岩等,粒径大于2 mm的颗粒含量约50%~70%,磨圆度一般,呈次圆-次棱角状,有中细砂和泥质物充填.该时期河流水动力条件强,厚5.30 m. 中更新世 洞庭湖组 Qp2dt 该组岩性结构复杂多变,主要为褐黄色粘土、细砂、中砂、粗砂及砂砾石层,偶见卵石,最大粒径大于5 cm.夹有乳白色粉细砂及粘土,该时期地层强烈抬升可能是河湖多次交替演变的主要原因.总体来说,该时期水动力变化复杂,地层厚度较薄,厚70.25 m. 早更新世 湘阴组 Qp1xy 岩性结构同样复杂多变,整体上为青灰色、灰白色砂砾石层,夹有3层粗砂层及少量中砂、粉砂及粘土层,以河流相沉积为主.上覆褐黄色厚层硬塑粘土层,多见白云母碎片及铁锰结合,厚78.85 m. 华田组 Qp1ht 该层主要为绛红色为主的杂色粘土与砂质粘土互层,以湖相沉积作用为主,厚8.90 m. 表 3 钻孔BMS01和BMS02的沉积相判别结果
Table 3. The sedimentary facies identification results of borehole BMS01 and BMS02
钻孔编号 样品数 识别正确个数 正确率(%) 识别错误个数 误判率(%) BMS01 76 72 94.7% 4 5.3% BMS02 22 21 95.5% 1 4.6% 总计 98 93 94.9% 5 5.1% -
[1] Amireh, B. S., 2015. Grain Size Analysis of the Lower Cambrian-Lower Cretaceous Clastic Sequence of Jordan: Sedimentological and Paleo-Hydrodynamical Implications. Journal of Asian Earth Sciences, 97: 67-88. https://doi.org/10.1016/j.jseaes.2014.09.029 [2] Bai, D. Y., Li, C. A., Ma, T. Q., 2010b. Quaternary Tectonic-Sedimentary Characteristics and Environmental Evolution of Anxiang Sag in Dongting Basin and Its West Periphery. Journal of Earth Sciences and Environment, 32(2): 120-129 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX201002004.htm [3] Bai, D. Y., Li, S. W., Zhou, K. J., et al., 2010a. Tectonic-Sedimentary Landform Classification of 1: 250 000 Changde Sheet and Its Implication for Researches on Quaternary Geology and Environment of Jianghan-Dongting Basin. Geology in China, 37(2): 280-297 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201002004.htm [4] Bai, D. Y., Zhou, K. J., Ma, T. Q., et al., 2009. Study on Quaternary Tectonic-Sedimentary Evolution of Lujiao Area, East Edge of Yuanjiang Sag, Dongting Basin. Journal of Geomechanics, 15(4): 409-420 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DZLX200904010&dbcode=CJFD&year=2009&dflag=pdfdown [5] Chen, D. P., Li, C. A., Bai, D. Y., et al., 2014. Preliminary Discussion on the Quaternary Stratigraphic Framework of Dongting Basin. Geological Science and Technology Information, 33(1): 67-73 (in Chinese with English abstract). [6] Clarke, D. W., Boyle, J. F., Chiverrell, R. C., et al., 2014. A Sediment Record of Barrier Estuary Behaviour at the Mesoscale: Interpreting High-Resolution Particle Size Analysis. Geomorphology, 221: 51-68. https://doi.org/10.1016/j.geomorph.2014.05.029 [7] Deepthi, K., Natesan, U., Muthulakshmi, A. L., et al., 2018. Grain Size Analysis for Elucidation of Depositional Environment of Kalpakkam, India. Environmental Processes, 5(1): 183-199. https://doi.org/10.1007/s40710-017-0278-z [8] Dong, W. J., Zhu, Y. X., Wan, M. G., 2011. Identification and Classification of Sedimentary Environment Based on Fisher Discriminant Analysis. Journal of Yangtze University (Natural Science Edition), 8(5): 5-7, 11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJDL201105002.htm [9] Fang, H. Q., 1959. Neotectonics Movements in the Middle and Lower Reaches of the Yangtze River. Acta Geological Sinica, 33(3): 328-343 (in Chinese with Russian abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE195903007.htm [10] Folk, R. L., 1966. A Review of grain-Size Parameters. Sedimentology, 6(2): 73-93. https://doi.org/10.1111/j.1365-3091.1966.tb01572.x [11] Folk, R. L., Ward, W. C., 1957. Brazos River Bar: A Study in the Significance of Grain Size Parameters. Journal of Sedimentary Research, 27(1): 3-26. https://doi.org/10.1306/74d70646-2b21-11d7-8648000102c1865d [12] Friedman, G. M., 1967. Dynamic Processes and Statistical Parameters Compared for Size Frequency Distribution of Beach and River Sands. SEPM Journal of Sedimentary Research, 37(2): 327-354. https://doi.org/10.1306/74d716cc-2b21-11d7-8648000102c1865d [13] Gu, Y. S., Guan, S., Ma, T., et al., 2018. Quaternary Sedimentary Environment Documented by Borehole Stratigraphical Records in Eastern Jianghan Basin. Earth Science, 43(11): 3989-4000 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201811015.htm [14] Le Roux, J. P., Rojas, E. M., 2007. Sediment Transport Patterns Determined from Grain Size Parameters: Overview and State of the Art. Sedimentary Geology, 202(3): 473-488. https://doi.org/10.1016/j.sedgeo.2007.03.014 [15] Liang, X., Zhang, R. Q., Pi, J. G., et al., 2001. Characteristics of Tectonic Movement of Dongting Basin in the Quaternary Period. Geological Science and Technology Information, 20(2): 11-14 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZKQ200102002.htm [16] Liu, C. M., Liu, W., 1993. The Evolution of Lakes on Jiaghan Plain in Quaternary. Journal of Central China Normal University (Natural Sciences), 27(4): 533-536 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HZSZ199304028.htm [17] Luo, Q., 2001. The Study of the Quaternary Environment of the Dongting Lake and the Upper Xiangjiang (Dissertation). Central China Normal University, Wuhan (in Chinese with English abstract). [18] Passega, R. P., 1957. Texture as Characteristic of Clastic Deposition. AAPG Bulletin, 41(9): 1952-1984. https://doi.org/10.1306/0bda594e-16bd-11d7-8645000102c1865d [19] Passega, R. P., 1964. Grain Size Representation by CM Patterns as a Geological Tool. Journal of Sedimentary Research, 34(4): 830-847. https://doi.org/10.1306/74d711a4-2b21-11d7-8648000102c1865d [20] Pi, J. G., Zhang, G. L., Liang, X., et al., 2001. Preliminary Research on Sedimentary Environment Evolution in Dongting Basin in the Quaternary Period. Geological Science and Technology Information, 20(2): 6-10 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200102001.htm [21] Pierre, P., Laurent, E., 2009. Large-Scale Neotectonic Slope Movements: A Case Study from Séchilienne (Isère, France). Bulletin of Engineering Geology and the Environment, 68(4): 567-577. https://doi.org/10.1007/s10064-009-0221-2 [22] Rajganapathi, V. C., Jitheshkumar, N., Sundararajan, M., et al., 2013. Grain Size Analysis and Characterization of Sedimentary Environment along Thiruchendur Coast, Tamilnadu, India. Arabian Journal of Geosciences, 6(12): 4717-4728. https://doi.org/10.1007/s12517-012-0709-0 [23] Sahu, B. K., 1964. Depositional Mechanisms from the Size Analysis of Clastic Sediments. SEPM Journal of Sedimentary Research, 34: 73-83. https://doi.org/10.1306/74d70fce-2b21-11d7-8648000102c1865d [24] Wan Mohtar, W. H. M., Nawang, S. A. B., Abdul Maulud, K. N., et al., 2017. Textural Characteristics and Sedimentary Environment of Sediment at Eroded and Deposited Regions in the Severely Eroded Coastline of Batu Pahat, Malaysia. Science of the Total Environment, 598: 525-537. https://doi.org/10.1016/j.scitotenv.2017.04.093 [25] Wang, C. L., 1993. The Formation and Evolution of Dongting Lake Basin. Tropical Geomorphology, 14(2): 70-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-RDDM199302010.htm [26] Wang, X. Y., 1983. Preliminary Study on the Paleoclimatology of the Quaternary in Tianjin Plain. Journal of Hebei Institute of Geology, 6(1): 65-72 (in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=74888487495756514857484957 [27] Wang, Y. Y., Huang, S. B., Zhao, L., et al., 2017. Evolution of Quaternary Sedimentary Environment in Shallow Aquifers, at Shahu Area, Jianghan Plain. Earth Science, 42(5): 751-760 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705010.htm [28] Wang, Z. B., Lu, K., Wen, Z. H., et al., 2020. Grain Size Compositions and Their Influencing Factors of the Surface Sediments in Eastern China Seas. Earth Science, 45(7): 2709-2721 (in Chinese with English abstract). [29] Wuhan Center of China Geological Survey, 2015. A Special Study on the Quaternary Geology of Jianhan-Dongting Basin. Wuhan Center of China Geological Survey, Wuhan (in Chinese). [30] Yang, H. R., Xu, X., 1980. Quaternary Environmental Changes in Eastern China. Journal of Nanjing University (Natural Sciences), 16(1): 121-144, 166-169 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NJDZ198001011.htm [31] Yin, Z. Q., Qin, X. G., Wu, J. S., et al., 2008. Multimodal Grain-Size Distribution Characteristics and Formation Mechanism of Lake Sediments. Quaternary Sciences, 28(2): 345-353 (in Chinese with English abstract). http://www.dsjyj.com.cn/EN/abstract/abstract8938.shtml [32] Yu, X. N., Zhan, Q., Wang, Z. H., 2016. Sedimentary Structures and Grain Size Patterns of the Geomorphic Units in the Yangtze River Mouth. Marine Geology & Quaternary Geology, 36(4): 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201604001.htm [33] Zan, J. B., Li, X. J., Fang, X. M., et al., 2018. Grain-Size Analysis of Upper Pliocene Red Clay Deposits from Linxia Basin: Implications for Asian Monsoon Evolution on the NE Margin of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 597-605. https://doi.org/10.1016/j.palaeo.2018.09.027 [34] Zhang, D. H., 1994. Neotectonics and Quaternary Environmental Changes in Jianghan Basin. Crustal Deformation and Earthquake, 14(1): 74-80 (in Chinese with English abstract). http://www.researchgate.net/publication/292741002_Neotectonics_and_Quaternary_environmental_changes_in_Jianghan_Basin [35] Zhang, J. X., Shen, Z. J., Gu, H. B., et al., 2007. Quaternary Environmental Geochemistry in Dongting Lake Area. Geological Publishing House, Beijing (in Chinese). [36] Zhang, L., 2018. Quaternary Paleoenvironment and Paleoclimate in Chengdu Basin (Dissertation), Chengdu University of Technology, Chengdu (in Chinese with English abstract). [37] Zhang, P., Song, C. H., Yang, Y. B., et al., 2008. The Significance and Establishment of Discriminant Function with Grain Size of Stable Lacustrine Sediment and Eolian Loess. Acta Sedimentologica Sinica, 26(3): 501-507 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200803018.htm [38] Zhang, R. Q., Liang, X., Zhang, G. L., et al., 2001. A Preliminary Study of Climatic Change in Dongting Lake Area in the Quaternary Period. Geological Science and Technology Information, 20(2): 1-5 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200102001 [39] Zhang, X., Liang, X., Sun, L. Q., et al., 2020. Discriminant Model of River-Lake Facies in the Upper Reach of Hanjiang Section of Jianghan Basin Based on Fisher Principle. Earth Science, 45(11): 4254-4266 (in Chinese with English abstract). [40] Zhang, Y. F., Li, C. A., Chen, G. J., et al., 2005. Characteristics and Paleoclimatic Significance of Magnetic Susceptibility and Stable Organic Carbon Isotopes from a Bore in Zhoulao Town, Jianghan Plain. Earth Science, 30(1): 114-120 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqkx200501016 [41] Zhao, J. X., Li, C. A., Zhang, Y. F., et al., 2016. Quaternary Chronostratigraphy of Borehole S3-7 in Dongting Basin. Earth Science, 41(4): 633-643 (in Chinese with English abstract). [42] 柏道远, 李长安, 马铁球, 等, 2010b. 第四纪洞庭盆地安乡凹陷及西缘构造-沉积特征与环境演化. 地球科学与环境学报, 32(2): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201002004.htm [43] 柏道远, 李送文, 周柯军, 等, 2010a. 1: 25万常德市幅构造-沉积地貌类型划分及其对江汉-洞庭盆地第四纪地质与环境研究的启示. 中国地质, 37(2): 280-297. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201002004.htm [44] 柏道远, 周柯军, 马铁球, 等, 2009. 第四纪洞庭盆地沅江凹陷东缘鹿角地区构造-沉积演化研究. 地质力学学报, 15(4): 409-420. doi: 10.3969/j.issn.1006-6616.2009.04.009 [45] 陈渡平, 李长安, 柏道远, 等, 2014. 洞庭盆地第四纪地层格架初拟. 地质科技情报, 33(1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401011.htm [46] 董文娟, 朱远鑫, 万明刚, 2011. 基于Fisher判别准则的沉积环境判别与分类方法. 长江大学学报(自然版), 8(5): 5-7, 11. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201105002.htm [47] 方鸿琪, 1959. 长江中下游地区的新构造运动. 地质学报, 33(3): 328-343. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE195903007.htm [48] 顾延生, 管硕, 马腾, 等, 2018. 江汉盆地东部第四纪钻孔地层与沉积环境. 地球科学, 43(11): 3989-4000. doi: 10.3799/dqkx.2018.324 [49] 梁杏, 张人权, 皮建高, 等, 2001. 洞庭盆地第四纪构造活动特征. 地质科技情报, 20(2): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200102002.htm [50] 刘昌茂, 刘武, 1993. 第四纪江汉平原湖群的演变. 华中师范大学学报(自然科学版), 27(4): 533-536 https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ199304028.htm [51] 罗清, 2001. 洞庭湖及湘江下游第四纪环境的研究(硕士学位论文). 武汉: 华中师范大学. [52] 皮建高, 张国梁, 梁杏, 等, 2001. 洞庭盆地第四纪沉积环境演变的初步分析. 地质科技情报, 20(2): 6-10. doi: 10.3969/j.issn.1000-7849.2001.02.002 [53] 王春林, 1993. 洞庭湖盆地的形成和演化. 热带地貌, 14(2): 70-78. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDM199302010.htm [54] 王宪瑜, 1983. 天津平原第四纪古气候演化初探. 河北地质学院学报, 6(1): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX198301007.htm [55] 王妍妍, 黄爽兵, 赵龙, 等, 2017. 江汉平原沙湖地区浅层含水层第四纪沉积环境演化. 地球科学, 42(5): 751-760. doi: 10.3799/dqkx.2017.063 [56] 王中波, 陆凯, 温珍河, 等, 2020. 中国东部海域表层沉积物粒度组成及影响因素. 地球科学, 45(7): 2709-2721. doi: 10.3799/dqkx.2020.028 [57] 中国地质调查局武汉地质调查中心, 2015. 江汉-洞庭盆地第四纪地质专题研究. 武汉: 中国地质调查局武汉地质调查中心. [58] 杨怀仁, 徐馨, 1980. 中国东部第四纪自然环境的演变. 南京大学学报(自然科学版), 16(1): 121-144, 166-169. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198001011.htm [59] 殷志强, 秦小光, 吴金水, 等, 2008. 湖泊沉积物粒度多组分特征及其成因机制研究. 第四纪研究, 28(2): 345-353. doi: 10.3321/j.issn:1001-7410.2008.02.018 [60] 喻薛凝, 战庆, 王张华, 2016. 长江口各地貌单元沉积构造和粒度分区特征. 海洋地质与第四纪地质, 36(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201604001.htm [61] 张德厚, 1994. 江汉盆地新构造与第四纪环境变迁. 地壳形变与地震, 14(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB401.010.htm [62] 张建新, 申志军, 顾海滨, 等, 2007. 洞庭湖区第四纪环境地球化学. 北京: 地质出版社. [63] 张露, 2018. 成都盆地第四纪古环境与古气候研究(硕士学位论文). 成都: 成都理工大学. [64] 张平, 宋春晖, 杨用彪, 等, 2008. 稳定湖相沉积物和风成黄土粒度判别函数的建立及其意义. 沉积学报, 26(3): 501-507. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200803018.htm [65] 张人权, 梁杏, 张国梁, 等, 2001. 洞庭湖区第四纪气候变化的初步探讨. 地质科技情报, 20(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200102000.htm [66] 张鑫, 梁杏, 孙立群, 等, 2020. 基于Fisher判别准则的河湖相判别模型的构建: 以江汉盆地汉江上游段为例. 地球科学, 45(11): 4254-4266. doi: 10.3799/dqkx.2019.291 [67] 张玉芬, 李长安, 陈国金, 等, 2005. 江汉平原湖区周老镇钻孔磁化率和有机碳稳定同位素特征及其古气候. 地球科学, 30(1): 114-120. http://www.earth-science.net/article/id/1459 [68] 赵举兴, 李长安, 张玉芬, 等, 2016. 洞庭盆地S3-7孔第四纪年代地层. 地球科学, 41(4): 633-643. doi: 10.3799/dqkx.2016.052