Discovery of Sanmen Ductile Shear Zone in North Guangxi and Its Tectonic Significances
-
摘要: 通过野外地质调查、室内显微组构分析和磁组构测量,在桂北三门地区厘定出一条大型韧性剪切带;并利用热液锆石U-Pb定年约束其变形时代.三门韧性剪切带发育密集的透入性片理、旋转碎斑系、拉伸线理、眼球构造、书斜构造、A型褶皱、波状消光、机械双晶、核幔构造和S-C组构等宏观和微观韧性变形特征.磁各向异性度(P值)显示其走向呈NNE向,倾向呈NWW向.运动学指向显示早期具有左旋逆冲剪切,晚期具有右旋正滑剪切的运动学性质.磁化率椭球体扁率(E值)显示岩石变形以压扁型应变为主,暗示运动学方向以左旋逆冲剪切为主.镁铁质糜棱岩的热液锆石U-Pb定年结果为441±2 Ma,代表三门韧性剪切带的变形时代.在磁组构、运动学和年代学研究的基础上,结合区域地质资料,认为该韧性剪切带是华南加里东期华夏陆块由SE向NW逆冲到扬子陆块受阻后反冲作用的产物.这一认识揭示了扬子陆块和华夏陆块碰撞拼合的方式和时代,为深化华南加里东构造运动的认识提供了新的资料.Abstract: Based on the field geological investigation, microstructural observation and magnetic fabric of tectonites, it recognized a large ductile shear zone in Sanmen area of North Guangxi, also defined the deformation age of Sanmen ductile shear zone by hydrothermal zircon U-Pb dating. The ductile shear zone has typical macroscopic and microstructural characteristics of mylonite series, such as penetrating schistosity, rotational porphyroclast systems, stretching lineation, eyeball structures, domino structures, A-type fold, wavy extinction, deformation twins, core and mantle textures and S-C fabric. Anisotropy of magnetic susceptibility (P values) shows Sanmen ductile shear zone trending in NNE and inclination of NWW. Kinematics orientation research shows that the Sanmen ductile shear zone has left-lateral thrust shear in the early stage and right-lateral normal slip shear in the late stage, magnetic susceptibility ellipsoid (E values) indicates that the rock deformation in Sanmen ductile shear zone is mainly flattened strain, suggesting that its kinematic direction is mainly left-lateral thrust shear. The hydrothermal zircon U-Pb dating result of mafic mylonite is 441±2 Ma, which represents the deformation age of Sanmen ductile shear zone. Based on the study of magnetic fabric, kinematics and tectonic chronology of Sanmen ductile shear zone, combined with regional geological data, it is considered that Sanmen ductile shear zone is the product of the recoil of the Caledonian Cathaysian block in South China from SE to NW to the Yangtze block. The discovery of the Sanmen ductile shear zone reveals the way and age of collision of Yangtze and Cathaysian blocks, and deepens the understanding of Caledonian tectonic evolution of the South China.
-
Key words:
- magnetic fabric /
- hydrothermal zircon /
- deformation age /
- ductile shear zone /
- Sanmen area of North Guangxi /
- tectonics
-
图 2 三门韧性剪切带野外宏观特征及运动学判别标志
a.丹洲群板岩强烈片理化并产生Z型褶曲,指示逆冲剪切性质(剖面,龙胜瓢里);b.丹洲群片理化岩石中石英脉体的香肠构造,指示逆冲剪切(剖面,龙胜三门);c.变辉绿岩中透入性片理(剖面,龙胜吊竹山);d.拉伸线理及阶步,显示走滑的特征(剖面,龙胜三门);e.硅化大理岩旋转椭球体,指示逆冲剪切(剖面,龙胜三门);f.大理岩化灰岩中S-C组构,指示逆冲剪切(剖面,龙胜三门);g.变镁铁质糜棱岩中的眼球状构造,指示左旋剪切(平面,龙胜上朗);h.硅化大理岩书斜构造,指示右旋剪切;同时其中的“σ”残斑,指示左旋剪切(平面,龙胜上朗);i.硅化大理岩旋转碎斑,指示正滑剪切(剖面,龙胜上朗).
Fig. 2. Field macro-characteristics and kinematics discrimination marks of Sanmen ductile shear zone
图 3 三门韧性剪切带显微构造变形特征
a.镁铁质糜棱岩中钠长石残斑脆性破碎现象(龙胜三门)(+);b.镁铁质糜棱岩S-C组构指示逆冲剪切(龙胜三门)(+);c.镁铁质糜棱岩中钠长石碎斑应力砂钟现象(龙胜三门)(+);d.石英的塑性拉长及波状消光和变形带(龙胜三门)(+);e.方解石的机械双晶(龙胜上朗)(+);f.方解石的机械双晶及石英的核幔构造(龙胜三门)(+);g.方解石残斑与定向排列的基质构成显微S-C组构,指示正滑剪切(龙胜瓢里)(+);h.方解石集合体长轴优选方位与定向排列的基质组成S-C组构,指示左旋剪切(龙胜三门)(+);i.镁铁质糜棱岩中长石碎斑与塑性变形的绿泥石构成S-C组构,指示逆冲剪切(龙胜吊竹山)(+).Q.石英;Cal.方解石;Pl.斜长石;Chl.绿泥石;Sc.糜棱面理;Ss.剪切面理.其中a,b,c引自张桂林(2004)
Fig. 3. Microstructure deformation characteristics of Sanmen ductile shear zone
图 4 三门韧性剪切带分布图及剖面图
1.泥盆系;2.寒武系;3.震旦系;4.南华系;5.丹洲群拱洞组;6.丹洲群合桐组;7.镁铁质-超镁铁质岩;8.弱韧性变形带;9.强韧性变形带;10.粉砂岩;11.砂岩;12.灰岩;13.大理岩;14.浅变质砂岩;15.千枚岩;16.板岩;17.镁铁质-超镁铁质岩石;18.断层;19.角度不整合界线;20.地质界线;21.韧性剪切变形带;22.剖面线方位;23.磁组构P值;24.1.10的P值界线;25.1.05的P值界线;26.年龄样品采样位置;27.磁组构样品采样位置及编号;28.剖面位置;29.标注线;30.地名
Fig. 4. Distribution and geological section of the Sanmen ductile shear zone
图 8 锆石U-Pb年龄谐和图解(a)、球粒陨石标准化稀土元素配分图(b)及锆石成因判别图解(c, d)
a.据Qin et al.(2018);c,d.据Hoskin(2005)
Fig. 8. Zircon U-Pb age concordance diagram (a), chondrite-normalized REE partition diagram (b) and zircon genetic discrimination diagrams (c, d)
表 1 桂北三门地区岩石磁组构参数及参数计算结果
Table 1. Measurements and calculation of the rock magnetic fabric elements along Sanmen area of North Guangxi
剖面 样品号 Kmax Kint Kmin Kmax Kint Kmin L F P E Dg Ig Dg Ig Dg Ig A-A’ 17089 1.022 0.998 0.980 11.9 7.9 102.3 3.0 213.1 81.5 1.024 1.018 1.043 0.994 17090 1.042 0.994 0.964 268.7 75.0 6.3 2.0 96.8 14.9 1.048 1.031 1.081 0.984 17091 1.071 0.979 0.950 177.3 36.5 50.5 39.0 292.6 30.0 1.094 1.031 1.127 0.942 17092 1.033 1.007 0.960 4.6 4.2 264.6 67.3 96.3 22.3 1.026 1.049 1.076 1.022 17093 1.022 0.992 0.986 236.6 50.4 68.9 38.9 334.0 6.1 1.030 1.006 1.037 0.977 B-B’ 17082 1.047 1.003 0.950 238.8 68.6 23.0 17.7 116.8 11.8 1.044 1.056 1.102 1.011 17083 1.045 1.015 0.940 279.4 65.3 30.3 9.3 124.2 22.7 1.030 1.080 1.112 1.049 17084 1.017 1.007 0.975 53.6 64.2 175.8 14.5 271.5 20.9 1.010 1.033 1.043 1.023 17085 1.071 0.977 0.952 203.9 17.1 93.2 48.8 306.9 36.0 1.096 1.026 1.125 0.936 17086 1.350 1.018 0.633 226.6 45.3 356.1 32.2 105.2 27.4 1.326 1.608 2.133 1.213 17087 1.047 0.999 0.955 338.5 46.5 221.8 23.1 114.8 34.5 1.048 1.046 1.096 0.998 C-C’ 17070 1.075 1.001 0.923 108.1 76.9 244.4 9.5 335.9 8.9 1.074 1.085 1.165 1.010 17069 1.048 1.014 0.938 314.6 59.5 211.9 7.4 117.7 29.4 1.034 1.081 1.117 1.045 17068 1.042 1.023 0.935 262.9 57.3 13.3 12.6 110.6 29.6 1.019 1.094 1.114 1.074 17066 1.029 1.023 0.949 210.6 46.6 347.1 34.5 94.0 22.9 1.006 1.078 1.084 1.072 17065 1.053 1.010 0.938 219.9 50.8 11.2 35.6 111.7 14.3 1.043 1.077 1.123 1.033 17063 1.037 1.005 0.958 223.5 82.5 49.8 7.5 319.7 0.8 1.032 1.049 1.082 1.016 18016-5 1.038 1.019 0.943 209.5 60.4 33.5 29.5 302.5 1.7 1.019 1.081 1.101 1.061 18016-4 1.033 1.007 0.960 129.9 75.6 30.9 2.3 300.4 14.2 1.026 1.049 1.076 1.022 18016-2 1.068 1.009 0.923 194.4 60.3 12.3 29.6 102.8 0.9 1.058 1.093 1.157 1.033 18016-3 1.103 1.007 0.890 194.0 55.2 28.1 34.0 293.6 6.6 1.095 1.131 1.239 1.033 18016-1 1.277 0.986 0.736 201.3 28.7 304.1 22.0 65.8 52.5 1.295 1.340 1.735 1.035 D-D’ 17072 1.347 1.086 0.567 286.0 58.3 188.4 4.7 95.6 31.3 1.240 1.915 2.376 1.544 17081 1.046 1.026 0.927 213.7 78.8 11.3 10.3 102.0 4.2 1.019 1.107 1.128 1.086 17080 1.035 1.010 0.955 203.2 68.2 2.4 20.5 95.0 7.1 1.025 1.058 1.084 1.032 17079 1.091 0.991 0.918 185.1 34.9 313.3 41.6 72.6 28.8 1.101 1.080 1.188 0.981 17078 1.042 1.002 0.956 217.8 52.8 21.2 36.1 117.1 8.0 1.040 1.048 1.090 1.008 17077 1.039 0.996 0.965 219.9 28.9 328.5 29.9 95.1 46.0 1.043 1.032 1.077 0.989 17076 1.022 1.004 0.974 78.5 16.1 347.2 4.6 241.7 73.2 1.018 1.031 1.049 1.013 17074 1.021 1.007 0.973 11.6 33.6 204.7 55.7 105.7 6.1 1.014 1.035 1.049 1.021 E-E’ 18014-10 1.011 0.999 0.989 197.1 62.4 0.5 26.6 93.9 6.8 1.012 1.010 1.022 0.998 18014-8 1.014 0.996 0.990 287.7 35.5 38.3 26.2 155.8 43.1 1.018 1.006 1.024 0.988 18014-7 1.025 0.996 0.978 270.5 65.1 60.2 21.8 154.8 11.4 1.029 1.018 1.048 0.989 18014-9 1.093 0.994 0.913 39.8 67.8 277.7 12.2 183.7 18.2 1.100 1.089 1.197 0.990 18014-6 1.044 1.007 0.949 327.7 50.6 92.3 25.0 196.8 28.3 1.037 1.061 1.100 1.023 18014-1 1.029 1.000 0.971 227.8 53.2 77.9 32.9 338.2 14.6 1.029 1.030 1.060 1.001 18014-5 1.025 0.993 0.982 7.3 65.1 273.4 1.8 182.6 24.8 1.032 1.011 1.044 0.980 18014-4 1.015 1.000 0.985 37.2 75.0 162.2 8.7 254.1 12.1 1.015 1.015 1.030 1.000 18014-3 1.016 1.004 0.980 355.0 57.4 86.5 0.9 177.1 32.6 1.012 1.024 1.037 1.012 18014-2 1.025 0.996 0.978 214.4 63.9 35.8 26.1 305.5 0.5 1.029 1.018 1.048 0.989 F-F’ 16139 1.039 1.002 0.959 324.6 42.2 204.1 29.2 92.1 33.8 1.037 1.045 1.083 1.008 16140 1.052 1.003 0.944 309.9 44.5 197.3 21.3 89.6 37.8 1.049 1.063 1.114 1.013 16141 1.129 0.957 0.914 124.1 31.3 350.8 48.5 230.1 24.3 1.180 1.047 1.235 0.887 16146 1.072 1.020 0.908 334.8 47.2 176.6 40.7 76.9 11.0 1.051 1.123 1.181 1.069 16142 1.045 1.001 0.954 334.8 47.1 183.1 39.2 81.0 14.5 1.044 1.049 1.095 1.005 16143 1.027 1.010 0.963 286.5 58.3 175.7 12.4 78.8 28.7 1.017 1.049 1.066 1.031 16144 1.019 1.005 0.976 290.3 58.8 157.0 22.5 58.1 20.4 1.014 1.030 1.044 1.016 16145 1.035 1.022 0.943 324.9 43.5 201.8 30.0 90.9 31.8 1.013 1.084 1.098 1.070 18015-1 1.030 1.000 0.970 190.2 3.0 282.1 32.4 95.4 57.4 1.030 1.031 1.062 1.001 18015-2 1.038 1.004 0.959 187.7 12.3 307.3 66.2 93.1 20.0 1.034 1.047 1.082 1.013 18015-3 1.036 1.002 0.962 213.3 23.2 320.6 34.7 96.8 46.1 1.034 1.042 1.077 1.008 18015-4 1.026 0.996 0.978 208.2 35.7 342.0 44.0 98.7 24.9 1.030 1.018 1.049 0.988 注:Kmax、Kint、Kmin分别是磁化率椭球体中最大、中间和最小主轴的磁化率大小,单位为10-4SI;P(磁化率各向异性度)=Kmax/Kmin;F(磁面理)=Kint/Kmin;L(磁线理)=Kmax/Kint;E(磁化率椭球体扁率)=F/L;Dg为磁偏角(°);Ig为磁倾角(°). 表 2 三门韧性剪切带面理产状
Table 2. Foliation occurrence of Sanmen ductile shear zone
野外实测糜棱C面理产状 磁面理产状 序号 倾向(°) 倾角(°) 序号 倾向(°) 倾角(°) 序号 倾向(°) 倾角(°) 1 127 74 1 274 83 27 277 44 2 274 60 2 336 47 28 279 65 3 285 58 3 335 79 29 140 89 4 313 44 4 4 71 30 274 67 5 256 55 5 17 62 31 291 60 6 297 85 6 158 75 32 298 61 7 255 61 7 3 65 33 156 81 8 292 50 8 74 78 34 276 59 9 340 49 9 357 57 35 286 84 10 264 59 10 126 89 36 62 17 11 278 33 11 123 88 37 275 44 12 274 61 12 120 76 38 297 82 13 267 39 13 283 89 39 253 61 14 267 77 14 114 83 40 275 83 15 270 30 15 246 38 41 282 86 16 274 61 16 292 76 42 297 78 17 276 30 17 272 56 43 304 67 18 265 54 18 270 52 44 91 69 19 285 58 19 50 66 45 127 54 20 313 44 20 257 79 46 285 63 21 292 50 21 261 76 47 295 56 22 264 59 22 259 61 48 33 8 23 278 33 23 238 70 49 277 75 24 276 47 24 271 58 50 113 60 25 260 23 25 275 33 51 276 68 26 273 70 52 154 84 表 3 镁铁质糜棱岩锆石微量元素含量
Table 3. Trace element contents of zircon in mafic mylonite
点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE LREE δEu δCe SmN/LaN 1 21.31 49.33 7.30 71.33 43.01 12.47 93.20 35.29 516.43 197.19 650.78 165.81 1 290.68 236.28 3 390.41 204.75 0.59 0.97 3.13 2 11.83 38.70 6.24 61.61 51.30 18.88 289.65 165.90 1 800.90 646.75 2 586.18 506.12 4 291.60 635.84 11 111.50 188.56 0.37 1.09 6.72 3 106.27 284.25 42.58 173.83 90.68 27.37 258.40 126.40 1 111.68 381.59 2 090.89 473.13 5 803.91 901.92 11 872.90 724.98 0.51 1.04 1.32 4 32.89 107.76 13.62 105.07 62.77 32.34 393.11 237.13 2 058.42 863.25 3 094.88 607.18 4 243.15 713.70 12 565.27 354.45 0.48 1.25 2.96 5 28.40 94.18 10.84 103.61 65.95 31.92 463.75 337.84 3 063.22 1 094.74 4 660.95 735.83 5 390.51 860.73 16 942.47 334.90 0.41 1.32 3.60 6 12.81 51.49 8.47 67.31 59.27 16.28 152.96 49.14 577.99 237.57 1 589.61 380.05 4 085.38 750.00 8 038.33 215.63 0.50 1.17 7.17 7 21.75 55.69 9.69 81.56 40.73 14.71 134.92 42.99 493.79 219.10 1 595.55 393.79 4 071.47 706.63 7 882.37 224.13 0.55 0.94 2.90 8 25.71 58.34 9.45 68.00 43.40 14.20 123.37 37.82 369.06 126.54 954.51 245.62 3 435.17 507.69 6 018.88 219.10 0.55 0.92 2.61 9 21.44 47.73 7.47 74.90 35.80 12.96 141.09 45.03 504.27 199.03 1 436.06 348.55 3 774.66 674.07 7 323.06 200.30 0.49 0.92 2.59 10 17.48 52.26 8.63 67.16 32.05 19.97 234.52 73.54 515.00 158.89 967.76 217.82 2 310.45 423.95 5 099.48 197.55 0.51 1.04 2.84 11 33.38 80.24 13.12 40.44 37.79 23.11 311.64 89.31 951.84 308.48 1 482.27 298.30 2 811.07 448.54 6 929.53 228.08 0.45 0.94 1.75 12 20.35 41.55 6.19 71.16 43.26 15.70 183.90 42.48 433.97 161.83 535.53 133.54 1 481.69 311.61 3 482.76 198.21 0.46 0.90 3.29 13 33.34 99.93 17.12 87.03 59.73 44.32 428.92 247.68 2 826.47 945.87 3 796.55 636.25 4 938.85 661.62 14 823.68 341.47 0.62 1.02 2.78 14 54.20 167.93 22.93 124.66 49.14 33.90 178.02 76.91 608.96 234.27 1 564.52 381.64 4 049.94 732.41 8 279.43 452.76 0.98 1.17 1.40 15 20.77 49.05 7.35 66.27 42.76 24.74 203.60 67.29 480.11 238.67 1 070.49 269.35 2 901.66 523.61 5 965.72 210.94 0.67 0.97 3.19 16 27.27 56.87 8.47 82.12 42.02 22.42 206.50 68.52 482.02 230.76 1 034.77 285.59 3 473.41 679.99 6 700.73 239.17 0.60 0.91 2.39 17 22.45 79.56 9.05 62.81 61.24 27.64 322.85 175.07 1 925.57 637.42 2 596.69 464.07 3 994.08 562.54 10 941.04 262.75 0.48 1.37 4.23 -
[1] Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region, 1985. Regional Geological of Guangxi Zhuang Autonomous Region. Geological Publishing House, Beijing, 1-853 (in Chinese). [2] Cai, Z.H., Xu, Z.Q., He, B.Z., et al., 2012. Age and Tectonic Evolution of Ductile Shear Zones in the Eastern Tianshan-Beishan Orogenic Belt. Acta Petrologica Sinica, 28(6): 1875-1895 (in Chinese with English abstract). http://www.oalib.com/paper/1473974 [3] Chen, B.L., Li, Z.J., Xie, Y.X., 1997. Analyses of the Rock Magnetic Fabric, Deformation and Kinematics in the Qifengcha-Liulimiao Area, Huairou County, Beijing. Acta Geoscientia Sinica, 18(2): 134-141 (in Chinese with English abstract). http://www.jourlib.org/paper/1557298 [4] Chen, F., Yan, D.P., Qiu, L., et al., 2019. The Brittle-Ductile Shearing and Uranium Metallogenesis of the Motianling Dome in the Southwestern Jiangnan Orogenic Belt. Acta Petrologica Sinica, 45(9): 3119-3160 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201909002.htm [5] Chen, M.H., Liang, J.C., Zhang, G.L., et al., 2006. Lithofacies Paleogeographic Constraints of Southwestern Boundary between Yangtze and Cathaysian Plates in Caledonian. Geological Journal of China Universities, 12(1): 111-122 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_gxdzxb200601013.aspx [6] Cheng, Y.Q., 1994. Regional Geology in China. Geological Publishing House, Beijing, 448-476 (in Chinese). [7] Cui, X.Z., Jiang, X.S., Deng, Q., et al., 2016. Zircon U-Pb Geochronological Results of the Danzhou Group in Northern Guangxi and Their Implications for the Neoproterozoic Rifting Stages in South China. Geotectonica et Metallogenia, 40(5): 1049-1063 (in Chinese with English abstract). http://www.researchgate.net/publication/309739805_Zircon_U-Pb_Geochronological_Results_of_the_Danzhou_Group_in_Northern_Guangxi_Province_and_Their_Implications_for_the_Neoproterozoic_Rifting_Stages_in_South_China/download [8] Gao, L.Z., Lu, J.P., Ding, X.Z., et al., 2013. Zircon U-Pb Dating of Neoproterozoic Tuff in South Guangxi and Its Implications for Stratigraphic Correlation. Geology in China, 40(5): 1443-1452 (in Chinese with English abstract). http://www.researchgate.net/publication/279648402_Zircon_U-Pb_dating_of_Neoproterozoic_tuff_in_South_Gaungxi_and_its_implications_for_stratigraphic_correlation [9] Ge, W.C., Li, X.H., Li, Z.X., et al., 2000. Geochemical Studies on Two Types of Neoproterozoic Peraluminous Granitoids in Northern Guangxi. Geochimica, 30(1): 24-34 (in Chinese with English abstract). http://www.researchgate.net/publication/284324481_Geochemical_studies_on_two_types_of_Neoproterozoic_peraluminous_granitoids_in_northern_Guangxi [10] Ge, W.C., Li, X.H., Li, Z.X., et al., 2001. Mafic Intrusions in Longsheng Area: Age and Its Geological Implications. Chinese Journal of Geology, 36(1): 112-118 (in Chinese with English abstract). http://www.researchgate.net/publication/291799013_Mafic_intrusions_in_Longsheng_area_Age_and_its_geological_implications [11] Guo, A.L., 2017. Tectonic Characteristics and Rheological Parameter Estimation of Yuanbaoshan Ductile Shear Zone (Dissertation). Guilin University of Technology, Guilin (in Chinese with English abstract). [12] He, Q., Zheng, Y. F., 2019. High-Temperature/Low-Pressure Metamorhism in a Continental Rift in the Northern Margin of the South China Block. Earth Science, 44(12): 4186-4194 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912030.htm [13] Hong, D.W., Xie, X.L., Zhang, J.S., 2002. Geological Significance of the Hangzhou-Zhuguangshan-Huashan High-εNd Granite Belt. Geological Bulletin of China, 21(6): 348-354 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD200206012.htm [14] Hoskin, P.W.Q., 2005. Trace Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. doi: 10.1016/j.gca.2004.07.006 [15] Huang, J.Z., 2018. Deformation Characteristics and Tectonic Significance of Sanmen Ductile Shear Zone in the Area of Northern Guangxi (Dissertation). Guilin University of Technology, Guilin (in Chinese with English abstract). [16] Jin, C., 2010. Thrust and Decollement System of the Xuefeng Intracontinental Tectonic System (Dissertation). Ocean University of China, Qingdao (in Chinese with English abstract). [17] Li, C.M., 2009. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons. Geological Survey and Research, 33(3): 161-174 (in Chinese with English abstract). http://www.researchgate.net/publication/284065585_A_review_on_the_minerageny_and_situ_microanalytical_dating_techniques_of_zircons [18] Li, C.M., Li, T., Deng, J.F., et al., 2012. LA-ICP-MS Zircon U-Pb Age of the Brittle-Ductile Shear Zones in Hougou Gold Orefield, Northwestern Hebei Province. Geotectonica et Metallogenia, 36(2): 157-167 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DGYK201202004&dbcode=CJFD&year=2012&dflag=pdfdown [19] Li, S.S., Feng, Z.H., Qin, Y., et al., 2020. The Relationship between Ductile Shear Zone and Mineralization in the Jiufeng Sn Deposit, Northern Guangxi, South China: Evidence from Structural Analysis and Cassiterite U-Pb Dating. Ore Geology Reviews, 124: 1-13. http://www.sciencedirect.com/science/article/pii/S0169136820301785 [20] Li, X.H., 1999. U-Pb Zircon Ages of Granites from Northern Guangxi and Their Tectonic Significance. Geochimica, 28(1): 1-9 (in Chinese with English abstract). http://www.researchgate.net/publication/285510081_U-Pb_zircon_ages_of_granites_from_northern_Guangxi_and_their_tectonic_significance [21] Li, X.H., Li, W.X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201206001.htm [22] Lin, M.S., Peng, S.B., Jiang, X.F., et al., 2016. Geochemistry, Petrogenesis and Tectonic Setting of Neoproterozoic Mafic-Ultramafic Rocks from the Western Jiangnan Orogen, South China. Gondwana Research, 35: 338-356. doi: 10.1016/j.gr.2015.05.015 [23] Liu, Y.Z., Qin, Y., Feng, Z.H., et al., 2021. New Geochronology and Geochemical Data of the Longsheng Mafic-Ultramafic Suite in Northern Guangxi, China, and Their Implicaitons in Rodinia Breakup. Arabian Journal of Geosciences, 14(2): 1-18. doi: 10.1007/s12517-020-06360-0 [24] Ma, T.L., Wang, L.Q., Sun, L.Q., et al., 2003. Application of Magnetic Fabric Analysis to the Ductile Deformation Belt in the Tuwu Copper Deposit, East Tianshan, Xinjiang. Acta Geoscientica Sinica, 24(5): 449-452 (in Chinese with English abstract). [25] Ma, X., 2018. The Early Paleozoic Structural Deformation Mechanism and Evolution Proccess in East Guizhou and Its Neighbor Area (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [26] Qin, Y., Feng, Z.H., Hu, R.G., et al., 2018. Timing of the Early Paleozoic Yangtze and Cathaysian Convergence: Constraint from U-Pb Geochronology of Hydrothermal Zircons from Mafic Mylonite within the Shoucheng-Piaoli Ductile Shear Zone, Northern Guangxi. Acta Geologica Sinica, 92(5): 2030-2031. doi: 10.1111/1755-6724.13695 [27] Shi, S., 1976. A Discussion on the Isotopic Geochronology of the Motianling Massif. Geochimica, (4): 297-308 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX197604010.htm [28] Shu, L.S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract). http://www.cqvip.com/QK/95894A/201207/42680096.html [29] Shu, L.S., Chen, X.Y., Lou, F.S., 2020. Pre-Jurassic Tectonics of the South China. Acta Geologica Sinica, 94(2): 333-360 (in Chinese with English abstract). [30] Stipp, M., Stunitz, H., Heilbronner, R., 2002. The Eastern Tonale Fault Zone: A "Natural Laboratory" for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700℃. Journal of Structural Geology, 24(12): 1861-1884. doi: 10.1016/S0191-8141(02)00035-4 [31] Tang, S.K., Ma, X., Yang, K.G., et al., 2014. Characteristics and Genesis of Two Tyeps of Tectonic Deformation during Caledonian in Eastern Guizhou and Northern Guangxi. Geoscience, 28(1): 109-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201401011.htm [32] Wang, W., Zhou, M.F., Yan, D.P., 2012a. Depositonal Age, Provenance, and Tectonic Setting of the Neoproterozoic Sibao Group, South-Eastern Yangtze Block, South China. Precambrian Research, (192-195): 107-124. http://www.onacademic.com/detail/journal_1000035433673210_6f46.html [33] Wang, X.L., Shu, L.S., Xing, G.F., et al., 2012b. Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from ca. 800-760 Ma Volcanic Rocks. Precambrian Research, 222: 404-423. http://www.researchgate.net/profile/Ming_Tang8/publication/241091270_Post-orogenic_extension_in_the_eastern_part_of_the_Jiangnan_orogen_Evidence_from_ca_800-760_Ma_volcanic_rocks/links/00b49530660a2d0ca7000000.pdf [34] Wang, X.L., Zhou, J.C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735 (in Chinese with English abstract). [35] Yin, F.G., Xu, X.S., Wan, F., et al., 2001. The Sedimentary Response to the Evolutionary Process of Caledonian Foreland Basin System in South China. Acta Geoscientica Sinica, 22(5): 425-428 (in Chinese with English abstract). http://www.researchgate.net/publication/281366839_The_sedimentary_response_to_the_evolutionary_process_of_Caledonian_foreland_basin_system_in_South_China [36] Zhao, J.H., Zhou, M.F., Yan, D.P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 39: 299-302. doi: 10.1130/G31701.1 [37] Zhang, C.L., Qin, Y., Feng, Z.H., et al., 2020. Chronological Characterisitics and Significance of Diaozhushan Diabase in Longsheng, Northern Guangxi. Journal of Guilin University of Technology, 40(1): 1-14 (in Chinese with English abstract). [38] Zhang, G.L., 2004. Kinematics and Dynamics of Pre-Devonian Tectonic Evolution at South Margin of Yangtze Block in North Guangxi (Dissertation). Central South University, Changsha (in Chinese with English abstract). [39] Zhang, G.W., Guo, A.L., Wang, Y.J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China: Earth Sciences, 43(10): 1553-1582 (in Chinese). [40] Zhang, S.B., Wu, P., Zheng, Y.F., 2019. Mafic Magmatic Records of Rodinia Amalgamation in the Northern Margin of the South China Block. Earth Science, 44(12): 4157-4166 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912026.htm [41] Zhang, X.F., 2015. Research on the Sibao Ductile Shear Zone, Northern Guangxi (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [42] Zhou, J.B., 2006. Age and Origin of Neoproterozoic Mafic Magmatism in Northern Guangxi-Western Hunan: In Response to the Break-up of Rodinia (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract). [43] Zhu, G., Wang, Y.S., Niu, M.L., et al., 2004. Synorogenic Movement of the Tan-Lu Fault Zone. Earth Science Frontiers, 11(3): 169-182 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200403023.htm [44] 广西壮族自治区地质局, 1985. 广西壮族自治区区域地质志. 北京: 地质出版社, 1-853. [45] 蔡志慧, 许志琴, 何碧竹, 等, 2012. 东天山-北山造山带中大型韧性剪切带属性及形成演化时限与过程. 岩石学报, 28(6): 1875-1895. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206014.htm [46] 陈柏林, 李中坚, 谢艳霞, 1997. 北京怀柔崎峰茶-琉璃庙地区岩石磁组构特征及其构造意义. 地球学报, 18(2): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB702.003.htm [47] 陈锋, 颜丹平, 邱亮, 等, 2019. 江南造山带西南段摩天岭穹隆脆韧性剪切与铀成矿作用. 岩石学报, 45(9): 3119-3160. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909002.htm [48] 陈懋弘, 梁金城, 张桂林, 等, 2006. 加里东期扬子板块与华夏板块西南段分界线的岩相古地理制约. 高校地质学报, 12(1): 111-122. doi: 10.3969/j.issn.1006-7493.2006.01.013 [49] 程裕祺, 1994. 中国区域地质概论. 北京: 地质出版社, 448-476. [50] 崔晓庄, 江新胜, 邓奇, 等, 2016. 桂北地区丹洲群锆石U-Pb年代学及对华南新元古代裂谷作用期次的启示. 大地构造与成矿学, 40(5): 1049-1063. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201605014.htm [51] 高林志, 陆济璞, 丁孝忠, 等, 2013. 桂北地区新元古代地层凝灰岩锆石U-Pb年龄及地质意义. 中国地质, 40(5): 1443-1452. doi: 10.3969/j.issn.1000-3657.2013.05.009 [52] 葛文春, 李献华, 李正祥, 等, 2000. 桂北新元古代两类过铝花岗岩的地球化学研究. 地球化学, 30(1): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101003.htm [53] 葛文春, 李献华, 李正祥, 等, 2001. 龙胜地区镁铁质侵入体: 年龄及其地质意义. 地质科学, 36(1): 112-118. doi: 10.3321/j.issn:0563-5020.2001.01.013 [54] 郭阿龙, 2017. 桂北元宝山韧性剪切带构造特征及流变参数估算(硕士学位论文). 桂林: 桂林理工大学. [55] 贺强, 郑永飞, 2019. 华南陆块北缘大陆裂断带高温低压变质作用. 地球科学, 44(12): 4186-4194. doi: 10.3799/dqkx.2019.267 [56] 洪大卫, 谢锡林, 张季生, 2002. 试析杭州-诸广山-花山高εNd值花岗岩带的地质意义. 地质通报, 21(6): 348-354. doi: 10.3969/j.issn.1671-2552.2002.06.012 [57] 黄靖哲, 2018. 桂北三门韧性剪切带的特征及构造意义(硕士学位论文). 桂林: 桂林理工大学. [58] 金宠, 2010. 雪峰陆内构造系统逆冲推滑体系(博士学位论文). 青岛: 中国海洋大学. [59] 李长民, 2009. 锆石成因矿物学与锆石微区定年综述. 地质调查与研究, 33(3): 161-174. doi: 10.3969/j.issn.1672-4135.2009.03.001 [60] 李长民, 李拓, 邓晋福, 等, 2012. 冀西北后沟金矿田脆韧性剪切带年代学新证据: 来自LA-ICP-MS锆石U-Pb年龄的发现. 大地构造与成矿学, 36(2): 157-167. doi: 10.3969/j.issn.1001-1552.2012.02.002 [61] 李献华, 1999. 广西北部新元古代花岗岩锆石U-Pb年代学及其构造意义. 地球化学, 28(1): 1-9. doi: 10.3321/j.issn:0379-1726.1999.01.001 [62] 李献华, 李武显, 何斌, 2012. 华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验. 矿物岩石地球化学通报, 31(6): 543-559. doi: 10.3969/j.issn.1007-2802.2012.06.002 [63] 马天林, 王连庆, 孙立倩, 等, 2003. 磁组构分析在韧性变形带研究中的应用. 地球学报, 24(5): 449-452. doi: 10.3321/j.issn:1006-3021.2003.05.010 [64] 马筱, 2018. 黔东及其邻区早古生代构造变形机制及其演化过程(博士学位论文). 武汉: 中国地质大学. [65] 施实, 1976. 前寒武摩天岭岩体同位素地质年龄讨论. 地球化学, (4): 297-308. doi: 10.3321/j.issn:0379-1726.1976.04.012 [66] 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003 [67] 舒良树, 陈祥云, 楼法生, 2020. 华南前侏罗纪构造. 地质学报, 94(2): 333-360. doi: 10.3969/j.issn.0001-5717.2020.02.001 [68] 汤世凯, 马筱, 杨坤光, 等, 2014. 黔东桂北加里东期两类构造变形特征与成因机制探讨. 现代地质, 28(1): 109-118. doi: 10.3969/j.issn.1000-8527.2014.01.010 [69] 王孝磊, 周金城, 陈昕, 等, 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714-735. doi: 10.3969/j.issn.1007-2802.2017.05.003 [70] 尹福光, 许效松, 万方, 等, 2001. 华南地区加里东期前陆盆地演化过程中的沉积响应. 地球学报, 22(5): 425-428. doi: 10.3321/j.issn:1006-3021.2001.05.009 [71] 张成龙, 秦亚, 冯佐海, 等, 2020. 桂北龙胜吊竹山辉绿岩年代学及其地质意义. 桂林理工大学学报, 40(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX202001001.htm [72] 张桂林, 2004. 扬子陆块南缘(桂北地区)前泥盆纪构造演化的运动学和动力学研究(博士学位论文). 长沙: 中南大学. [73] 张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm [74] 张少兵, 吴鹏, 郑永飞, 2019. 罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录. 地球科学, 44(12): 4157-4166. doi: 10.3799/dqkx.2019.252 [75] 张雪锋, 2015. 桂北四堡韧性剪切带研究(博士学位论文). 北京: 中国地质大学. [76] 周继彬, 2006. 桂北-湘西新元古代镁铁质岩的形成时代和成因——对Rodinia超大陆裂解的响应(博士学位论文). 广州: 中国科学院广州地球化学研究所. [77] 朱光, 王勇生, 牛漫兰, 等, 2004. 郯庐断裂带的同造山运动. 地学前缘, 11(3): 169-182. doi: 10.3321/j.issn:1005-2321.2004.03.018