Development Characteristics and Geological Significance of High Density Methane Inclusions in the Longmaxi Member I in the Ningxi Area, Southern Sichuan Basin
-
摘要: 作为川南志留系页岩气重点拓展区,宁西地区经历多次断裂活动,龙一段普遍发育方解石脉体,同时由于热演化程度极高,出现石墨化现象,致使页岩气富集规律不明.本次研究以区内重点探井——宁西202井的龙一段为研究对象,通过系统岩心描述、薄片镜下观察、阴极发光、激光拉曼光谱和显微测温等实验分析,进行了古温压恢复研究.研究表明:龙一段主体分布高角度方解石脉体(A类),局部发育顺层脉体(B类).A类脉体中主要发育高密度甲烷包裹体、部分样品出现特殊的沥青包裹体.沥青包裹体中沥青的拉曼Ro(RmcRo)为3.52%~4.16%,处于过成熟至石墨化阶段.甲烷拉曼散射峰介于2 910.711 2~2 912.495 1 cm—1,均一温度介于-99.8~-96.3℃.通过拉曼参数位移法和显微测温法分析得出的密度值分别介于0.253 6~0.344 5 g/cm3和0.291 6~0.303 2 g/cm3,呈典型的高密度特征.综上,高密度甲烷包裹体可能捕获于燕山构造运动抬升初期,处于超压状态,指示页岩系统封闭性较好,有利于页岩气的富集.Abstract: As a key exploration area for Silurian shale gas in southern Sichuan basin, Ningxi area experienced multiple fracture activities. Calcite veins are generally developed in the Longmaxi Member I. At the same time, graphitization occurs due to the extremely high degree of thermal evolution, resulting in shale gas enrichment pattern which remains unknown. This paper presents an estimation of paleotemperatures and paleopressures of the key exploration well in the region-the Well Ningxi 202 of Longmaxi Member I, through integrated analyses on systematic core description, thin section microscopic observation, cathodoluminescence observation, laser Raman spectroscopy, and microscopic temperature measurement. Results show that: High-angle calcite veins (type A) are distributed in the main body of the Longmaxi Member I, and bedding veins (type B) are locally developed. Methane inclusions are mainly developed in Type A veins, and some samples show special bitumen inclusions. The RmcRo of bitumen in bitumen inclusions are 3.52%-4.16%, indicating that they are in the overmature to graphitization. The methane Raman scattering peak is between 2 910.711 2-2 912.495 1 cm-1, with the homogenization temperature between -99.8 to -96.3℃. The density obtained by Raman parameter displacement and microscopic temperature measurement ranged from 0.253 6-0.344 5 g/cm3 and 0.291 6-0.303 2 g/cm3, showing typical high-density characteristics. In conclusion, the high density methane inclusions may be trapped in the early stage of Yanshan tectonic movement and in overpressure state, indicating that the shale system has good sealing property and is conducive to shale gas enrichment.
-
图 1 研究区地质概况图(a);川南地区龙一段Ro等值线图(b);宁西202井岩性柱状图(c)
图a据马永生等(2010)修改
Fig. 1. Geological survey map of the research area (a), Ro contour map of the Longmaxi Member I of southern Sichuan (b), lithologic log of Well Ningxi-202 (c)
图 11 宁西地区窝深1井埋藏‒抬升热演化史
据吴斌和邱楠生(2013)修改
Fig. 11. Thermal evolution history of burial-uplifting for Well Woshen-1 in Ningxi area
表 1 宁西202井龙一段方解石脉体发育特征
Table 1. Development characteristics of calcite vein samples from Longmaxi Member I in Well Ningxi-202
样品编号 深度(m) 脉体产状 脉体洁净度 脉体分类 晶粒大小分类 发育包裹体类型 盐水 甲烷 沥青 沥青甲烷两相 NX-01 3 889.82 高角度裂缝 较脏 A类 细晶颗粒 √ √ √ √ NX-02 3 889.91 粗晶嵌晶 √ NX-03 3 922.81 顺层 较干净 B类 粗晶为主 √ NX-04 3 922.90 表 2 宁西202井龙一段甲烷包裹体均一温度、密度及捕获压力计算结果
Table 2. Calculation results of homogenized temperatures, calculated densities and trapping pressures of methane inclusions in calcite veins from Longmaxi Member I in Well Ningxi-202
样品号 测点数 均一相态 均一温度(℃) 密度(g cm-3) 气液两相盐水包裹体均一温度213 ℃条件下 捕获压力(MPa) NX-01 10 液相 -99.80~-96.80 0.293 3~0.303 2 143.06~155.15 NX-02 10 液相 -99.20~-96.30 0.291 6~0.301 3 140.98~152.96 表 3 宁西202井龙一段甲烷包裹体拉曼散射峰波数、密度及捕获压力计算结果
Table 3. Calculation results of measured Raman scatter peak positions, calculated densities and trapping pressures of methane in clusions from Longmaxi Member I in Well Ningxi-202
测定包裹体的编号 Ne1的波数(cm-1) Ne3的波数(cm-1) vmeas (cm-1) vcorr (cm-1) D (cm-1) ρ (g/cm3) 捕获压力(MPa) NX-01-1 2 833.110 9 3 004.174 4 2 911.912 7 2 911.237 0 -7.503 0 0.316 6 173.86 NX-01-2 2 833.102 4 3 004.256 3 2 911.686 4 2 910.974 1 -7.765 9 0.330 5 195.35 NX-01-3 2 832.232 2 3 003.542 6 2 911.712 1 2 911.791 7 -6.948 3 0.288 2 137.11 NX-01-4 2 832.461 6 3 003.541 3 2 911.636 6 2 911.602 2 -7.137 8 0.297 8 148.51 NX-01-5 2 832.132 2 3 003.210 0 2 911.711 1 2 912.007 0 -6.733 0 0.277 5 125.42 NX-01-6 2 831.782 3 3 002.982 1 2 910.200 0 2 910.784 8 -7.955 2 0.340 6 212.75 NX-01-7 2 831.239 9 3 003.212 2 2 910.721 3 2 911.462 3 -7.277 7 0.305 0 157.66 NX-01-8 2 831.239 3 3 003.013 2 2 910.626 1 2 911.466 9 -7.273 1 0.304 7 157.35 NX-01-9 2 832.330 1 3 003.410 0 2 910.852 7 2 910.949 7 -7.790 3 0.331 8 197.49 NX-01-10 2 831.810 0 3 003.222 2 2 911.575 5 2 912.026 4 -6.713 6 0.276 5 124.44 NX-02-1 2 832.230 0 3 003.392 2 2 911.651 1 2 911.807 0 -6.933 0 0.287 4 136.24 NX-02-2 2 832.352 9 3 003.385 8 2 911.149 1 2 911.246 8 -7.493 2 0.316 1 173.12 NX-02-3 2 833.230 6 3 004.012 8 2 911.393 6 2 910.738 9 -8.001 1 0.343 1 217.24 NX-02-4 2 832.231 9 3 003.210 0 2 911.464 4 2 911.710 5 -7.029 5 0.292 3 141.87 NX-02-5 2 833.000 5 3 003.210 0 2 911.660 2 2 911.522 0 -7.218 0 0.301 9 153.68 NX-02-6 2 833.169 4 3 004.000 1 2 912.240 4 2 911.622 7 -7.117 3 0.296 8 147.23 NX-02-7 2 832.192 2 3 003.219 1 2 911.613 1 2 911.874 5 -6.865 5 0.284 1 132.47 NX-02-8 2 830.736 1 3 003.007 2 2 911.399 7 2 912.495 1 -6.244 9 0.253 6 103.12 NX-02-9 2 832.230 0 3 003.412 5 2 911.491 3 2 911.637 1 -7.102 9 0.296 0 146.33 NX-02-10 2 833.231 6 3 004.219 9 2 911.469 9 2 910.711 2 -8.028 8 0.344 5 220.00 注:捕获压力为气液两相盐水包裹体均一温度213 ℃条件下的计算结果. -
[1] Beeskow, B., Rankin, A. H., Murphy, P. J., et al., 2005. Mixed CH4-CO2 Fluid Inclusions in Quartz from the South Wales Coalfield as Suitable Natural Calibration Standards for Microthermometry and Raman Spectroscopy. Chemical Geology, 223(1-3): 3-15. https://doi.org/10.1016/j.chemgeo.2005.01.028 [2] Chen, Y., Zhou, Y. Q., Zhang, L. P., et al., 2007. Discovery of CH4-Rich High-Pressure Fluid Inclusions Hosted in Analcime from Dongying Depression, China. Journal of Petroleum Science and Engineering, 56(4): 311-314. https://doi.org/10.1016/j.petrol.2006.10.005 [3] Duan, Z. H., Møller, N., Weare, J. H, 1992a. An Equation of State for the CH4-CO2-H2O System: I. Pure Systems from 0 to 1 000℃ and 0 to 8 000 Bar. Geochimica et Cosmochimica Acta, 56(7): 2605-2617. https://doi.org/10.1016/0016-7037(92)90347-L [4] Duan, Z. H., Møller, N., Weare, J. H., 1992b. An Equation of State for the CH4-CO2-H2O System: II. Mixtures from 50 to 1 000℃ and 0 to 1 000 Bar. Geochimica et Cosmochimica Acta, 56(7): 2619-2631. https://doi.org/10.1016/0016-7037(92)90348-M [5] Fabre, D., Couty, F., 1986. Etude, Par Spectroscopie Raman, Du Methane Comprime Jusqu'a 3 kbar. Application a La Mesure de Pression Dans Les Inclusions Fluides Contenues Dans Les Mineraux. Comptes Rendus, 303(Ⅱ), 1305-1308. http://www.researchgate.net/publication/280016864_Etude_par_spectroscopie_Raman_du_methane_comprime_jusqu'a_3_kbar_Application_a_la_mesure_de_pression_dans_les_inclusions_fluides_contenues_dans_les_mineraux [6] Feng, Z. Q., Liu, D., Huang, S. P., et al., 2016. Carbon Isotopic Composition of Shale Gas in the Silurian Longmaxi Formation of the Changning Area, Sichuan Basin. Petroleum Exploration and Development, 43(5): 705-713 (in Chinese with English abstract). [7] Gao, J., He, S., Yi, J. Z., 2015. Discovery of High Density Methane Inclusions in Jiaoshiba Shale Gas Field and Its Significance. Oil & Gas Geology, 36(3): 472-480 (in Chinese with English abstract). http://www.researchgate.net/publication/282381014_Discovery_of_high_density_methane_inclusions_in_Jiaoshiba_shale_gas_field_and_its_significance [8] Gao, J., Zhang, J. K., He, S., et al., 2019. Overpressure Generation and Evolution in Lower Paleozoic Gas Shales of the Jiaoshiba Region, China: Implications for Shale Gas Accumulation. Marine and Petroleum Geology, 102: 844-859. https://doi.org/10.1016/j.marpetgeo.2019.01.032 [9] Guo, T. L., 2016. Discovery and Characteristics of the Fuling Shale Gas Field and Its Enlightenment and Thinking. Earth Science Frontiers, 23(1): 29-43 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201601003 [10] Guo, X. S., Hu, D. F., Huang, R. C., et al., 2020. Feature of Paleo-Oil Pools in the Sinian Dengying Formation, Northeastern Sichuan Basin, and Its Significance to Exploration. Oil & Gas Geology, 41(4): 673-683 (in Chinese with English abstract). [11] Guo, X. W., Liu, K. Y., Jia, C. Z., et al., 2016. Constraining Tectonic Compression Processes by Reservoir Pressure Evolution: Overpressure Generation and Evolution in the Kelasu Thrust Belt of Kuqa Foreland Basin, NW China. Marine and Petroleum Geology, 72: 30-44. https://doi.org/10.1016/j.marpetgeo.2016.01.015 [12] Hansen, S. B., Berg, R. W., 2009. Raman Spectroscopic Studies of Methane Gas Hydrates. Applied Spectroscopy Reviews, 44(2): 168-179. https://doi.org/10.1080/05704920802352614 [13] Hao, F., Zou, H. Y., 2013. Cause of Shale Gas Geochemical Anomalies and Mechanisms for Gas Enrichment and Depletion in High-Maturity Shales. Marine and Petroleum Geology, 44: 1-12. https://doi.org/10.1016/j.marpetgeo.2013.03.005 [14] Huang, S. J., Qing, H. R., Hu, Z. W., et al., 2008. Cathodoluminescence and Diagenesis of the Carbonate Rocks in Feixianguan Formation of Triassic, Eastern Sichuan Basin of China. Earth Science, 33(1): 26-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200801007.htm [15] Hurai, V., Marko, F., Tokarski, A. K., et al., 2006. Fluid Inclusion Evidence for Deep Burial of the Tertiary Accretionary Wedge of the Carpathians. Terra Nova, 18(6): 440-446. https://doi.org/10.1111/j.1365-3121.2006.00710.x [16] Li, W., He, S., Zhang, B. Q., et al., 2018. Characteristics of Paleo-Temperature and Paleo-Pressure of Fluid Inclusions in Shale Composite Veins of Longmaxi Formation at the Western Margin of Jiaoshiba Anticline. Acta Petrolei Sinica, 39(4): 402-415 (in Chinese with English abstract). [17] Lin, F., Bodnar, R. J., Becker, S. P., 2007. Experimental Determination of the Raman CH4 Symmetric Stretching (Ν1) Band Position from 1-650 Bar and 0.3-22℃: Application to Fluid Inclusion Studies. Geochimica et Cosmochimica Acta, 71(15): 3746-3756. https://doi.org/10.1016/j.gca.2007.05.016 [18] Liu, B., 2005. The Thermodynamic Simulation of Hydrocarbon Inclusions. Science Press, Beijing, 25-26 (in Chinese). [19] Liu, B., Shen. K., 1999. The Thermodynamic Simulation of Fluid Inclusions. Geological Publishing House, Beijing (in Chinese). [20] Liu, D. H., Dai, J. X., Xiao, X. M., et al., 2010. High Density Methane Inclusions in Puguang Gasfield: Discovery and a T-P Genetic Study. Chinese Science Bulletin, 55(Z1): 359-366 (in Chinese with English abstract). [21] Liu, D. H., Xiao, X. M., Tian, H., et al., 2009. Identification of Natural Gas Origin Using the Characteristics of Bitumen and Fluid Inclusions. Petroleum Exploration and Development, 36(3): 375-382 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=30476401 [22] Liu, D. H., Xiao, X. M., Tian, H., et al., 2013. Sample Maturation Calculated Using Raman Spectroscopic Parameters for Solid Organics: Methodology and Geological Applications. Chinese Science Bulletin, 58(13): 1228-1241 (in Chinese with English abstract). doi: 10.1360/csb2013-58-13-1228 [23] Liu, H. L., Wang, H. Y., Fang, C. H., et al., 2016. The Formation Mechanism of Over-Pressure Reservoir and Target Screening Index of the Marine Shale in the South China. Earth Science Frontiers, 23(2): 48-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201602008.htm [24] Liu, L., He, S., Zhai, G. Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911001.htm [25] Lu, W. J., Chou, I. M., Burruss, R. C., et al., 2007. A Unified Equation for Calculating Methane Vapor Pressures in the CH4-H2O System with Measured Raman Shifts. Geochimica et Cosmochimica Acta, 71(16): 3969-3978. https://doi.org/10.1016/j.gca.2007.06.004 [26] Ma, X. H., 2017. A Golden Era for Natural Gas Development in the Sichuan Basin. Natural Gas Industry, 37(2): 1-10 (in Chinese with English abstract). http://www.onacademic.com/detail/journal_1000040094775510_b86d.html [27] Ma, X. H., Xie, J., Yong, R., et al., 2020. Geological Characteristics and High Production Control Factors of Shale Gas Reservoirs in Silurian Longmaxi Formation, Southern Sichuan Basin, SW China. Petroleum Exploration and Development, 47(5): 841-855 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380420601057 [28] Ma, Y. S., Cai, X. Y., Zhao, P. R., et al., 2010. Distribution and Further Exploration of the Large-Medium Sized Gas Fields in Sichuan Basin. Acta Petrolei Sinica, 31(3): 347-354 (in Chinese with English abstract). doi: 10.1038/aps.2009.204 [29] Seitz, J. C., Pasteris, J. D., Chou, I. M., 1996. Raman Spectroscopic Characterization of Gas Mixtures; II, Quantitative Composition and Pressure Determination of the CO2-CH4 System. American Journal of Science, 296(6): 577-600. https://doi.org/10.2475/ajs.296.6.577 [30] Thieu, V., Subramanian, S., Colgate, S. O., et al., 2000. High-Pressure Optical Cell for Hydrate Measurements Using Raman Spectroscopy. Annals of the New York Academy of Sciences, 912(1): 983-992. https://doi.org/10.1111/j.1749-6632.2000.tb06853.x [31] Wang, Y. M., Li, X. J., Chen, B., et al., 2018. Lower Limit of Thermal Maturity for the Carbonization of Organic Matter in Marine Shale and Its Exploration Risk. Petroleum Exploration and Development, 45(3): 385-395 (in Chinese with English abstract). [32] Wang, Y. M., Li, X. J., Wang, H., et al., 2019. Development Characteristics of Concretions in the Longmaxi Formation of Lower Silurian in the Sichuan Basin and the Indicating Significance of Their Depositional Environment. Natural Gas Industry, 39(10): 10-21 (in Chinese with English abstract). [33] Wang, Y. M., Li, X. J., Wang, H., et al., 2020. Prediction of Organic Matter Carbonization Zones for Lower Silurian Longmaxi Formation in Middle-Upper Yangtze Region. Natural Gas Geoscience, 31(2): 151-162 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2468256X20300286 [34] Wu, B., Qiu, N. S., 2013. Relationship between Evolution of Temperature-Pressure and Natural Gas Accumulation in the Southern Sichuan, China. Journal of China Coal Society, 38(5): 840-844 (in Chinese with English abstract). [35] Xie, X. N., Hao, F., Lu, Y. C., et al., 2017. Differential Enrichment Mechanism and Key Technology of Shale Gas in Complex Areas of South China. Earth Science, 42(7): 1045-1056 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707001.htm [36] Yang, H. Z., Zhao, S. X., Liu, Y., et al., 2019. Main Controlling Factors of Enrichment and High-Yield of Deep Shale Gas in the Luzhou Block, Southern Sichuan Basin. Natural Gas Industry, 39(11): 55-63 (in Chinese with English abstract). [37] Yang, P., Wang, Z. J., Yu, Q., et al., 2019. An Resources Potential Analysis of Wufeng-Longmaxi Formation Shale Gas in the Southwestern Margin of Sichuan Basin. Geology in China, 46(3): 601-614 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201903012.htm [38] Yang, Y., Wang, B., Cao, Z. C., et al., 2021. Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low-Uplift, Tarim Basin. Earth Science, 46(6): 2246-2257 (in Chinese with English abstract). [39] Zhang, J. L., Qiao, S. H., Lu, W. J., et al., 2016. An Equation for Determining Methane Densities in Fluid Inclusions with Raman Shifts. Journal of Geochemical Exploration, 171: 20-28. https://doi.org/10.1016/j.gexplo.2015.12.003 [40] Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2016. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅱ). Petroleum Exploration and Development, 43(2): 166-178 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201602003.htm [41] 冯子齐, 刘丹, 黄士鹏, 等, 2016. 四川盆地长宁地区志留系页岩气碳同位素组成. 石油勘探与开发, 43(5): 705-713. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605006.htm [42] 高键, 何生, 易积正, 2015. 焦石坝页岩气田中高密度甲烷包裹体的发现及其意义. 石油与天然气地质, 36(3): 472-480. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503018.htm [43] 郭彤楼, 2016. 涪陵页岩气田发现的启示与思考. 地学前缘, 23(1): 29-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601005.htm [44] 郭旭升, 胡东风, 黄仁春, 等, 2020. 川东北地区胡家坝震旦系灯影组古油藏特征及其油气勘探意义. 石油与天然气地质, 41(4): 673-683. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004003.htm [45] 黄思静, 卿海若, 胡作维, 等, 2008. 川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用. 地球科学, 33(1): 26-34. http://www.earth-science.net/article/id/1729 [46] 李文, 何生, 张柏桥, 等, 2018. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征. 石油学报, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm [47] 刘斌, 2005. 烃类流体包裹体热力学. 北京: 科学出版社, 25-26. [48] 刘斌, 沈昆. 1999. 流体包裹体热力学. 北京: 地质出版社. [49] 刘德汉, 戴金星, 肖贤明, 等, 2010. 普光气田中高密度甲烷包裹体的发现及形成的温度和压力条件. 科学通报, 55(Z1): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2010Z1010.htm [50] 刘德汉, 肖贤明, 田辉, 等, 2009. 应用流体包裹体和沥青特征判别天然气的成因. 石油勘探与开发, 36(3): 375-382. doi: 10.3321/j.issn:1000-0747.2009.03.013 [51] 刘德汉, 肖贤明, 田辉, 等, 2013. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用. 科学通报, 58(13): 1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htm [52] 刘洪林, 王红岩, 方朝合, 等, 2016. 中国南方海相页岩气超压机制及选区指标研究. 地学前缘, 23(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602008.htm [53] 刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142 [54] 马新华, 2017. 四川盆地天然气发展进入黄金时代. 天然气工业, 37(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201702003.htm [55] 马新华, 谢军, 雍锐, 等, 2020. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素. 石油勘探与开发, 47(5): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm [56] 马永生, 蔡勋育, 赵培荣, 等, 2010. 四川盆地大中型天然气田分布特征与勘探方向. 石油学报, 31(3): 347-354. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003000.htm [57] 王玉满, 李新景, 陈波, 等, 2018. 海相页岩有机质炭化的热成熟度下限及勘探风险. 石油勘探与开发, 45(3): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803004.htm [58] 王玉满, 李新景, 王皓, 等, 2019. 四川盆地下志留统龙马溪组结核体发育特征及其沉积环境意义. 天然气工业, 39(10): 10-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201910002.htm [59] 王玉满, 李新景, 王皓, 等, 2020. 中上扬子地区下志留统龙马溪组有机质碳化区预测. 天然气地球科学, 31(2): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202002001.htm [60] 吴斌, 邱楠生, 2013. 川南地区温压演化与天然气成藏的关系. 煤炭学报, 38(5): 840-844. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305023.htm [61] 解习农, 郝芳, 陆永潮, 等, 2017. 南方复杂地区页岩气差异富集机理及其关键技术. 地球科学, 42(7): 1045-1056. doi: 10.3799/dqkx.2017.084 [62] 杨洪志, 赵圣贤, 刘勇, 等, 2019. 泸州区块深层页岩气富集高产主控因素. 天然气工业, 39(11): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201911013.htm [63] 杨平, 汪正江, 余谦, 等, 2019. 四川盆地西南缘五峰-龙马溪组页岩气资源潜力分析. 中国地质, 46(3): 601-614. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201903012.htm [64] 杨毅, 王斌, 曹自成, 等, 2021. 塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间. 地球科学, 46(6): 2246-2257. doi: 10.3799/dqkx.2020.200 [65] 邹才能, 董大忠, 王玉满, 等, 2016. 中国页岩气特征、挑战及前景(二). 石油勘探与开发, 43(2): 166-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602003.htm