• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于峰前和峰后能量演化特征的岩石脆性评价

    温韬 张馨 孙金山 贾永胜 郎珉 贾文君 李德成 孙莉霞 唐辉明

    温韬, 张馨, 孙金山, 贾永胜, 郎珉, 贾文君, 李德成, 孙莉霞, 唐辉明, 2021. 基于峰前和峰后能量演化特征的岩石脆性评价. 地球科学, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342
    引用本文: 温韬, 张馨, 孙金山, 贾永胜, 郎珉, 贾文君, 李德成, 孙莉霞, 唐辉明, 2021. 基于峰前和峰后能量演化特征的岩石脆性评价. 地球科学, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342
    Wen Tao, Zhang Xin, Sun Jinshan, Jia Yongsheng, Lang Min, Jia Wenjun, Li Decheng, Sun Lixia, Tang Huiming, 2021. Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage. Earth Science, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342
    Citation: Wen Tao, Zhang Xin, Sun Jinshan, Jia Yongsheng, Lang Min, Jia Wenjun, Li Decheng, Sun Lixia, Tang Huiming, 2021. Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage. Earth Science, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342

    基于峰前和峰后能量演化特征的岩石脆性评价

    doi: 10.3799/dqkx.2020.342
    基金项目: 

    国家自然科学基金青年项目 编42002268号

    湖北省爆破工程重点实验室开放基金项目 HKLBEF202012

    中国地质大学岩土钻掘与防护教育部工程研究中心开放基金项目 202006

    长江大学地质资源与地质工程一流学科开放基金项目 2019KFJJ0818005

    详细信息
      作者简介:

      温韬(1990-), 男, 博士, 讲师, 主要从事工程地质力学研究, ORCID: 0000-0002-4588-3586.E-mail: wentao200840@sina.com

      通讯作者:

      贾永胜, E-mail: 422103951@qq.com

    • 中图分类号: P642

    Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage

    • 摘要: 为了准确评价油气储藏水力压裂及岩爆等工程中岩石的脆性,总结了目前国内外已有的基于能量理论计算岩石脆性的方法,并指出了它们的局限性.综合考虑岩石峰前和峰后的能量演化特征,建立了一种基于全应力应变曲线的反映岩石变形破坏全过程的脆性指数评价方法,更加全面地描述岩石的脆性特征.为了验证新方法的合理性,收集了4组岩石力学试验对新指数进行检验.试验结果表明:由峰前指数与峰后指数合成的脆性指数都随着围压的增加而减小,低围压下煤岩和页岩2组均具有较强的脆性,而高围压下红砂岩和页岩1组的脆性明显减弱,表现了随围压增大岩石发生脆延转换的特性.在实际边坡工程中通过对板岩进行脆性评价,验证了本文所提出的脆性指数在工程应用中的合理性,该成果有望对岩石脆性评价提供参考.

       

    • 图  1  能量分布曲线

      Fig.  1.  Energy distribution curve

      图  2  基于本文方法确定的不同岩石的脆性指数:(a)红砂岩;(b)煤岩;(c)页岩1组;(d)页岩2组

      Fig.  2.  The brittleness index of different rocks determined by the proposed method: (a) red sandstone; (b) coal; (c) group 1 of shale; (d) group 2 of shale

      图  3  归一化后脆性指数随围压的变化趋势

      Fig.  3.  Change trends of brittleness index with confining pressure after normalization

      图  4  不同方法确定的脆性指数的比较:(a)红砂岩;(b)煤岩;(c)页岩1组;(d)页岩2组

      Fig.  4.  Comparison of brittleness indexes determined by different methods: (a) red sandstone; (b) coal; (c) group 1 of shale; (d) group 2 of shale

      图  5  归一化后不同脆性指数的对比:(a)红砂岩;(b)煤岩;(c)页岩1组;(d)页岩2组

      Fig.  5.  Comparisons for different brittleness indexes after normalization: (a) red sandstone; (b) coal; (c) group 1 of shale; (d) group 2 of shale

      图  6  粉砂质板岩应力应变曲线

      Fig.  6.  Stress-strain curves of silty slates

      图  7  对比脆性指数不能考虑的情况

      Fig.  7.  Cases that cannot be considered by these brittleness indexes for comparison

      表  1  汇总基于能量理论定义的脆性指数

      Table  1.   Summary of the existing methods based on energy theory

      方法 公式 参数描述 来源
      基于能量理论定义脆性指数 $B{I_1} = \frac{{{W_{{\rm{et}}}}}}{{{W_{{\rm{et}}}} + {W_{\rm{p}}}}}$ Wet=总弹性能;Wp=塑性能 Hucka and Das, 1974
      $B{I_2} = \frac{{{W_{\rm{a}}}}}{{{W_{\rm{e}}}}}$ Wa=峰后附加能量;We=耗散的弹性能 Munoz et al., 2016
      $B{I_3} = \frac{{{W_{{\rm{et}}}}}}{{{W_{\rm{p}}} + {W_{\rm{r}}}}}$ Wr=断裂能 Munoz et al., 2016
      $B{I_4} = \frac{{{W_{{\rm{et}}}} + {W_{\rm{p}}}}}{{{W_{\rm{p}}} + {W_{\rm{r}}}}}$ Munoz et al., 2016
      $B{I_5} = \frac{{{W_{{\rm{et}}}}}}{{{W_{\rm{r}}}}}$ Munoz et al., 2016
      $B{I_6} = \frac{{{W_{\rm{p}}} + {W_{\rm{r}}}}}{{{W_{\rm{e}}} + {W_{\rm{p}}}}}$ Ai et al., 2016
      $B{I_7} = \frac{{{W_{\rm{a}}}}}{{{W_{\rm{e}}} + {W_{\rm{p}}}}}$ Ai et al., 2016
      $B{I_8} = \frac{{{W_{{\rm{eAB}}}}}}{{{W_{{\rm{eAB}}}} + {W_{{\rm{AB}}}}}}$ WeAB=峰后可释放弹性能;WAB=峰后吸收能 侯振坤,2018
      $B{I_9} = \frac{{{W_{\rm{e}}}}}{{2{W_{\rm{r}}}}} + \frac{{{W_{\rm{e}}}}}{{2\left({{W_{{\rm{et}}}} + {W_{\rm{p}}}} \right)}}$ Rahimzadeh Kivi et al., 2018
      $B{I_{10}} = \frac{{{W_{{\rm{AB}}}}}}{{{W_{{\rm{eAB}}}}}} + \frac{{{W_{\rm{A}}}}}{{U_{\rm{A}}^{\rm{e}}}}$ WA=峰值处总吸收能;UAe=峰值处弹性应变能 宋洪强等,2019
      $B{I_{11}} = \frac{{\Delta {U_{\rm{e}}}}}{{U_{\rm{e}}^{\rm{p}}}} + \frac{{\Delta U_{\rm{e}}^{\rm{r}}}}{{U_{\rm{e}}^{\rm{p}}}}$ ΔUed表征残余强度处耗散能量的能力;Uep=峰值处弹性应变能;ΔUer表征峰后释放能量的能力 Zhang et al., 2018
      $B{I_{12}} = 1 - \frac{{{E_{\rm{d}}}}}{{{E_{\rm{d}}} + {E_{\rm{G}}}}}$ Ed=抗震变形能;EG=产生新的破裂面所需能量 Feng et al., 2020
      $B{I_{13}} = \frac{{U_{\rm{e}}^{\rm{p}}}}{{U_{\rm{e}}^{\rm{p}} + d{W_{\rm{d}}}}} \times \frac{{d{W_{\rm{e}}}}}{{d{W_{\rm{r}}}}}$ dWd=峰前耗散能 Li et al., 2019
      $B{I_{14}} = \frac{{U_{\rm{e}}^{\rm{p}}}}{{U_{\rm{e}}^{\rm{p}} + d{W_{\rm{d}}}}} \times \left({1 - D_{\rm{e}}^{\rm{p}}} \right) \times \frac{{{\sigma _{\rm{p}}} - {\sigma _{\rm{r}}}}}{{{\sigma _{\rm{p}}}}}$ Dep=峰值处损伤系数;σp=峰值强度; σr=残余强度 Li et al., 2019
      下载: 导出CSV

      表  2  不同岩石的压缩试验力学参数

      Table  2.   Mechanical parameters of compression tests for different rocks

      岩样 围压(MPa) 峰值强度(MPa) 损伤应力(MPa) 峰值应变(%) 残余应变(%)
      红砂岩 0 69.79 14.44 0.593 0.791
      10 132.35 65.78 0.914 1.230
      20 173.26 133.16 1.156 1.472
      30 211.76 158.82 1.423 1.976
      40 251.87 202.14 1.680 2.342
      煤岩 6 34.30 10.53 1.260 1.766
      12 43.81 20.72 1.518 2.041
      18 65.55 34.64 2.050 2.920
      24 68.94 46.53 2.290 3.249
      30 83.21 66.91 2.778 4.003
      页岩1组 0 121.91 0 0.910 0.915
      10 162.38 67.52 0.963 1.134
      20 173.33 105.14 1.043 1.366
      30 223.14 154.95 1.182 1.527
      页岩2组 0 112.17 0 0.788 0.792
      10 167.33 73.24 0.810 1.045
      20 194.48 113.33 1.025 1.392
      30 222.76 155.71 1.127 1.447
      下载: 导出CSV

      表  3  不同岩石的脆性指数

      Table  3.   Brittleness indexes for different rocks

      岩样 红砂岩 煤岩 页岩1组 页岩2组
      围压 0 10 20 30 40 6 12 18 24 30 0 10 20 30 0 10 20 30
      BIpre 1.96 2.44 2.42 2.58 2.95 2.61 2.64 2.88 3.31 3.68 1.52 1.98 2.41 1.98 1.22 2.06 2.06 2.16
      BIpost 0.69 0.50 0.37 0.30 0.24 0.53 0.49 0.42 0.32 0.20 0.99 0.71 0.48 0.44 0.99 0.59 0.47 0.44
      BInew 1.36 1.22 0.89 0.78 0.71 1.38 1.30 1.20 1.05 0.72 1.51 1.41 1.45 0.88 1.21 1.12 0.98 0.96
      下载: 导出CSV

      表  4  料场边坡区岩石脆性指数

      Table  4.   Brittleness indexes in Liaochang slope areas

      围压(MPa) 5 10 15 20
      脆性指数BInew 2.409 1.926 1.799 1.081
      下载: 导出CSV
    • [1] Ai, C., Zhang, J., Li, Y. W., et al., 2016. Estimation Criteria for Rock Brittleness Based on Energy Analysis during the Rupturing Process. Rock Mechanics and Rock Engineering, 49(12): 4681-4698. https://doi.org/10.1007/s00603-016-1078-x
      [2] Altindag, R., 2002. The Evaluation of Rock Brittleness Concept on Rotary Blast Hold Drills. Journal of the Southern African Institute of Mining and Metallurgy 102(1): 61-66. http://saimm.server291.com/Journal/v102n01p061.pdf
      [3] Bishop, A., 1967. Progressive Failure with Special Reference to the Mechanism Causing It. Proceedings of the GeoTechnical Conference, Oslo, 142-150.
      [4] Feng, R. H., Zhang, Y. H., Rezagholilou, A., et al., 2020. Brittleness Index: From Conventional to Hydraulic Fracturing Energy Model. Rock Mechanics and Rock Engineering, 53(2): 739-753. https://doi.org/10.1007/s00603-019-01942-1
      [5] Fu, L., Shen, R. C., Pang, F., et al., 2019. Experiments on Friction and Non-Steady Slip for Shale. Earth Science, 44(11): 3783-3793 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911018.htm
      [6] Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911028.htm
      [7] Hou, Z. K., 2018. Research on Hydraulic Fracturing Tests and Mechanism of Crack Extension of Longmaxi Shale (Dissertation). Chongqing University, Chongqing (in Chinese with English abstract).
      [8] Hucka, V., Das, B., 1974. Brittleness Determination of Rocks by Different Methods. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11(10): 389-392. https://doi.org/10.1016/0148-9062(74)91109-7
      [9] Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911029.htm
      [10] Li, L. C., Zhai, M. Y., Zhang, L. Y., et al., 2019. Brittleness Evaluation of Glutenite Based on Energy Balance and Damage Evolution. Energies, 12(18): 3421. https://doi.org/10.3390/en12183421
      [11] Meng, F. Z., Zhou, H., Zhang, C. Q., et al., 2015. Evaluation Methodology of Brittleness of Rock Based on Post-Peak Stress-Strain Curves. Rock Mechanics and Rock Engineering, 48(5): 1787-1805. https://doi.org/10.1007/s00603-014-0694-6
      [12] Munoz, H., Taheri, A., Chanda, E. K., 2016. Fracture Energy-Based Brittleness Index Development and Brittleness Quantification by Pre-Peak Strength Parameters in Rock Uniaxial Compression. Rock Mechanics and Rock Engineering, 49(12): 4587-4606. https://doi.org/10.1007/s00603-016-1071-4
      [13] Rahimzadeh Kivi, I., Ameri, M., Molladavoodi, H., 2018. Shale Brittleness Evaluation Based on Energy Balance Analysis of Stress-Strain Curves. Journal of Petroleum Science and Engineering, 167: 1-19. https://doi.org/10.1016/j.petrol.2018.03.061
      [14] Song, H. Q., Zuo, J. P., Chen, Y., et al., 2019. Revised Energy Drop Coefficient Based on Energy Characteristics in Whole Process of Rock Failure. Rock and Soil Mechanics, 40(1): 91-98 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201901006.htm
      [15] Tarasov, B., Potvin, Y., 2013. Universal Criteria for Rock Brittleness Estimation under Triaxial Compression. International Journal of Rock Mechanics and Mining Sciences, 59: 57-69. https://doi.org/10.1016/j.ijrmms.2012.12.011
      [16] Wen, T., Tang, H. M., Huang, L., et al., 2020. Energy Evolution: A New Perspective on the Failure Mechanism of Purplish-Red Mudstones from the Three Gorges Reservoir Area, China. Engineering Geology, 264: 105350. https://doi.org/10.1016/j.enggeo.2019.105350
      [17] Wen, T., Tang, H. M., Ma, J. W., et al., 2018. Evaluation of Methods for Determining Crack Initiation Stress under Compression. Engineering Geology, 235: 81-97. https://doi.org/10.1016/j.enggeo.2018.01.018
      [18] Wen, T., Tang, H. M., Ma, J. W., et al., 2019. Deformation Simulation for Rock in Consideration of Initial Damage and Residual Strength. Earth Science, 44(2): 652-663 (in Chinese with English abstract). http://www.researchgate.net/publication/332625403_Deformation_Simulation_for_Rock_in_Consideration_of_Initial_Damage_and_Residual_Strength
      [19] Zhang, J., Ai, C., Li, Y. W., et al., 2017. Brittleness evaluation index based on energy variation in the whole process of rock failure. Chinese Journal of Rock Mechanics and Engineering, 36(6): 1326-1340 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201706004.htm
      [20] Zhang, J., Ai, C., Li, Y. W., et al., 2018. Energy-Based Brittleness Index and Acoustic Emission Characteristics of Anisotropic Coal under Triaxial Stress Condition. Rock Mechanics and Rock Engineering, 51(11): 3343-3360. https://doi.org/10.1007/s00603-018-1535-9
      [21] Zhang, S., Tang, H. M., Liu, X., et al., 2018. Seepage and Instability Characteristics of Slope Based on Spatial Variation Structure of Saturated Hydraulic Conductivity. Earth Science, 43(2): 622-634 (in Chinese with English abstract).
      [22] Zhou, H., Meng, F. Z., Zhang, C. Q., et al., 2014. Quantitative Evaluation of Rock Brittleness Based on Stress-Strain Curve. Chinese Journal of Rock Mechanics and Engineering, 33(6): 1114-1122 (in Chinese with English abstract). http://www.researchgate.net/publication/312536550_Quantitative_evaluation_of_rock_brittleness_based_on_stress-strain_curve
      [23] 付利, 申瑞臣, 庞飞, 等, 2019. 页岩剪切摩擦与非稳态滑移特性实验. 地球科学, 44(11): 3783-3793. doi: 10.3799/dqkx.2019.189
      [24] 葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589
      [25] 侯振坤, 2018. 龙马溪组页岩水力压裂试验及裂缝延伸机理研究(博士学位论文). 重庆: 重庆大学.
      [26] 亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110
      [27] 宋洪强, 左建平, 陈岩, 等, 2019. 基于岩石破坏全过程能量特征改进的能量跌落系数. 岩土力学, 40(1): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901006.htm
      [28] 温韬, 唐辉明, 马俊伟, 等, 2019. 考虑初始损伤和残余强度的岩石变形过程模拟. 地球科学, 44(2): 652-663. doi: 10.3799/dqkx.2018.212
      [29] 张军, 艾池, 李玉伟, 等, 2017. 基于岩石破坏全过程能量演化的脆性评价指数. 岩石力学与工程学报, 36(6): 1326-1340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201706004.htm
      [30] 张抒, 唐辉明, 刘晓, 等, 2018. 基于饱和渗透系数空间变异结构的斜坡渗流及失稳特征. 地球科学, 43(2): 622-634. doi: 10.3799/dqkx.2017.617
      [31] 周辉, 孟凡震, 张传庆, 等, 2014. 基于应力-应变曲线的岩石脆性特征定量评价方法. 岩石力学与工程学报, 33(6): 1114-1122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406004.htm
    • 加载中
    图(7) / 表(4)
    计量
    • 文章访问数:  542
    • HTML全文浏览量:  176
    • PDF下载量:  45
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-08
    • 网络出版日期:  2021-10-14
    • 刊出日期:  2021-10-14

    目录

      /

      返回文章
      返回