Records of Polycystine Radiolaria in the Diatom Mats Sediments from the Western Philippine Sea and Their Environmental Significance
-
摘要: 为了多角度理解海洋纹层沉积物的形成过程,利用在西菲律宾海采集到的含纹层硅藻席的XT47孔岩心样品,进行多囊虫类放射虫的组合变化与环境意义分析.研究表明XT47孔岩心上段260 cm厚硅藻席沉积中含有丰富的放射虫、丰度高于2×104个/克;中段260~460 cm出现5次放射虫丰度高峰与红粘土的交替旋回沉积;下段460~630 cm红粘土沉积层中放射虫稀少.依据放射虫地层种的初现生物事件,470 cm以深的年龄大于0.34 Ma,表明西菲律宾海硅藻质沉积形成于中更新世以来.此外,受暖水影响控制的Tetrapyle group和Didymocyrtis tetrathalamus tetrathalamus相对丰度在末次冰盛期(LGM)呈现显著的低值期,推测在LGM期西菲律宾海北赤道暖流的影响强度是变弱的.值得注意的是,多囊虫类放射虫的丰度与生物硅含量的变化趋势出现明显的不同步现象,推测4次生物硅含量高峰是由大型硅藻(盘筛藻)的急剧增加导致的,即西菲律宾海LGM期盘筛藻的勃发呈现明显的阶段性强弱变化;进一步发现盘筛藻的4次勃发强盛期对应着胶体虫相对丰度变化的低谷期和中深层冷水种相对丰度变化的高峰期,前者指示上层水体成层化减弱、后者指示中深层水体中营养物增多.据此,认为西菲律宾海LGM期盘筛藻勃发的4次强盛期是由于上层水体成层化减弱、下层水体中丰富的营养物上涌引起.研究结果可为菲律宾海盘筛藻勃发在LGM长时间持续并最终在海底形成厚达近3 m的硅藻席沉积提供了一种可能的解释.Abstract: In order to understand the formation process of marine laminar sediments from multiple perspectives, this paper studied the changes of polycystine radiolarian assemblages and their environmental significance by using the XT47 core samples with laminar diatom mats collected in the western Philippine Sea. Results show that there were abundant radiolarians, generally higher than 2×104 inds. g-1in the upper 260 cm depth; five times of alternating deposition of maximum radiolarian abundances and red clay occurred at the middle 260-460 cm depth; radiolarians in the bottom 460-630 cm depth were rare. According to the early occurrence of radiolarian species, the sediment age of > 470 cm depth was older than 0.34 Ma, suggesting the diatom sediments in the western Philippine Sea were formed since the Middle Pleistocene. The relative abundances of Tetrapyle group and Didymocyrtis tetrathalamus tetrathalamus, which are controlled by warm currents, significantly decreased during the last glacial maximum (LGM) period, indicating that the influence of North Equatorial warm current on the studied areas weakened during the LGM period. Interestingly, the variation of radiolarian abundance shows a different pattern, compared to the change of biogenic silica content, suggesting that the four peaks of biogenic silica content may be caused by the rapid increase of diatom, that is to say, the bloom of Ethmodiscus rex in the western Philippine Sea had a strong-weak fluctuation during the LGM period. Furthermore, four strong blooms of Ethmodiscus rex were found to be good correspondence to the low relative abundances of collodarians, and the high relative abundances of mediate-deep cold species. The former indicates that the stratification of upper water became weakened, and the latter reflects the increase of nutrients in mediate-deep water. Therefore, we believe that four strong blooms of Ethmodiscus rex during the LGM period may be caused by the weak stratification in the upper water and the upwelling of lower water with the abundant nutrients. Our results may provide a possible explanation for the long-term occurrence of the large diatom bloom and the formation of diatom mats with thickness up to three meters on the seafloor in the Phillippine Sea.
-
Key words:
- Philippine Sea /
- diatom mats sediments /
- polycystine radiolaria /
- ecological environments /
- water masses /
- stratigraphy
-
图 1 研究站位XT47孔的取样位置
蓝色框为目前西太平洋发现的硅藻席沉积区,熊志方和李铁刚(2017)、Shen et al.(2017)和Luo et al.(2018);粉色线箭头为海表层流,KC为黑潮, NEC为北赤道流, NECC为北赤道逆流,据Tomczak and Godfrey(2005).垂向平均地转流(0~100 m)和硅酸盐平面气候态分布(4 000 m深度)黄财京(2018);其中黄色线箭头为高溶解氧低硅酸盐的路径(3 000~4 000 m),绿色线箭头为高硅酸盐路径(3 000~4 000 m),蓝色线箭头为低温高盐路径(4 500 m以下),据黄财京(2018)
Fig. 1. Location of the studied core XT47
表 1 本文进行放射虫鉴定统计分析的岩心XT47深度层、放射虫总丰度和三大目(泡沫虫、罩笼虫和胶体虫)的相对丰度
Table 1. Sampling depth, radiolarian abundances and relative abundances of three orders (Spumellaria, Nassellaria and Collodaria) in the core XT47 analyzed in this study
岩心孔深(cm) 放射虫总丰度(个/克) 相对丰度(%) 岩心孔深(cm) 放射虫总丰度(个/克) 相对丰度(%) 泡沫虫(%) 罩笼虫(%) 胶体虫(%) 泡沫虫(%) 罩笼虫(%) 胶体虫(%) 1 80 634 50.95 42.65 6.40 439 78 254 52.64 45.03 2.33 3 66 265 44.15 53.22 2.63 443 59 538 55.62 42.71 1.67 5 122 489 40.80 55.19 4.01 445 33 169 48.78 48.98 2.24 9 19 580 40.16 55.17 4.68 447 18 501 48.63 48.43 2.94 13 44 324 33.23 62.80 3.96 449 51 295 56.45 40.82 2.73 17 77 000 32.45 65.20 2.35 451 22 997 53.44 43.51 3.05 21 86 129 34.27 61.66 4.07 453 27 524 34.16 61.11 4.73 25 102 132 38.12 58.20 3.68 455 21 117 36.55 60.23 3.22 29 144 468 31.27 64.43 4.30 457 1 881 38.51 57.14 4.35 33 31 274 39.26 55.06 5.68 459 2 101 24.14 67.82 8.05 37 33 478 35.28 61.69 3.03 461 2 492 36.49 54.95 8.56 41 55 070 34.10 58.86 7.05 463 2 419 35.23 58.03 6.74 45 32 230 37.50 58.48 4.02 465 1 770 35.88 58.02 6.11 49 112 791 37.98 55.89 6.14 467 2 330 31.35 67.03 1.62 53 91 427 32.32 60.14 7.54 469 1 006 38.46 60.26 1.28 57 51 170 33.04 62.83 4.13 471 2 134 40.70 54.07 5.23 61 39 487 62.50 30.84 6.66 473 3 302 42.25 55.99 1.76 69 27 954 49.01 46.22 4.77 475 1 194 38.46 61.54 0.00 73 32 628 52.80 44.07 3.13 477 297 48.00 44.00 8.00 77 51 796 67.21 29.53 3.26 479 505 37.84 59.46 2.70 81 51 493 64.50 30.63 4.87 481 157 35.71 57.14 7.14 85 33 380 58.94 38.69 2.37 483 567 23.91 71.74 4.35 89 44 163 63.88 34.36 1.76 485 173 23.08 76.92 0.00 93 28 211 62.35 34.15 3.50 487 801 47.62 52.38 0.00 97 40 760 57.27 40.91 1.82 489 846 56.92 41.54 1.54 101 69 304 69.10 28.92 1.98 491 220 35.29 64.71 0.00 105 86 413 59.75 36.48 3.77 493 35 33.33 66.67 0.00 109 28 000 55.59 40.10 4.31 497 253 60.00 40.00 0.00 113 36 970 54.83 42.44 2.73 499 89 57.14 42.86 0.00 117 70 790 58.45 36.89 4.66 501 18 50.00 50.00 0.00 121 70 204 60.27 33.72 6.01 503 238 42.11 52.63 5.26 125 73 846 61.71 35.12 3.17 505 12 100.00 0.00 0.00 129 77 951 52.56 39.64 7.80 507 27 50.00 50.00 0.00 133 78 869 58.24 35.48 6.27 509 299 45.83 54.17 0.00 137 74 074 51.58 45.26 3.16 511 145 66.67 33.33 0.00 141 37 761 45.25 46.80 7.94 513 13 100.00 0.00 0.00 145 52 364 57.41 36.34 6.25 515 473 47.50 50.00 2.50 149 45 960 46.62 46.87 6.52 517 51 50.00 50.00 0.00 153 65 529 57.64 37.73 4.63 519 12 100.00 0.00 0.00 157 70 833 51.76 42.12 6.12 521 0 0.00 0.00 0.00 161 69 008 59.29 33.41 7.30 523 77 66.67 33.33 0.00 163 58 542 57.35 38.98 3.67 525 12 100.00 0.00 0.00 165 67 839 54.21 42.98 2.81 527 11 100.00 0.00 0.00 167 59 197 58.81 38.33 2.86 529 13 100.00 0.00 0.00 169 38 621 49.60 48.41 1.98 531 23 0.00 100.00 0.00 171 62 446 51.84 45.62 2.53 533 85 57.14 42.86 0.00 173 54 093 59.10 38.76 2.14 535 24 0.00 100.00 0.00 177 51 941 57.14 39.78 3.08 537 0 0.00 0.00 0.00 179 119 041 60.37 37.27 2.36 539 0 0.00 0.00 0.00 185 86 162 48.18 49.46 2.36 541 0 0.00 0.00 0.00 187 116 117 60.65 37.04 2.31 543 0 0.00 0.00 0.00 191 47 450 51.07 46.08 2.85 545 34 33.33 66.67 0.00 195 81 380 54.44 41.59 3.97 547 26 100.00 0.00 0.00 203 145 814 52.87 43.06 4.07 549 231 66.67 33.33 0.00 211 93 857 50.91 44.29 4.79 551 38 0.00 100.00 0.00 219 80 203 50.10 43.89 6.00 553 0 0.00 0.00 0.00 227 101 007 48.65 44.04 7.31 555 0 0.00 0.00 0.00 235 102 464 51.42 45.26 3.32 557 23 100.00 0.00 0.00 243 78 310 57.25 38.17 4.58 559 37 66.67 33.33 0.00 251 87 423 52.83 44.58 2.59 561 25 50.00 50.00 0.00 259 136 774 57.78 40.09 2.12 563 36 33.33 33.33 33.33 265 141 608 53.56 41.33 5.11 565 62 40.00 60.00 0.00 273 83 643 55.76 38.83 5.42 567 0 0.00 0.00 0.00 279 15 838 41.16 54.26 4.57 569 0 0.00 0.00 0.00 283 7 182 44.85 53.53 1.63 571 0 0.00 0.00 0.00 287 4 952 45.72 52.08 2.20 573 0 0.00 0.00 0.00 291 2 214 44.77 51.74 3.49 575 11 0.00 100.00 0.00 295 4 148 48.21 46.73 5.06 577 0 0.00 0.00 0.00 299 7 133 49.76 49.51 0.73 579 0 0.00 0.00 0.00 303 6 782 44.29 53.15 2.56 581 0 0.00 0.00 0.00 307 5 539 33.97 62.95 3.09 583 0 0.00 0.00 0.00 311 31 118 47.15 48.97 3.87 585 25 0.00 100.00 0.00 323 57 605 50.98 44.42 4.60 587 0 0.00 0.00 0.00 327 113 304 49.93 45.67 4.40 589 0 0.00 0.00 0.00 335 29 490 45.33 49.60 5.07 591 11 0.00 100.00 0.00 339 22 028 54.60 42.05 3.35 593 0 0.00 0.00 0.00 343 2 746 34.40 63.30 2.29 595 0 0.00 0.00 0.00 351 11 266 48.13 50.47 1.40 597 0 0.00 0.00 0.00 355 55 870 55.06 41.83 3.11 599 0 0.00 0.00 0.00 359 76 111 55.08 38.98 5.93 601 0 0.00 0.00 0.00 371 150 934 52.49 43.70 3.81 603 0 0.00 0.00 0.00 375 130 891 56.53 42.16 1.31 605 0 0.00 0.00 0.00 379 25 908 53.76 44.33 1.91 607 0 0.00 0.00 0.00 387 5 535 58.28 38.69 3.03 609 0 0.00 0.00 0.00 391 17 064 50.36 47.22 2.42 611 0 0.00 0.00 0.00 395 78 242 58.43 40.64 0.94 613 0 0.00 0.00 0.00 401 114 955 46.44 49.47 4.09 615 0 0.00 0.00 0.00 403 67 473 54.72 42.51 2.77 617 0 0.00 0.00 0.00 407 24 497 37.15 60.53 2.32 619 0 0.00 0.00 0.00 411 23 144 58.78 40.05 1.17 621 0 0.00 0.00 0.00 415 7 300 56.59 41.48 1.93 623 12 100.00 0.00 0.00 419 8 728 57.77 40.87 1.36 625 0 0.00 0.00 0.00 423 17 693 58.88 38.69 2.43 627 0 0.00 0.00 0.00 427 19 104 62.86 34.29 2.86 629 13 100.00 0.00 0.00 431 35 831 56.72 40.55 2.73 631 0 0.00 0.00 0.00 435 59 447 49.77 48.19 2.04 表 2 XT47孔放射虫地层种的初现面(FAD)生物事件年龄
Table 2. Biological event ages of the first appearance datum of radiolarian biostratigraphic species in the core XT47
种名 生物事件 FAD年龄范围(Ma) 平均FAD年龄(Ma) XT47的FAD层深(cm) 参考文献 Buccinosphaera invaginata Haeckel FAD 0.24~0.45 0.34 471 Haslett (1994);Nigrini et al. (2006);Sanfilippo and Nigrini (1998) Collosphaera tuberosa Haeckel FAD 0.42~0.58 0.51 473 Haslett (1994);Kamikuri et al. (2009);Nigrini et al. (2006); Sanfilippo and Nigrini (1998) Pterocanium praetextum praetextum (Ehrenberg) FAD 1.27~1.33 1.30 503 Kamikuri et al. (2009) Cycladophora davisiana Ehrenberg FAD 2.50~2.71 2.61 565 Haslett (1994);Kamikuri et al. (2009);Nigrini et al. (2006); Sanfilippo and Nigrini (1998) -
[1] Anderson, O. R., 1983. Radiolaria. Springer, New York. [2] Anderson, O. R., Bryan, M., Bennett, P., 1990. Experimental and Observational Studies of Radiolarian Physiological Ecology: 4. Factors Determining the Distribution and Survival ofDidymocyrtis Tetrathalamus Tetrathalamus with Implications for Paleoecological Interpretations. Marine Micropaleontology, 16(3-4): 155-167. https://doi.org/10.1016/0377-8398(90)90001-3 [3] Boltovskoy, D., Kling, S. A., Takahashi, K., et al., 2010. World Atlas of Distribution of Recent Polycystina (Radiolaria). Palaeontologia Electronica, 13(3): 18A. http://www.researchgate.net/publication/286573981_World_atlas_of_distribution_of_recent_polycystina_Radiolaria [4] Caron, D. A., Michaels, A. F., Swanberg, N. R., et al., 1995. Primary Productivity by Symbiont-Bearing Planktonic Sarcodines (Acantharia, Radiolaria, Foraminifera) in Surface Waters near Bermuda. Journal of Plankton Research, 17(1): 103-129. https://doi.org/10.1093/plankt/17.1.103 [5] Chang, F. M., Zhuang, L. H., Li, T. G., et al., 2003. Radiolarian Fauna in Surface Sediments of the Northeastern East China Sea. Marine Micropaleontology, 48(3-4): 169-204. https://doi.org/10.1016/S0377-8398(03)00016-1 [6] Chen, M., Lan, B. B., Shen, L. N., et al., 2014. Characteristics of Diatom Distribution in the Surface Sediments of the Western Philippine Basin. Acta Micropalaeontologica Sinica, 31(4): 321-334 (in Chinese with English abstract). [7] Chen, M. H., Tan, Z. Y., 1996. Radiolaria from Surface Sediments of the Central and Northern South China Sea. Science Press, Beijing (in Chinese). [8] De Wever, P., Dumitrica, P., Caulet, J. P., et al., 2001. Radiolarians in the Sedimentary Record. Gordon and Breach Science Publishers, Amsterdam. [9] Dennett, M. R., Caron, D. A., Michaels, A. F., et al., 2002. Video Plankton Recorder Reveals High Abundances of Colonial Radiolaria in Surface Waters of the Central North Pacific. Journal of Plankton Research, 24(8): 797-805. https://doi.org/10.1093/plankt/24.8.797 [10] Dong, D. D., Zhang, Z. Y., Zhang, G. X., et al., 2017. Tectonic and Sedimentary Features of the West Philippine Basin and Its Implication to the Basin Evolution-Evidence from a Seismic Transection. Oceanologia et Limnologia Sinica, 48(6): 1415-1425 (in Chinese with English abstract). [11] Haslett, S. K., 1994. Plio-Pleistocene Radiolarian Biostratigraphy and Palaeoceanography of the Mid-Latitude North Atlantic (DSDP Site 609). Geological Magazine, 131(1): 57-66. https://doi.org/10.1017/s0016756800010499 [12] Hatakeda, U. K., 2009. Compiled Ecological Data on Living Polycystine Radiolarians. News of Osaka Micropaleontologists, 14(14): 31-41 http://www.mendeley.com/research/compiled-ecological-data-living-polycystine-radiolarians/ [13] Hernández-Almeida, I., Cortese, G., Yu, P. S., et al., 2017. Environmental Determinants of Radiolarian Assemblages in the Western Pacific since the Last Deglaciation. Paleoceanography, 32(8): 830-847. https://doi.org/10.1002/2017pa003159 [14] Huang, C. J., 2018. Analysis of the Characteristics of Deep Water Mass and Circulation in the Philippine Sea (Dissertation). Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya (in Chinese with English abstract). [15] Ishitani, Y., Takahashi, K., 2007. The Vertical Distribution of Radiolaria in the Waters Surrounding Japan. Marine Micropaleontology, 65(3-4): 113-136. https://doi.org/10.1016/j.marmicro.2007.06.002 [16] Ishitani, Y., Takahashi, K., Okazaki, Y., et al., 2008. Vertical and Geographic Distribution of Selected Radiolarian Species in the North Pacific. Micropaleontology, 54(1): 27-39. [17] Kamikuri, S. I., Motoyama, I., Nishi, H., et al., 2009. Neogene Radiolarian Biostratigraphy and Faunal Evolution Rates in the Eastern Equatorial Pacific ODP Sites 845 and 1241. Acta Palaeontologica Polonica, 54(4): 713-742. https://doi.org/10.4202/app.2008.0076 [18] Li, T. G., Xiong, Z. F., Zhai, B., 2015. Laminated Diatom Mat Deposits from the Low-Latitude Western Pacific Linked to Global Carbon Cycle. Ocean Press, Beijing (in Chinese). [19] Liu, L., Zhang, Q., Chen, M. H., et al., 2017. Radiolarian Biogeography in Surface Sediments of the Northwest Pacific Marginal Seas. Science China Earth Sciences, 60(3): 517-530. https://doi.org/10.1007/s11430-016-5179-4 [20] Luo, M., Algeo, T. J., Tong, H. P., et al., 2018. More Reducing Bottom-Water Redox Conditions during the last Glacial Maximum in the Southern Challenger Deep (Mariana Trench, Western Pacific) Driven by Enhanced Productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 155: 70-82. https://doi.org/10.1016/j.dsr2.2017.01.006 [21] Martin, W. R., Bender, M., Leinen, M., et al., 1991. Benthic Organic Carbon Degradation and Biogenic Silica Dissolution in the Central Equatorial Pacific. Deep Sea Research Part A Oceanographic Research Papers, 38(12): 1481-1516. https://doi.org/10.1016/0198-0149(91)90086-U [22] Matsuzaki, K. M., Itaki, T., Sugisaki, S., 2020a. Polycystine Radiolarians Vertical Distribution in the Subtropical Northwest Pacific during Spring 2015 (KS15-4). Paleontological Research, 24(2): 113-133. https://doi.org/10.2517/2019pr019 [23] Matsuzaki, K. M., Itaki, T., Tada, R., et al., 2018. Paleoceanographic History of the Japan Sea over the Last 9.5 Million Years Inferred from Radiolarian Assemblages (IODP Expedition 346 Sites U1425 and U1430). Progress in Earth and Planetary Science, 5(1): 1-33. https://doi.org/10.1186/s40645-018-0204-7 [24] Matsuzaki, K. M., Nishi, H., Suzuki, N., et al., 2014. Paleoceanographic History of the Northwest Pacific Ocean over the Past 740 kyr, Discerned from Radiolarian Fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 396: 26-40. https://doi.org/10.1016/j.palaeo.2013.12.036 [25] Matsuzaki, K. M., Suzuki, N., Nishi, H., 2015. Middle to Upper Pleistocene Polycystine Radiolarians from Hole 902-C9001C, Northwestern Pacific. Paleontological Research, 19(s1): 1-77. https://doi.org/10.2517/2015pr003 [26] Matsuzaki, K. M., Suzuki, N., Tada, R., 2020b. An Intensified East Asian Winter Monsoon in the Japan Sea between 7.9 and 6.6 Ma. Geology, 48(9): 919-923. https://doi.org/10.1130/g47393.1 [27] Nigrini, C., Sanfilippo, A., 2001. Cenozoic Radiolarian Stratigraphy for Low and Middle Latitudes with Descriptions of Biomarkers and Stratigraphically Useful Species. Ocean Drilling Program, College Station. https://doi.org/10.2973/odp.tn.27.2001 [28] Nigrini, C., Sanfilippo, A., Moore Jr., T.J., 2006. Cenozoic Radiolarian Biostratigraphy: A Magnetobiostratigraphic Chronology of Cenozoic Sequences from ODP Sites 1218, 1219, and 1220, Equatorial Pacific. In: Wilson, P. A., Lyle, M., Firth, J. V., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station. https://doi.org/10.2973/odp.proc.sr.199.225.2006 [29] Palmer, M. R., Pearson, P. N., 2003. A 23, 000-Year Record of Surface Water pH and PCO2 in the Western Equatorial Pacific Ocean. Science, 300(5618): 480-482. https://doi.org/10.1126/science.1080796 [30] Qu, H. X., Wang, J. B., Xu, Y., et al., 2020. Radiolarian Assemblage as an Indicator of Environmental Conditions in the Marginal Seas of the Western North Pacific. Marine Micropaleontology, 157: 101859. https://doi.org/10.1016/j.marmicro.2020.101859 [31] Sanfilippo, A., Nigrini, C., 1998. Code Numbers for Cenozoic Low Latitude Radiolarian Biostratigraphic Zones and GPTS Conversion Tables. Marine Micropaleontology, 33(1-2): 109-156. https://doi.org/10.1016/S0377-8398(97)00030-3 [32] Shen, L. N., Chen, M., Lan, B. B., et al., 2017. Diatom Distribution as an Environmental Indicator in Surface Sediments of the West Philippine Basin. Chinese Journal of Oceanology and Limnology, 35(2): 431-443. https://doi.org/10.1007/s00343-016-5306-8 [33] Shibamoto, Y., Harada, K., 2010. Silicon Flux and Distribution of Biogenic Silica in Deep-Sea Sediments in the Western North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 57(2): 163-174. https://doi.org/10.1016/j.dsr.2009.10.009 [34] Takahashi, K., 1991. Radiolaria: Flux, Ecology, and Taxonomy in the Pacific and Atlantic. In: Honjo, S., eds., Ocean Biocoenosis Series No. 3. Woods Hole Oceanographic Institution, Woods Hole. https://doi.org/10.1575/1912/408 [35] Tan, Z. Y., Chen, M. H., 1999. Offshore Radiolaria in China. Science Press, Beijing (in Chinese). [36] Tomczak, M., Godfrey, J.S., 2005. Regional Oceanography: An Introduction. Pergamon Press, Oxford. [37] Wang, P. X., 1989. Chemical Oceanography. In: Marine Geology Department of Tongji University, ed., Introduction to Paleoceanography. Tongji University Press, Shanghai (in Chinese). [38] Wang, R. J., Abelmann, A., 2002. Radiolarian Responses to Paleoceanographic Events of the Southern South China Sea during the Pleistocene. Marine Micropaleontology, 46(1-2): 25-44. https://doi.org/10.1016/S0377-8398(02)00048-8 [39] Xiong, Z. F., Li, T. G., 2017. Marine Laminated Diatom Mats in Palaeoceanography and Biogeochemistry: Retrospective and Prospective. Oceanologia et Limnologia Sinica, 48(6): 1244-1256 (in Chinese with English abstract). [40] Xiong, Z. F., Li, T. G., Algeo, T., et al., 2015. The Silicon Isotope Composition of Ethmodiscus Rex Laminated Diatom Mats from the Tropical West Pacific: Implications for Silicate Cycling during the Last Glacial Maximum. Paleoceanography, 30(7): 803-823. https://doi.org/10.1002/2015PA002793 [41] Xiong, Z. F., Li, T. G., Zhai, B., et al., 2010. Clay Mineral Characteristics of Ethmodiscus Rex Diatom Mats from Low-Latitude Western Pacific during the Last Glacial and Implications for Their Formation. Earth Science, 35(4): 551-562 (in Chinese with English abstract). [42] Xu, Z. K., Li, T. G., Clift, P. D., et al., 2015. Quantitative Estimates of Asian Dust Input to the Western Philippine Sea in the Mid-Late Quaternary and Its Potential Significance for Paleoenvironment. Geochemistry, Geophysics, Geosystems, 16(9): 3182-3196. https://doi.org/10.1002/2015GC005929 [43] Yan, X. H., Ho, C. R., Zheng, Q., et al., 1992. Temperature and Size Variabilities of the Western Pacific Warm Pool. Science, 258(5088): 1643-1645. https://doi.org/10.1126/science.258.5088.1643 [44] Zhang, J., Zhang, L. L., Chen, M. H., et al., 2020. The Higher Level Classification of Modern Radiolarians and Their Ecological Significance. Acta Micropalaeontologica Sinica, 37(1): 82-98 (in Chinese with English abstract). [45] Zhang, J., Zhang, L. L., Xiang, R., et al., 2020. Radiolarian Biogeographic Contrast between Spring of 2017 and Winter of 2017-2018 in the South China Sea and Malacca Strait. Continental Shelf Research, 208: 104245. https://doi.org/10.1016/j.csr.2020.104245 [46] Zhang, L. L., Chen, M. H., Hu, W. F., et al., 2013. Vertical Distribution of Living Radiolarians and Its Environmental Implication. Journal of Tropical Oceanography, 32(6): 101-107 (in Chinese with English abstract). [47] Zhang, L. L., Chen, M. H., Xiang, R., et al., 2009. Distribution of Polycystine Radiolarians in the Northern South China Sea in September 2005. Marine Micropaleontology, 70(1-2): 20-38. https://doi.org/10.1016/j.marmicro.2008.10.002 [48] Zhang, L. L., Suzuki, N., 2017. Taxonomy and Species Diversity of Holocene Pylonioid Radiolarians from Surface Sediments of the Northeastern Indian Ocean. Palaeontologia Electronica, 20(3): 48A. https://doi.org/10.26879/718 [49] Zhang, L. L., Suzuki, N., de Nakamura, Y., et al., 2018. Modern Shallow Water Radiolarians with Photosynthetic Microbiota in the Western North Pacific. Marine Micropaleontology, 139: 1-27. https://doi.org/10.1016/j.marmicro.2017.10.007 [50] Zhang, L. L., Wang, R. J., Chen, M. H., et al., 2015. Biogenic Silica in Surface Sediments of the South China Sea: Controlling Factors and Paleoenvironmental Implications. Deep Sea Research Part II: Topical Studies in Oceanography, 122: 142-152. https://doi.org/10.1016/j.dsr2.2015.11.008 [51] Zhang, Q., Chen, M. H., Zhang, L. L., et al., 2014. Variations in the Radiolarian Assemblages in the Bering Sea since Pliocene and Their Implications for Paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 410: 337-350. https://doi.org/10.1016/j.palaeo.2014.05.048 [52] 陈敏, 兰彬斌, 沈林南, 等, 2014. 西菲律宾海盆表层沉积硅藻分布特征. 微体古生物学报, 31(4): 321-334. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201404001.htm [53] 陈木宏, 谭智源, 1996. 南海中、北部沉积物中的放射虫. 北京: 科学出版社. [54] 董冬冬, 张正一, 张广旭, 等, 2017. 西菲律宾海盆的构造沉积特征及对海盆演化的指示-来自地球物理大断面的证据. 海洋与湖沼, 48(6): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201706029.htm [55] 黄财京, 2018. 菲律宾海深层水团与环流特征分析(硕士学位论文). 三亚: 中国科学院深海科学与工程研究所. [56] 李铁刚, 熊志方, 翟滨, 2015. 低纬度西太平洋硅藻席沉积与碳循环. 北京: 海洋出版社. [57] 谭智源, 陈木宏, 1999. 中国近海的放射虫. 北京: 科学出版社. [58] 汪品先, 1989. 海洋化学. 同济大学海洋地质系编, 古海洋学概论. 上海: 同济大学出版社. [59] 熊志方, 李铁刚, 2017. 海洋纹层硅藻席古海洋学与生物地球化学研究进展. 海洋与湖沼, 48(6): 1244-1256. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201706013.htm [60] 熊志方, 李铁刚, 翟滨, 等, 2010. 低纬度西太平洋末次冰期Ethmodiscus rex硅藻席粘土矿物特征及形成机制启示. 地球科学, 35(4): 551-562. doi: 10.3799/dqkx.2010.071 [61] 张杰, 张兰兰, 陈木宏, 等, 2020. 现代放射虫的高阶分类现状及其生态学意义. 微体古生物学报, 37(1): 82-98. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT202001007.htm [62] 张兰兰, 陈木宏, 胡维芬, 等, 2013. 现生放射虫的水深分布及其环境指示意义. 热带海洋学报, 32(6): 101-107. doi: 10.3969/j.issn.1009-5470.2013.06.015