Asymmetric Deep Structure of the South China Sea Basin and Its Controlling Factors
-
摘要: 南海海盆区具有复杂的构造演化史,但目前对其深部结构的不对称性的研究和控制因素的探讨还存在不足.利用南海最新的重力数据和从27条地震剖面上获取的海盆范围沉积物精确数据计算了全海盆的剩余地幔布格重力异常(residual mantle Bouguer anomaly,RMBA),并反演了海盆的地壳厚度,运用Crust1.0数据进行了相关性分析.研究结果表明,南海海盆的残留扩张脊两翼在地形、RMBA和洋壳厚度上存在明显的不对称性,北翼比南翼有更多的海山分布、更低的RMBA值以及更厚的洋壳.这种明显的南北不对称性表明北侧比南侧有更高的地幔温度和更活跃的岩浆活动,反映了南海深部结构的不对称性.南海深部结构的不对称性可能与洋中脊向南的跃迁有关.洋脊跃迁导致在新老洋脊之间产生部分熔融,使扩张中心北侧产生更高的地幔温度,以及更强烈的岩浆活动,从而显示出更低的RMBA值和更厚的洋壳,并形成更多的后扩张期海山.Abstract: The South China Sea basin has a complex tectonic evolutionary history, but the study of the asymmetry of deep structure and the control factors are still inadequate. The residual mantle Bouguer anomaly (RMBA) of the whole basin is calculated by using the latest gravity data collected from the South China Sea and the accurate sediment data based on the explanation of 27 seismic profiles. The crustal thickness of the basin is inverted, and the correlation analysis is carried out by using Crust1.0 data.The results show that there is obvious asymmetry in topography, RMBA and crustal thickness on each side of South China Sea basin, the north side has more sea mountains, lower RMBA value and thicker oceanic crust than the southern side. This apparent north-south asymmetry indicates a higher mantle temperature and more active magmatic activity on the north side, reflecting the asymmetry of the deep structure of the South China Sea. The asymmetry of this deep structure may be related to the southern jumping of the mid-ocean ridge. The mid-ocean ridge jumping resulted in partial melting between the old and new ridges, leading to higher mantle temperatures on the north side of the expansion center, as well as stronger magmatic activity, which showed more negative RMBA values, thicker oceanic crustal thickness and more after-expansion seamounts.
-
图 3 全球数据库中南海沉积物厚度与本研究中使用的高分辨率沉积物厚度数据对比
a.从全球数据库中截取的沉积物厚度;b.全球沉积物数据在南海海盆区的沉积物厚度c.本研究使用的海盆区高分辨率沉积物数,据Yin et al. (2020)
Fig. 3. Sediment thickness of the South China Sea basin from global database compare with the high-resolution sediment data used in this study
图 5 Crust1.0数据和计算的地壳厚度在横穿研究区域的剖面上的对比(a),剖面路径见图 4c红色实线;重力反演的地壳厚度与Crust1.0数据的对应关系(b)
Fig. 5. Comparison of Crust1.0 data and calculated crustal thickness on the section of the study area (a), the path is showed as a red solid line in Fig. 4c; correlation between inverted crustal thickness by gravity and Crust1.0 data (b)
图 8 沿着18 Ma、20 Ma、22 Ma对应的RMBA值之差
绿色线为东部次海盆中RMBA差值的平均值,蓝色线为西南次海盆中RMBA差值的平均值.分布位置见于图 4a
Fig. 8. The difference of the corresponding RMBA along the ages of 18 Ma, 20 Ma, and 22 Ma
表 1 计算中用到的参数
Table 1. Parameters used in calculations
参数 种类 值 单位 Δρ 岩石圈平均密度变化 kg/m3 α 热膨胀系数 3.5×10-5 ℃-1 T0 地幔参考温度 1 350 ℃ T 每层岩石圈的温度 ℃ ρ0 地幔参考密度 3.3×103 kg/m3 ρm 地幔密度 3.3×103 kg/m3 ρc 洋壳密度 2.7×103 kg/m3 -
[1] Braitenberg, C., Wienecke, S., Wang, Y., 2006. Basement Structures from Satellite-Derived Gravity Field: South China Sea Ridge. Journal of Geophysical Research: Solid Earth, 111(B5): B05407. https://doi.org/10.1029/2005jb003938 [2] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280 [3] Brune, S., Heine, C., Clift, P. D., et al., 2017. Rifted Margin Architecture and Crustal Rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine and Petroleum Geology, 79: 257-281. https://doi.org/10.1016/j.marpetgeo.2016.10.018 [4] Canales, J. P., Detrick, R. S., Lin, J., et al., 2000. Crustal and Upper Mantle Seismic Structure Beneath the Rift Mountains and across a Nontransform Offset at the Mid-Atlantic Ridge (35°N). Journal of Geophysical Research: Solid Earth, 105(B2): 2699-2719. https://doi.org/10.1029/1999jb900379 [5] Cannat, M., Rommevaux-Jestin, C., Sauter, D., et al., 1999. Formation of the Axial Relief at the very Slow Spreading Southwest Indian Ridge (49° to 69°E). Journal of Geophysical Research: Solid Earth, 104(B10): 22825-22843. https://doi.org/10.1029/1999jb900195 [6] Cannat, M., Sauter, D., Mendel, V., et al., 2006. Modes of Seafloor Generation at a Melt-Poor Ultraslow-Spreading Ridge. Geology, 34(7): 605. https://doi.org/10.1130/g22486.1 [7] Carbotte, S. M., Small, C., Donnelly, K., et al., 2004. A Plate Kinematic Explanation for the Magmatic Segmentation of Mid-Ocean Ridges. Genetics, 180(2): 1167-1175. https://doi.org/10.1534/genetics.108.092551 [8] Clift, P., Lee, G. H., AnhDuc, N., et al., 2008. Seismic Reflection Evidence for a Dangerous Grounds Miniplate: No Extrusion Origin for the South China Sea. Tectonics, 27(3): TC3008. https://doi.org/10.1029/2007tc002216 [9] Cullen, A., Reemst, P., Henstra, G., et al., 2010. Rifting of the South China Sea: New Perspectives. Petroleum Geoscience, 16(3): 273-282. https://doi.org/10.1144/1354-079309-908 [10] Ding, W. W., Franke, D., Li, J. B., et al., 2013. Seismic Stratigraphy and Tectonic Structure from a Composite Multi-Channel Seismic Profile across the Entire Dangerous Grounds, South China Sea. Tectonophysics, 582: 162-176. https://doi.org/10.1016/j.tecto.2012.09.026 [11] Ding, W. W., Li, J. B., Zhao, M. H., 2017. Preface: Magmatic and Tectonic Process, Seabed Resource from the Mid-Ocean Ridge to Continental Margin. Marine Geophysical Research, 38(1-2): 1-2. https://doi.org/10.1007/s11001-017-9308-5 [12] Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic Accretionary Processes. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011 [13] Fan, C. Y., Xia, S. H., Zhao, F., et al., 2017. New Insights into the Magmatism in the Northern Margin of the South China Sea: Spatial Features and Volume of Intraplate Seamounts. Geochemistry, Geophysics, Geosystems, 18(6): 2216-2239. https://doi.org/10.1002/2016gc006792 [14] Gozzard, S., Kusznir, N., Franke, D., et al., 2019. South China Sea Crustal Thickness and Oceanic Lithosphere Distribution from Satellite Gravity Inversion. Petroleum Geoscience, 25(1): 112-128. https://doi.org/10.1144/petgeo2016-162 [15] Han, S. S., Carbotte, S. M., Canales, J. P., et al., 2016. Seismic Reflection Imaging of the Juan de Fuca Plate from Ridge to Trench: New Constraints on the Distribution of Faulting and Evolution of the Crust Prior to Subduction. Journal of Geophysical Research: Solid Earth, 121(3): 1849-1872. https://doi.org/10.1002/2015jb012416 [16] Hao, T.Y., Huang, S., Xu, Y., et al., 2008. Comprehensive Geophysical Research on the Deepstructure of Northeastern South China Sea. Chinese Journal of Geophysics, 51(6): 1785-1796 (in Chinese with English abstract). http://www.oalib.com/paper/1568499 [17] He, E. Y., Zhao, M. H., Qiu, X. L., et al., 2016. Crustal Structure across the Post-Spreading Magmatic Ridge of the East Sub-Basin in the South China Sea: Tectonic Significance. Journal of Asian Earth Sciences, 121: 139-152. https://doi.org/10.1016/j.jseaes.2016.03.003 [18] Hinz, K., Schlüter, H. U., 1985. Geology of the Dangerous Grounds, South China Sea, and the Continental Margin off Southwest Palawan: Results of SONNE Cruises SO-23 and SO-27. Energy, 10(3-4): 297-315. https://doi.org/10.1016/0360-5442(85)90048-9 [19] Hutchison, C. S., 2010. The North-West Borneo Trough. Marine Geology, 271(1-2): 32-43. https://doi.org/10.1016/j.margeo.2010.01.007 [20] Jian, Z. M., Larsen, H. C., Zarikian, C. A. A., et al., 2018. Expedition 368 Preliminary Report: South China Sea Rifted Margin, International Ocean Discovery Program, College Station. [21] Kuo, B. Y., Forsyth, D. W., 1988. Gravity Anomalies of the Ridge-Transform System in the South Atlantic between 31 and 34.5° S: Upwelling Centers and Variations in Crustal Thickness. Marine Geophysical Researches, 10(3-4): 205-232. https://doi.org/10.1007/BF00310065 [22] Laske, G., Masters, G., Ma, Z. T., et al., 2013. Update on CRUST1. 0-A 1-Degree Global Model of Earth's Crust. EGU, Vienna. [23] Li, C. F., Li, J. B., Ding, W. W., et al., 2015. Seismic Stratigraphy of the Central South China Sea Basin and Implications for Neotectonics. Journal of Geophysical Research: Solid Earth, 120(3): 1377-1399. https://doi.org/10.1002/2014jb011686 [24] Li, C. F., Song, T. R., 2012. Magnetic Recording of the Cenozoic Oceanic Crustal Accretion and Evolution of the South China Sea Basin. Chinese Science Bulletin, 57(20): 1879-1895 (in Chinese). doi: 10.1360/csb2012-57-20-1879 [25] Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567 [26] Li, F. C., Sun, Z., Yang, H. F., 2018. Possible Spatial Distribution of the Mesozoic Volcanic Arc in the Present-Day South China Sea Continental Margin and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 123(8): 6215-6235. https://doi.org/10.1029/2017jb014861 [27] Li, J. B., Ding, W. W., Wu, Z. Y., et al., 2012. The Propagation of Seafloor Spreading in the Southwestern Subbasin, South China Sea. Chinese Science Bulletin, 57(20): 1896-1905 (in Chinese). doi: 10.1360/csb2012-57-20-1896 [28] Li, J. B., Jin, X. L., Gao, J. Y., 2002. Study on Tectonic Geomorphology of the Late Expansion in the Eastern Sub-Basin, South China Sea. Science in China (Series D), 32(3): 239-248 (in Chinese). [29] Li, S. L., Meng, X. H., Guo, L. H., et al., 2012. Characteristics of Gravity Anomalies in the South China Sea and Their Tectonic Implications. Geoscience, 26(6): 1154-1161 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201206006.htm [30] Lin, J., Purdy, G. M., Schouten, H., et al., 1990. Evidence from Gravity Data for Focused Magmatic Accretion along the Mid-Atlantic Ridge. Nature, 344(6267): 627-632. https://doi.org/10.1038/344627a0 [31] Magde, L. S., Detrick, R. S., 1995. Crustal and Upper Mantle Contribution to the Axial Gravity Anomaly at the Southern East Pacific Rise. Journal of Geophysical Research: Solid Earth, 100(B3): 3747-3766. https://doi.org/10.1029/94jb02869 [32] McIntosh, K., Lavier, L., van Avendonk, H., et al., 2014. Crustal Structure and Inferred Rifting Processes in the Northeast South China Sea. Marine and Petroleum Geology, 58: 612-626. https://doi.org/10.1016/j.marpetgeo.2014.03.012 [33] Mo, X. X., 2019. Magmatism and Deep Geological Process. Earth Science, 44(5): 1487-1493 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905007.htm [34] Müller, R. D., Roest, W. R., Royer, J. Y., 1998. Asymmetric Sea-Floor Spreading Caused by Ridge-Plume Interactions. Nature, 396(6710): 455-459. https://doi.org/10.1038/24850 [35] Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007gc001743 [36] Neumann, G. A., Forsyth, D. W., Sandwell, D., 1993. Comparison of Marine Gravity from Shipboard and High-Density Satellite Altimetry along the Mid-Atlantic Ridge, 30.5°-35.5°S. Geophysical Research Letters, 20(15): 1639-1642. https://doi.org/10.1029/93gl01487 [37] Parker, R. L., 1973. The Rapid Calculation of Potential Anomalies. Geophysical Journal International, 31(4): 447-455. https://doi.org/10.1111/j.1365-246x.1973.tb06513.x [38] Qiu, X. L., Zhao, M. H., Xu, H. L., et al., 2012. Important Processes of Deep Seismic Surveys in the South China Sea: Retrospection and Expectation. Journal of Tropical Oceanography, 31(3): 1-9 (in Chinese with English abstract). http://www.researchgate.net/publication/284609799_Important_process_of_deep_seismic_survey_in_the_South_China_Sea_retrospection_and_expectation [39] Ruan, A. G., Niu, X. W., Qiu, X. L., et al., 2011. A Wide Angle Ocean Bottom Seismometer Profile across Liyue Bank, the Southern Margin of South China Sea. Chinese Journal of Geophysics, 54(12): 3139-3149 (in Chinese with English abstract). http://www.researchgate.net/publication/243971470_A_Wide_Angle_Ocean_Bottom_Seismometer_Experiment_Across_Liyue_Bank_the_Southern_Margin_of_the_South_China_Sea [40] Shen, Y., Forsyth, D. W., 1995. Geochemical Constraints on Initial and Final Depths of Melting Beneath Mid-Ocean Ridges. Journal of Geophysical Research: Solid Earth, 100(B2): 2211-2237. https://doi.org/10.1029/94jb02768 [41] Sibuet, J. C., Yeh, Y. C., Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98-119. https://doi.org/10.1016/j.tecto.2016.02.022 [42] Sims, K. W. W., DePaolo, D. J., Murrell, M. T., et al., 1999. Porosity of the Melting Zone and Variations in the Solid Mantle Upwelling Rate Beneath Hawaii: Inferences from 238U-230Th-226Ra and 235U-231Pa Disequilibria. Geochimica et Cosmochimica Acta, 63(23-24): 4119-4138. https://doi.org/10.1016/s0016-7037(99)00313-0 [43] Sun, Z., Stock, J., Klaus, A., et al., 2018. Expedition 367 Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program, College Station. [44] Sun, Z., Zhong, Z. H., Keep, M., et al., 2009.3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. Journal of Asian Earth Sciences, 34(4): 544-556. https://doi.org/10.1016/j.jseaes.2008.09.002 [45] Suo, Y. H., 2014. Tectonic-Magmatic processes of the Indian Ocean: Evidence on the Residual Mantle Bouguer Anomaly (Dissertation). Ocean University of China, Qingdao (in Chinese with English abstract). [46] Taylor, B., Hayes, D. E., 1983. Origin and History of the South China Sea Basin. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union, Washington, D. C. . [47] Turcotte, D.L., Schubert, G., 2002. Geodynamics (2nd Edition). Cambridge University Press, Cambridge. [48] van Ark, E., Lin, J., 2004. Time Variation in Igneous Volume Flux of the Hawaii-Emperor Hot Spot Seamount Chain. Journal of Geophysical Research: Solid Earth, 109(B11): B11401. https://doi.org/10.1029/2003jb002949 [49] Wan, K. Y., Xia, S. H., Cao, J. H., et al., 2017. Deep Seismic Structure of the Northeastern South China Sea: Origin of a High-Velocity Layer in the Lower Crust. Journal of Geophysical Research: Solid Earth, 122(4): 2831-2858. https://doi.org/10.1002/2016jb013481 [50] Wang, Y. J., Han, X. Q., Luo, Z. H., et al., 2009. Late Miocene Magmatism and Evolution of Zhenbei-Huangyan Seamount in the South China Sea: Evidence from Petrochemistry and Chronology. ActaOceanologicaSinica, 31(4): 93-102. https://doi.org/10.1109/CLEOE-EQEC.2009.5194697 [51] Wei, X. D., Zhao, M. H., Ruan, A. G., et al., 2010. Identification and Application of Shear Waves along the Profile OBS2006-3 in the Mid-Northern South China Sea. Journal of Tropical Oceanography, 29 (5): 72-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY201005012.htm [52] Wu, Z. C., Gao, J. Y., Ding, W. W., et al., 2017. Moho Depth of the South China Sea Basin from Three-Dimensional Gravity Inversion with Constraint Points. Chinese Journal of Geophysics, 60(7): 2599-2613 (in Chinese with English abstract). doi: 10.1002/cjg2.30053/full [53] Wu, Z. L., Ruan, A. G., Li, J. B., et al., 2010. New Progress of Deep Crust Sounding in the Southern Margin of the South China Sea Using Ocean Bottom Seismometers. Journal of Marine Sciences, 28(1): 55-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHHY201001009.htm [54] Xu, H. H., Ma, H., Song, H. B., et al., 2011. Numerical Simulation of Eastern South China Sea Basin Expansion. Chinese Journal of Geophysics, 54(12): 3070-3078 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS201102009.htm [55] Yan, P., Liu, H. L., 2004. Tectonic-Stratigraphic Division and Blind Fold Structures in Nansha Waters, South China Sea. Journal of Asian Earth Sciences, 24(3): 337-348. https://doi.org/10.1016/j.jseaes.2003.12.005 [56] Yan, P., Liu, H. L., 2005. Temporal and Spatial Distributions of Meso-Enozoic Igneous Rocks over South China Sea. Journal of Tropical Oceanography, 24(2): 33-41 (in Chinese with English abstract). http://www.researchgate.net/publication/286185174_Temporal_and_spatial_distributions_of_Meso-Cenozoic_igneous_rocks_over_South_China_Sea [57] Yan, Q. S., Shi, X. F., 2006. Mantle Plume (Hotspot)-Ridge Interaction. Marine Geology & Quaternary Geology, 26(5): 131-138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200605021.htm [58] Yan, Q. S., Shi, X. F., Castillo, P. R., 2014. The Late Mesozoic-Cenozoic Tectonic Evolution of the South China Sea: A Petrologic Perspective. Journal of Asian Earth Sciences, 85: 178-201. https://doi.org/10.1016/j.jseaes.2014.02.005 [59] Yin, S. R., Li, J. B., Ding, W. W., et al., 2020. Sedimentary Filling Characteristics of the South China Sea Oceanic Basin, with Links to Tectonic Activity during and after Seafloor Spreading. International Geology Review, 62(7-8): 887-907. https://doi.org/10.1080/00206814.2018.1522603 [60] Zhang, F. F., Yang, J. Y., Tian, Z. X., 2010. Regional Characteristics of Gravity Field in the South China Sea. Annual Meeting of Chinese Geoscience Union, Beijing (in Chinese). [61] Zhang, F., Lin, J., Zhang, X. B., et al., 2020. Asymmetry in Oceanic Crustal Structure of the South China Sea Basin and Its Implications on Mantle Geodynamics. International Geology Review, 62(7-8): 840-858. https://doi.org/10.1080/00206814.2018.1425922 [62] Zhang, G. L., Chen, L. H., Jackson, M. G., et al., 2017. Evolution of Carbonated Melt to Alkali Basalt in the South China Sea. Nature Geoscience, 10(3): 229-235. https://doi.org/10.1038/ngeo2877 [63] Zhang, J., Li, J. B., Ruan, A. G., et al., 2016. The Velocity Structure of a Fossil Spreading Centre in the Southwest Sub-Basin, South China Sea. Geological Journal, 51: 548-561. https://doi.org/10.1002/gj.2778 [64] Zhang, L., Zhao, M. H., Wang, J., et al., 2013. Correction of OBS Position and Recent Advances of 3D Seismic Exploration in the Central Sub-Basin of South China Sea. Erath Science, 38(1): 33-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201301008.htm [65] Zhang, T., Lin, J., Gao, J. Y., 2013. Magmatism and Tectonic Processes in Area a Hydrothermal Vent on the Southwest Indian Ridge. Science in China (Series D), 43(11): 1834-1846 (in Chinese). [66] Zhao, M. H., Qiu, X. L., Xu, H. L., et al., 2011. Deep Seismic Surveys in the Southern South China Sea and Contrast on Its Conjugate Margins. Erath Science, 36(5): 823-830 (in Chinese with English abstract). http://www.researchgate.net/publication/286782243_Deep_seismic_surveys_in_the_southern_South_China_Sea_and_contrast_on_its_conjugate_margins [67] Zhao, Y. H., Ding, W. W., Yin, S. R., et al., 2020. Asymmetric Post-Spreading Magmatism in the South China Sea: Based on the Quantification of the Volume and Its Spatiotemporal Distribution of the Seamounts. International Geology Review, 62(7-8): 955-969. https://doi.org/10.1080/00206814.2019.1577189 [68] Zhou, D., Ru, K., Chen, H. Z., 1995. Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region. Tectonophysics, 251(1-4): 161-177. https://doi.org/10.1016/0040-1951(95)00018-6 [69] 郝天珧, 黄松, 徐亚, 等, 2008. 南海东北部及邻区深部结构的综合地球物理研究. 地球物理学报, 51(6): 1785-1796. doi: 10.3321/j.issn:0001-5733.2008.06.019 [70] 李春峰, 宋陶然, 2012. 南海新生代洋壳扩张与深部演化的磁异常记录. 科学通报, 57(20): 1879-1895. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220007.htm [71] 李家彪, 丁巍伟, 吴自银, 等, 2012. 南海西南海盆的渐进式扩张. 科学通报, 57(20): 1896-1905. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220008.htm [72] 李家彪, 金翔龙, 高金耀, 2002. 南海东部海盆晚期扩张的构造地貌研究. 中国科学(D辑), 32(3): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200203008.htm [73] 李淑玲, 孟小红, 郭良辉, 等, 2012. 南海重力异常特征及其显著的构造意义. 现代地质, 26(6): 1154-1161. doi: 10.3969/j.issn.1000-8527.2012.06.004 [74] 莫宣学, 2019. 岩浆作用与地球深部过程. 地球科学, 44(5): 1487-1493. doi: 10.3799/dqkx.2019.972 [75] 丘学林, 赵明辉, 徐辉龙, 等, 2012. 南海深地震探测的重要科学进程: 回顾和展望. 热带海洋学报, 31(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201203002.htm [76] 阮爱国, 牛雄伟, 丘学林, 等, 2011. 穿越南沙礼乐滩的海底地震仪广角地震试验. 地球物理学报, 54(12): 3139-3149. doi: 10.3969/j.issn.0001-5733.2011.12.014 [77] 索艳慧, 2014. 印度洋构造-岩浆过程: 剩余地幔布格重力异常证据(博士学位论文). 青岛: 中国海洋大学. [78] 卫小冬, 赵明辉, 阮爱国, 等, 2010. 南海中北部OBS2006-3地震剖面中横波的识别与应用. 热带海洋学报, 29(5): 72-80. doi: 10.3969/j.issn.1009-5470.2010.05.011 [79] 吴招才, 高金耀, 丁巍伟, 等, 2017. 南海海盆三维重力约束反演莫霍面深度及其特征. 地球物理学报, 60(7): 2599-2613. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201707009.htm [80] 吴振利, 阮爱国, 李家彪, 等, 2010. 南海南部海底地震仪试验及初步结果. 海洋学研究, 28(1): 55-61. doi: 10.3969/j.issn.1001-909X.2010.01.008 [81] 许鹤华, 马辉, 宋海斌, 等, 2011. 南海东部海盆扩张过程的数值模拟. 地球物理学报, 54(12): 3070-3078. doi: 10.3969/j.issn.0001-5733.2011.12.008 [82] 阎贫, 刘海龄, 2005. 南海及其周缘中新生代火山活动时空特征与南海的形成模式. 热带海洋学报, 24(2): 33-41. doi: 10.3969/j.issn.1009-5470.2005.02.005 [83] 鄢全树, 石学法, 2006. 洋中脊与地幔柱热点相互作用研究进展. 海洋地质与第四纪地质, 26(5): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200605021.htm [84] 张菲菲, 杨金玉, 田振兴, 2010. 南海海域重力场分区特征. 中国地球物理学会年会, 北京. [85] 张莉, 赵明辉, 王建, 等, 2013. 南海中央次海盆OBS位置校正及三维地震探测新进展. 地球科学, 38(1): 33-42. doi: 10.3799/dqkx.2013.004 [86] 张涛, 林间, 高金耀, 2013. 西南印度洋中脊热液区的岩浆活动与构造特征. 中国科学(D辑), 43(11): 1834-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201311013.htm [87] 赵明辉, 丘学林, 徐辉龙, 等, 2011. 南海南部深地震探测及南北共轭陆缘对比. 地球科学, 36(5): 823-830. doi: 10.3799/dqkx.2011.085