Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage
-
摘要: 为了准确评价油气储藏水力压裂及岩爆等工程中岩石的脆性,总结了目前国内外已有的基于能量理论计算岩石脆性的方法,并指出了它们的局限性.综合考虑岩石峰前和峰后的能量演化特征,建立了一种基于全应力应变曲线的反映岩石变形破坏全过程的脆性指数评价方法,更加全面地描述岩石的脆性特征.为了验证新方法的合理性,收集了4组岩石力学试验对新指数进行检验.试验结果表明:由峰前指数与峰后指数合成的脆性指数都随着围压的增加而减小,低围压下煤岩和页岩2组均具有较强的脆性,而高围压下红砂岩和页岩1组的脆性明显减弱,表现了随围压增大岩石发生脆延转换的特性.在实际边坡工程中通过对板岩进行脆性评价,验证了本文所提出的脆性指数在工程应用中的合理性,该成果有望对岩石脆性评价提供参考.Abstract: Rock brittleness is one of the important mechanical properties of rock mass, which is so crucial for accurately evaluating hydraulic fracturing of oil and gas reservoir and rock bursting engineering. Existing methods of rock brittleness based on energy theory were summarized, and limitations of these indexes were analyzed in detail. In this study, energy evolution characteristics at pre-peak and post-peak stage are comprehensively considered. A new method to determine brittleness index of rocks based on complete stress-strain curves is established, which more reasonably describes the rock brittleness. To verify the rationality of the method, four sets of rock mechanics tests are collected to test the new index. Test results show that the new brittleness index gradually increases with the increase of confining pressure. Under low confining pressure, both coal and group 1 of shale exhibit strong brittleness, while under high confining pressure, the brittleness of red sandstone and group 2 of shale is obviously weakened, showing that the characteristics of brittle-ductile transition of rocks with increasing of the confining pressure. Then in actual slope engineering, the rationality of the new brittleness index is further validated by the tests of slate, which may be expected to offer some references for evaluating rock brittleness.
-
Key words:
- rock /
- brittleness index /
- stress-strain curve /
- energy evolution /
- engineering geology
-
表 1 汇总基于能量理论定义的脆性指数
Table 1. Summary of the existing methods based on energy theory
方法 公式 参数描述 来源 基于能量理论定义脆性指数 $B{I_1} = \frac{{{W_{{\rm{et}}}}}}{{{W_{{\rm{et}}}} + {W_{\rm{p}}}}}$ Wet=总弹性能;Wp=塑性能 Hucka and Das, 1974 $B{I_2} = \frac{{{W_{\rm{a}}}}}{{{W_{\rm{e}}}}}$ Wa=峰后附加能量;We=耗散的弹性能 Munoz et al., 2016 $B{I_3} = \frac{{{W_{{\rm{et}}}}}}{{{W_{\rm{p}}} + {W_{\rm{r}}}}}$ Wr=断裂能 Munoz et al., 2016 $B{I_4} = \frac{{{W_{{\rm{et}}}} + {W_{\rm{p}}}}}{{{W_{\rm{p}}} + {W_{\rm{r}}}}}$ Munoz et al., 2016 $B{I_5} = \frac{{{W_{{\rm{et}}}}}}{{{W_{\rm{r}}}}}$ Munoz et al., 2016 $B{I_6} = \frac{{{W_{\rm{p}}} + {W_{\rm{r}}}}}{{{W_{\rm{e}}} + {W_{\rm{p}}}}}$ Ai et al., 2016 $B{I_7} = \frac{{{W_{\rm{a}}}}}{{{W_{\rm{e}}} + {W_{\rm{p}}}}}$ Ai et al., 2016 $B{I_8} = \frac{{{W_{{\rm{eAB}}}}}}{{{W_{{\rm{eAB}}}} + {W_{{\rm{AB}}}}}}$ WeAB=峰后可释放弹性能;WAB=峰后吸收能 侯振坤,2018 $B{I_9} = \frac{{{W_{\rm{e}}}}}{{2{W_{\rm{r}}}}} + \frac{{{W_{\rm{e}}}}}{{2\left({{W_{{\rm{et}}}} + {W_{\rm{p}}}} \right)}}$ Rahimzadeh Kivi et al., 2018 $B{I_{10}} = \frac{{{W_{{\rm{AB}}}}}}{{{W_{{\rm{eAB}}}}}} + \frac{{{W_{\rm{A}}}}}{{U_{\rm{A}}^{\rm{e}}}}$ WA=峰值处总吸收能;UAe=峰值处弹性应变能 宋洪强等,2019 $B{I_{11}} = \frac{{\Delta {U_{\rm{e}}}}}{{U_{\rm{e}}^{\rm{p}}}} + \frac{{\Delta U_{\rm{e}}^{\rm{r}}}}{{U_{\rm{e}}^{\rm{p}}}}$ ΔUed表征残余强度处耗散能量的能力;Uep=峰值处弹性应变能;ΔUer表征峰后释放能量的能力 Zhang et al., 2018 $B{I_{12}} = 1 - \frac{{{E_{\rm{d}}}}}{{{E_{\rm{d}}} + {E_{\rm{G}}}}}$ Ed=抗震变形能;EG=产生新的破裂面所需能量 Feng et al., 2020 $B{I_{13}} = \frac{{U_{\rm{e}}^{\rm{p}}}}{{U_{\rm{e}}^{\rm{p}} + d{W_{\rm{d}}}}} \times \frac{{d{W_{\rm{e}}}}}{{d{W_{\rm{r}}}}}$ dWd=峰前耗散能 Li et al., 2019 $B{I_{14}} = \frac{{U_{\rm{e}}^{\rm{p}}}}{{U_{\rm{e}}^{\rm{p}} + d{W_{\rm{d}}}}} \times \left({1 - D_{\rm{e}}^{\rm{p}}} \right) \times \frac{{{\sigma _{\rm{p}}} - {\sigma _{\rm{r}}}}}{{{\sigma _{\rm{p}}}}}$ Dep=峰值处损伤系数;σp=峰值强度; σr=残余强度 Li et al., 2019 表 2 不同岩石的压缩试验力学参数
Table 2. Mechanical parameters of compression tests for different rocks
岩样 围压(MPa) 峰值强度(MPa) 损伤应力(MPa) 峰值应变(%) 残余应变(%) 红砂岩 0 69.79 14.44 0.593 0.791 10 132.35 65.78 0.914 1.230 20 173.26 133.16 1.156 1.472 30 211.76 158.82 1.423 1.976 40 251.87 202.14 1.680 2.342 煤岩 6 34.30 10.53 1.260 1.766 12 43.81 20.72 1.518 2.041 18 65.55 34.64 2.050 2.920 24 68.94 46.53 2.290 3.249 30 83.21 66.91 2.778 4.003 页岩1组 0 121.91 0 0.910 0.915 10 162.38 67.52 0.963 1.134 20 173.33 105.14 1.043 1.366 30 223.14 154.95 1.182 1.527 页岩2组 0 112.17 0 0.788 0.792 10 167.33 73.24 0.810 1.045 20 194.48 113.33 1.025 1.392 30 222.76 155.71 1.127 1.447 表 3 不同岩石的脆性指数
Table 3. Brittleness indexes for different rocks
岩样 红砂岩 煤岩 页岩1组 页岩2组 围压 0 10 20 30 40 6 12 18 24 30 0 10 20 30 0 10 20 30 BIpre 1.96 2.44 2.42 2.58 2.95 2.61 2.64 2.88 3.31 3.68 1.52 1.98 2.41 1.98 1.22 2.06 2.06 2.16 BIpost 0.69 0.50 0.37 0.30 0.24 0.53 0.49 0.42 0.32 0.20 0.99 0.71 0.48 0.44 0.99 0.59 0.47 0.44 BInew 1.36 1.22 0.89 0.78 0.71 1.38 1.30 1.20 1.05 0.72 1.51 1.41 1.45 0.88 1.21 1.12 0.98 0.96 表 4 料场边坡区岩石脆性指数
Table 4. Brittleness indexes in Liaochang slope areas
围压(MPa) 5 10 15 20 脆性指数BInew 2.409 1.926 1.799 1.081 -
[1] Ai, C., Zhang, J., Li, Y. W., et al., 2016. Estimation Criteria for Rock Brittleness Based on Energy Analysis during the Rupturing Process. Rock Mechanics and Rock Engineering, 49(12): 4681-4698. https://doi.org/10.1007/s00603-016-1078-x [2] Altindag, R., 2002. The Evaluation of Rock Brittleness Concept on Rotary Blast Hold Drills. Journal of the Southern African Institute of Mining and Metallurgy 102(1): 61-66. http://saimm.server291.com/Journal/v102n01p061.pdf [3] Bishop, A., 1967. Progressive Failure with Special Reference to the Mechanism Causing It. Proceedings of the GeoTechnical Conference, Oslo, 142-150. [4] Feng, R. H., Zhang, Y. H., Rezagholilou, A., et al., 2020. Brittleness Index: From Conventional to Hydraulic Fracturing Energy Model. Rock Mechanics and Rock Engineering, 53(2): 739-753. https://doi.org/10.1007/s00603-019-01942-1 [5] Fu, L., Shen, R. C., Pang, F., et al., 2019. Experiments on Friction and Non-Steady Slip for Shale. Earth Science, 44(11): 3783-3793 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911018.htm [6] Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911028.htm [7] Hou, Z. K., 2018. Research on Hydraulic Fracturing Tests and Mechanism of Crack Extension of Longmaxi Shale (Dissertation). Chongqing University, Chongqing (in Chinese with English abstract). [8] Hucka, V., Das, B., 1974. Brittleness Determination of Rocks by Different Methods. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11(10): 389-392. https://doi.org/10.1016/0148-9062(74)91109-7 [9] Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911029.htm [10] Li, L. C., Zhai, M. Y., Zhang, L. Y., et al., 2019. Brittleness Evaluation of Glutenite Based on Energy Balance and Damage Evolution. Energies, 12(18): 3421. https://doi.org/10.3390/en12183421 [11] Meng, F. Z., Zhou, H., Zhang, C. Q., et al., 2015. Evaluation Methodology of Brittleness of Rock Based on Post-Peak Stress-Strain Curves. Rock Mechanics and Rock Engineering, 48(5): 1787-1805. https://doi.org/10.1007/s00603-014-0694-6 [12] Munoz, H., Taheri, A., Chanda, E. K., 2016. Fracture Energy-Based Brittleness Index Development and Brittleness Quantification by Pre-Peak Strength Parameters in Rock Uniaxial Compression. Rock Mechanics and Rock Engineering, 49(12): 4587-4606. https://doi.org/10.1007/s00603-016-1071-4 [13] Rahimzadeh Kivi, I., Ameri, M., Molladavoodi, H., 2018. Shale Brittleness Evaluation Based on Energy Balance Analysis of Stress-Strain Curves. Journal of Petroleum Science and Engineering, 167: 1-19. https://doi.org/10.1016/j.petrol.2018.03.061 [14] Song, H. Q., Zuo, J. P., Chen, Y., et al., 2019. Revised Energy Drop Coefficient Based on Energy Characteristics in Whole Process of Rock Failure. Rock and Soil Mechanics, 40(1): 91-98 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201901006.htm [15] Tarasov, B., Potvin, Y., 2013. Universal Criteria for Rock Brittleness Estimation under Triaxial Compression. International Journal of Rock Mechanics and Mining Sciences, 59: 57-69. https://doi.org/10.1016/j.ijrmms.2012.12.011 [16] Wen, T., Tang, H. M., Huang, L., et al., 2020. Energy Evolution: A New Perspective on the Failure Mechanism of Purplish-Red Mudstones from the Three Gorges Reservoir Area, China. Engineering Geology, 264: 105350. https://doi.org/10.1016/j.enggeo.2019.105350 [17] Wen, T., Tang, H. M., Ma, J. W., et al., 2018. Evaluation of Methods for Determining Crack Initiation Stress under Compression. Engineering Geology, 235: 81-97. https://doi.org/10.1016/j.enggeo.2018.01.018 [18] Wen, T., Tang, H. M., Ma, J. W., et al., 2019. Deformation Simulation for Rock in Consideration of Initial Damage and Residual Strength. Earth Science, 44(2): 652-663 (in Chinese with English abstract). http://www.researchgate.net/publication/332625403_Deformation_Simulation_for_Rock_in_Consideration_of_Initial_Damage_and_Residual_Strength [19] Zhang, J., Ai, C., Li, Y. W., et al., 2017. Brittleness evaluation index based on energy variation in the whole process of rock failure. Chinese Journal of Rock Mechanics and Engineering, 36(6): 1326-1340 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201706004.htm [20] Zhang, J., Ai, C., Li, Y. W., et al., 2018. Energy-Based Brittleness Index and Acoustic Emission Characteristics of Anisotropic Coal under Triaxial Stress Condition. Rock Mechanics and Rock Engineering, 51(11): 3343-3360. https://doi.org/10.1007/s00603-018-1535-9 [21] Zhang, S., Tang, H. M., Liu, X., et al., 2018. Seepage and Instability Characteristics of Slope Based on Spatial Variation Structure of Saturated Hydraulic Conductivity. Earth Science, 43(2): 622-634 (in Chinese with English abstract). [22] Zhou, H., Meng, F. Z., Zhang, C. Q., et al., 2014. Quantitative Evaluation of Rock Brittleness Based on Stress-Strain Curve. Chinese Journal of Rock Mechanics and Engineering, 33(6): 1114-1122 (in Chinese with English abstract). http://www.researchgate.net/publication/312536550_Quantitative_evaluation_of_rock_brittleness_based_on_stress-strain_curve [23] 付利, 申瑞臣, 庞飞, 等, 2019. 页岩剪切摩擦与非稳态滑移特性实验. 地球科学, 44(11): 3783-3793. doi: 10.3799/dqkx.2019.189 [24] 葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589 [25] 侯振坤, 2018. 龙马溪组页岩水力压裂试验及裂缝延伸机理研究(博士学位论文). 重庆: 重庆大学. [26] 亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110 [27] 宋洪强, 左建平, 陈岩, 等, 2019. 基于岩石破坏全过程能量特征改进的能量跌落系数. 岩土力学, 40(1): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901006.htm [28] 温韬, 唐辉明, 马俊伟, 等, 2019. 考虑初始损伤和残余强度的岩石变形过程模拟. 地球科学, 44(2): 652-663. doi: 10.3799/dqkx.2018.212 [29] 张军, 艾池, 李玉伟, 等, 2017. 基于岩石破坏全过程能量演化的脆性评价指数. 岩石力学与工程学报, 36(6): 1326-1340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201706004.htm [30] 张抒, 唐辉明, 刘晓, 等, 2018. 基于饱和渗透系数空间变异结构的斜坡渗流及失稳特征. 地球科学, 43(2): 622-634. doi: 10.3799/dqkx.2017.617 [31] 周辉, 孟凡震, 张传庆, 等, 2014. 基于应力-应变曲线的岩石脆性特征定量评价方法. 岩石力学与工程学报, 33(6): 1114-1122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406004.htm