• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    上地幔含水量对海底扩张过程中洋壳厚度的影响:数值模拟

    邵佳 许鹤华 谌永强 施小斌 王晓芳

    邵佳, 许鹤华, 谌永强, 施小斌, 王晓芳, 2021. 上地幔含水量对海底扩张过程中洋壳厚度的影响:数值模拟. 地球科学, 46(3): 826-839. doi: 10.3799/dqkx.2020.336
    引用本文: 邵佳, 许鹤华, 谌永强, 施小斌, 王晓芳, 2021. 上地幔含水量对海底扩张过程中洋壳厚度的影响:数值模拟. 地球科学, 46(3): 826-839. doi: 10.3799/dqkx.2020.336
    Shao Jia, Xu Hehua, Shen Yongqiang, Shi Xiaobin, Wang Xiaofang, 2021. The Effect of Water Content in the Upper Mantle on the Oceanic Crustal Thickness during Seafloor Spreading: Numerical Modeling. Earth Science, 46(3): 826-839. doi: 10.3799/dqkx.2020.336
    Citation: Shao Jia, Xu Hehua, Shen Yongqiang, Shi Xiaobin, Wang Xiaofang, 2021. The Effect of Water Content in the Upper Mantle on the Oceanic Crustal Thickness during Seafloor Spreading: Numerical Modeling. Earth Science, 46(3): 826-839. doi: 10.3799/dqkx.2020.336

    上地幔含水量对海底扩张过程中洋壳厚度的影响:数值模拟

    doi: 10.3799/dqkx.2020.336
    基金项目: 

    NSFC-广东联合基金项目 U20A20100

    国家自然科学基金项目 91428205

    国家自然科学基金项目 41376061

    中国科学院战略性先导科技专项A类项目 XDA13010303

    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 GML2019ZD0104

    详细信息
      作者简介:

      邵佳(1995-), 男, 在读硕士研究生, 主要从事地球动力学和数值模拟研究.ORCID: 0000-0002-5487-7639.E-mail: shaojia18@mails.ucas.ac.cn

      通讯作者:

      许鹤华, E-mail: xhhcn@scsio.ac.cn

    • 中图分类号: P311.3;P738.1

    The Effect of Water Content in the Upper Mantle on the Oceanic Crustal Thickness during Seafloor Spreading: Numerical Modeling

    • 摘要: 地幔中不同含量的水会对洋壳的生成产生重要影响,但目前不同含水量下的均匀和局部含水地幔会怎样影响洋壳厚度还不清楚.利用动力学数值模拟的方法,对上地幔均匀含水和局部含水两种情况下洋壳的生成过程展开研究.结果表明:当上地幔均匀含水时,含水量的增加在减小最大熔融分数的同时,会增大初始熔融深度和熔融面积,因而生成的洋壳厚度会增加.当上地幔局部含水时,局部含水地幔熔融后也会增大生成的洋壳厚度,但开始影响洋壳厚度的时间与其含水量有关.结合南海洋壳特征进一步分析认为:南海扩张期间其地幔源含水量具有非均质性.东部次海盆的洋壳比西南次海盆厚1 km,可能是因为前者地幔源含水量整体高于后者(本模型表明约高50×10-6).南海玄武岩中碳酸盐化硅酸盐熔体的存在,可能是由局部高含水量地幔在深部熔融产生的熔体携带上来的.南海洋壳厚度在时间上没有大幅度变化,可能是因为局部高含水量地幔的体积相对较小或体积虽大但其含水量没有显著高于地幔背景含水量.

       

    • 图  1  模型中干、湿地幔相图

      图中黑色的标号1的带箭头点画线和标号2、3的带箭头虚线分别示意固体地幔上升路径和含水(800×10-6)、干地幔熔融后上升的路径;蓝色及黄色五角星分别代表含水地幔(800×10-6)和干地幔开始熔融的温度和压力.本图根据Katz et al. (2003)参数化熔融模型绘制

      Fig.  1.  Phase diagram of dry and wet mantle in the models

      图  2  初始模型设置

      白色实线表示温度等值线.各种颜色所代表物质:1.空气;2.水;3.沉积物;4.上地壳;5.中地壳;6.下地壳;7.岩石圈地幔;8.干软流圈地幔;9.含水地幔;10.软弱点;11.无水地幔熔融形成的洋壳;12.含水地幔形成的洋壳;13.无水地幔熔融体;14.含水地幔熔融体;15.含水地幔熔融后的固体部分

      Fig.  2.  Initial model configuration

      图  3  干地幔模型演化结果

      图中各颜色含义见图 2;图a表示大陆岩石圈拉张减薄前期,该阶段无地幔熔融体生成;图b表示地幔熔融体开始出现,进入拉张减薄后期;图c表示岩石圈破裂和洋壳开始生成;图d表示洋壳形成阶段

      Fig.  3.  The evolution results of the dry models

      图  4  干、均匀含水模型预测的洋壳厚度随时间的变化

      黑色点划线为干地幔(含水量为0)熔融模型洋壳厚度随时间变化,其余颜色虚线表示不同含水量的均匀含水模型洋壳厚度随时间变化;蓝绿色区域代表洋壳厚度稳定的范围;各颜色竖线代表对应含水量下岩石圈破裂时间

      Fig.  4.  Oceanic crustal thickness varies with time predicted by the dry and homogeneous hydrous models

      图  5  当均匀含水模型含水量为100×10-6时演化结果

      图中各颜色含义见图 2;图a表示大陆岩石圈拉张减薄前期,该阶段无地幔熔融体生成;图b表示地幔熔融体开始出现,进入拉张减薄后期;图c表示岩石圈破裂和洋壳开始生成;图d表示洋壳形成阶段

      Fig.  5.  The evolution results of the homogeneous hydrous models with 100×10-6 water content

      图  6  含水量为600×10-6、初始深度为300 km的局部含水模型随时间演化结果

      图中各颜色含义见图 2;图a表示大陆岩石圈拉张减薄前期,该阶段无地幔熔融体生成;图b表示拉张减薄后期结束,岩石圈破裂和洋壳开始生成;图c中局部含水地幔上升至其初始熔融深度并开始熔融;图d中含水地幔完全熔融并迅速上升;图e中含水地幔的熔体与干地幔熔融体混合并增加了地幔熔融量;图f中含水地幔熔体耗尽

      Fig.  6.  The evolution results of the local hydrous models with 300 km initial depth and 600×10-6 water content

      图  7  局部含水模型预测的洋壳厚度随时间的变化

      Fig.  7.  Oceanic crustal thickness varies with time predicted by the local hydrous models

      图  8  岩石圈底界温度为1 350 ℃时熔融区洋脊处熔融分数在深度上的分布特征

      Fig.  8.  The melt fraction distribution with depth at the spreading ridge of the homogeneous hydrous models with different water content under the condition that the base of lithosphere temperature is 1 350 ℃

      图  9  不同含水量下均匀含水模型在9.8 Ma时的物质组分(a~d)和熔融分数演化(e~h)结果

      图a~d代表物质组分,各颜色所代表的含义见图 2;图e~h代表a~d对应的熔融分数分布,白色箭头为物质速度场方向,不同颜色代表熔融分数

      Fig.  9.  Composition (a-d) and melt fraction distributions (e-h) results of different homogeneous hydrous models with varying water contents at 9.8 Ma

      图  10  不同含水量的均匀含水模型在10.9 Ma时洋中脊处熔融分数随深度的分布(a),最大熔融分数随时间演化的变化特征(b)

      Fig.  10.  The features of melt fraction distribution with depth at spreading ridge at 10.9 Ma (a), maximum melt fraction with time, under the homogeneous hydrous models with different water content (b)

      图  11  初始深度为300 km、不同含水量的局部含水模型的物质组分和熔融分数演化结果

      图a、b、c代表物质组分;图d、e、f对应着图a、b、c的熔融分数分布;白色箭头代表物质速度场方向及大小,不同颜色代表熔融分数

      Fig.  11.  The evolution results of the local hydrous upper mantle under the different water content at different depth

      图  12  南海玄武岩样品和部分地球物理测线位置

      图中的红色方块点表示发现碳酸盐化硅酸盐熔体的U1431钻孔位置,且其岩石样品含水量较大(Zhang et al., 2017; Wang et al., 2019).黑或灰线代表地球物理测线,其中测线a为OBS2006-2,来自敖威等(2012);测线b为多道地震测线,来自Ding et al. (2018);测线c为OBS2001, 来自Wang et al. (2006);测线d来自张莉等(2013)He et al. (2016);测线e来自吕川川等(2011)丘学林等(2011)Yu et al. (2017);NWSB代表西北次海盆,ESB代表东部次海盆,SWSB代表西南次海盆

      Fig.  12.  Location of basalt samples and some seismic lines of the South China Sea

      表  1  数值实验描述

      Table  1.   Description of numerical experiments

      均匀含水模型 局部含水模型
      地幔含水量(10-6) 地幔含水量(10-6) 所在深度(km)
      0
      100
      200 200 200
      300 200 300
      400 400 200
      500 400 300
      600 600 200
      700 600 300
      800
      下载: 导出CSV

      表  2  局部含水模型开始熔融及开始影响洋壳厚度的时间

      Table  2.   The initial time of local hydrous mantle melting and affecting the oceanic crustal thickness

      初始深度(km) 含水量(10-6) 开始熔融时间(Ma) 开始影响洋壳厚度的时间(Ma)
      200 200 11.5 11.78
      200 400 10.0 11.78
      200 600 9.0 11.78
      300 200 31.9 32.80
      300 400 29.4 30.40
      300 600 27.5 28.40
      下载: 导出CSV
    • [1] Ao, W., Zhao, M. H., Qiu, X. L., et al., 2012. Crustal Structure of the Northwest Sub-Basin of the South China Sea and Its Tectonic Implication. Earth Science, 37(4): 779-790 (in Chinese with English abstract). http://www.researchgate.net/publication/286203459_Crustal_structure_of_the_Northwest_Sub-Basin_of_the_South_China_Sea_and_its_tectonic_implication
      [2] Asimow, P. D., Langmuir, C. H., 2003. The Importance of Water to Oceanic Mantle Melting Regimes. Nature, 421(6925): 815-820. https://doi.org/10.1038/nature01429
      [3] Bell, D. R., Rossman, G. R., 1992. Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals. Science, 255(5050): 1391-1397. https://doi.org/10.1126/science.255.5050.1391
      [4] Brunelli, D., Cipriani, A., Bonatti, E., 2018. Thermal Effects of Pyroxenites on Mantle Melting below Mid-Ocean Ridges. Nature Geoscience, 11(7): 520-525. https://doi.org/10.1038/s41561-018-0139-z
      [5] Chen, Y. J., 1992. Oceanic Crustal Thickness Versus Spreading Rate. Geophysical Research Letters, 19(8): 753-756. https://doi.org/10.1029/92gl00161
      [6] Christeson, G. L., Goff, J. A., Reece, R. S., 2019. Synthesis of Oceanic Crustal Structure from Two-Dimensional Seismic Profiles. Reviews of Geophysics, 57(2): 504-529. https://doi.org/10.1029/2019rg000641
      [7] Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic Accretionary Processes. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011
      [8] Gerya, T., 2019. Design of 2D Numerical Geodynamic Models. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511809101.018
      [9] Grove, T. L., Till, C. B., Krawczynski, M. J., 2012. The Role of H2O in Subduction Zone Magmatism. Annual Review of Earth and Planetary Sciences, 40(1): 413-439. https://doi.org/10.1146/annurev-earth-042711-105310
      [10] Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/s1367-9120(01)00069-4
      [11] He, E. Y., Zhao, M. H., Qiu, X. L., et al., 2016. Crustal Structure across the Post-Spreading Magmatic Ridge of the East Sub-Basin in the South China Sea: Tectonic Significance. Journal of Asian Earth Sciences, 121: 139-152. https://doi.org/10.1016/j.jseaes.2016.03.003
      [12] Hirschmann, M. M., Tenner, T., Aubaud, C., et al., 2009. Dehydration Melting of Nominally Anhydrous Mantle: The Primacy of Partitioning. Physics of the Earth and Planetary Interiors, 176(1-2): 54-68. https://doi.org/10.1016/j.pepi.2009.04.001
      [13] Hirth, G., Kohlstedt, D. L., 1996. Water in the Oceanic Upper Mantle: Implications for Rheology, Melt Extraction and the Evolution of the Lithosphere. Earth and Planetary Science Letters, 144(1-2): 93-108. https://doi.org/10.1016/0012-821x(96)00154-9
      [14] Katz, R. F., Spiegelman, M., Langmuir, C. H., 2003. A New Parameterization of Hydrous Mantle Melting. Geochemistry, Geophysics, Geosystems, 4(9): 1073. https://doi.org/10.1029/2002gc000433
      [15] Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567
      [16] Li, F. C., Sun, Z., Pang, X., et al., 2019. Low-Viscosity Crustal Layer Controls the Crustal Architecture and Thermal Distribution at Hyperextended Margins: Modeling Insight and Application to the Northern South China Sea Margin. Geochemistry, Geophysics, Geosystems, 20(7): 3248-3267. https://doi.org/10.1029/2019gc008200
      [17] Li, Z. H., Xu, Z. Q., 2015. Dynamics of Along-Strike Transition between Oceanic Subduction and Continental Collision: Effects of Fluid-Melt Activity. Acta Petrologica Sinica, 31(12): 3524-3530 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201512002.htm
      [18] Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179. https://doi.org/10.1130/g23193a.1
      [19] Liao, J., Wang, Q., Gerya, T., et al., 2017. Modeling Craton Destruction by Hydration-Induced Weakening of the Upper Mantle. Journal of Geophysical Research: Solid Earth, 122(9): 7449-7466. https://doi.org/10.1002/2017jb014157
      [20] Lü, C. C., Hao, T. Y., Qiu, X. L., et al., 2011. A Study on the Deep Structure of the Northern Part of Southwest Sub-Basin from Ocean Bottom Seismic Data, South China Sea. Chinese Journal of Geophysics, 54(12): 3129-3138 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFMOS43C1547L
      [21] Morgan, J. P., Chen, Y. J., 1993. The Genesis of Oceanic Crust: Magma Injection, Hydrothermal Circulation, and Crustal Flow. Journal of Geophysical Research: Solid Earth, 98(B4): 6283-6297. https://doi.org/10.1029/92jb02650
      [22] Nichols, A. R. L., Carroll, M. R., Höskuldsson, 2002. Is the Iceland Hot Spot also Wet? Evidence from the Water Contents of Undegassed Submarine and Subglacial Pillow Basalts. Earth and Planetary Science Letters, 202(1): 77-87. https://doi.org/10.1016/s0012-821x(02)00758-6
      [23] Nikolaeva, K., Gerya, T. V., Connolly, J. A. D., 2008. Numerical Modelling of Crustal Growth in Intraoceanic Volcanic Arcs. Physics of the Earth and Planetary Interiors, 171(1-4): 336-356. https://doi.org/10.1016/j.pepi.2008.06.026
      [24] Niu, Y. L., Bideau, D., Hékinian, R., et al., 2001. Mantle Compositional Control on the Extent of Mantle Melting, Crust Production, Gravity Anomaly, Ridge Morphology, and Ridge Segmentation: A Case Study at the Mid-Atlantic Ridge 33-35°N. Earth and Planetary Science Letters, 186(3-4): 383-399. https://doi.org/10.1016/s0012-821x(01)00255-2
      [25] Niu, Y., 1997. Mantle Melting and Melt Extraction Processes Beneath Ocean Ridges: Evidence from Abyssal Peridotites. Journal of Petrology, 38(8): 1047-1074. https://doi.org/10.1093/petroj/38.8.1047
      [26] Ohtani, E., 2020. The Role of Water in Earth's Mantle. National Science Review, 7(1): 224-232. https://doi.org/10.1093/nsr/nwz071
      [27] Qiu, X. L., Zhao, M. H., Ao, W., et al., 2011. OBS Survey and Crustal Structure of the SW Sub-Basin and Nansha Block, South China Sea. Chinese Journal of Geophysics, 54(12): 3117-3128 (in Chinese with English abstract). doi: 10.1002/cjg2.1680/full
      [28] Vera, E. E., Diebold, J. B., 1994. Seismic Imaging of Oceanic Layer 2A between 9°30'N and 10°N on the East Pacific Rise from Two-Ship Wide-Aperture Profiles. Journal of Geophysical Research: Solid Earth, 99(B2): 3031-3041. https://doi.org/10.1029/93jb02107
      [29] Wallace, P. J., 2002. Volatiles in Submarine Basaltic Glasses from the Northern Kerguelen Plateau (ODP Site 1140): Implications for Source Region Compositions, Magmatic Processes, and Plateau Subsidence. Journal of Petrology, 43(7): 1311-1326. https://doi.org/10.1093/petrology/43.7.1311
      [30] Wang, T. K., Chen, M. K., Lee, C. S., et al., 2006. Seismic Imaging of the Transitional Crust across the Northeastern Margin of the South China Sea. Tectonophysics, 412(3-4): 237-254. https://doi.org/10.1016/j.tecto.2005.10.039
      [31] Wang, W., Chu, F. Y., Wu, X. C., et al., 2019. Constraining Mantle Heterogeneity Beneath the South China Sea: A New Perspective on Magma Water Content. Minerals, 9(7): 410. https://doi.org/10.3390/min9070410
      [32] White, R. S., Minshull, T. A., Bickle, M. J., et al., 2001. Melt Generation at very Slow-Spreading Oceanic Ridges: Constraints from Geochemical and Geophysical Data. Journal of Petrology, 42(6): 1171-1196. https://doi.org/10.1093/petrology/42.6.1171
      [33] Williams, Q., Hemley, R. J., 2001. Hydrogen in the Deep Earth. Annual Review of Earth and Planetary Sciences, 29(1): 365-418. https://doi.org/10.1146/annurev.earth.29.1.365
      [34] Wu, J., Suppe, J., 2018. Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography. Journal of Earth Science, 29(6): 1304-1318. https://doi.org/10.1007/s12583-017-0813-x
      [35] Yu, X., Liu, Z. F., 2020. Non-Mantle-Plume Process Caused the Initial Spreading of the South China Sea. Scientific Reports, 10: 8500. https://doi.org/10.1038/s41598-020-65174-y
      [36] Yu, Z. T., Li, J. B., Ding, W. W., et al., 2017. Crustal Structure of the Southwest Subbasin, South China Sea, from Wide-Angle Seismic Tomography and Seismic Reflection Imaging. Marine Geophysical Research, 38(1-2): 85-104. https://doi.org/10.1007/s11001-016-9284-1
      [37] Zhang, G. L., Chen, L. H., Jackson, M. G., et al., 2017. Evolution of Carbonated Melt to Alkali Basalt in the South China Sea. Nature Geoscience, 10(3): 229-235. https://doi.org/10.1038/ngeo2877
      [38] Zhang, L., Zhao, M.H., Wang, J., 2013. Correction of OBS Position and Recent Advances of 3D Seismic Exploration in the Central Sub-Basin of South China Sea. Earth Science, 38(1): 33-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201301008.htm
      [39] Zhou, D., Li, C. F., Zlotnik, S., et al., 2020. Correlations between Oceanic Crustal Thickness, Melt Volume, and Spreading Rate from Global Gravity Observation. Marine Geophysical Research, 41(3): 1-16. https://doi.org/10.1007/s11001-020-09413-x
      [40] 敖威, 赵明辉, 丘学林, 等, 2012. 南海西北次海盆及其邻区地壳结构和构造意义. 地球科学, 37(4): 779-790. http://www.earth-science.net/article/id/2284
      [41] 李忠海, 许志琴, 2015. 大洋俯冲和大陆碰撞沿走向的转换动力学及流体-熔体活动的作用. 岩石学报, 31(12): 3524-3530. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512002.htm
      [42] 吕川川, 郝天珧, 丘学林, 等, 2011. 南海西南次海盆北缘海底地震仪测线深部地壳结构研究. 地球物理学报, 54(12): 3129-3138. doi: 10.3969/j.issn.0001-5733.2011.12.013
      [43] 丘学林, 赵明辉, 敖威, 等, 2011. 南海西南次海盆与南沙地块的OBS探测和地壳结构. 地球物理学报, 54(12): 3117-3128. doi: 10.3969/j.issn.0001-5733.2011.12.012
      [44] 张莉, 赵明辉, 王建, 等, 2013. 南海中央次海盆OBS位置校正及三维地震探测新进展. 地球科学, 38(1): 33-42. doi: 10.3799/dqkx.2013.004
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  813
    • HTML全文浏览量:  293
    • PDF下载量:  82
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-08-30
    • 刊出日期:  2021-03-01

    目录

      /

      返回文章
      返回