The Remote Role of Mongolia-Okhotsk Ocean: Evidences from the Origin of Rhyolite Porphyry in Yangpangou Area, the Southeast of Inner Mongolia
-
摘要: 为了解蒙古—鄂霍次克构造体系的远程作用及其在中国东北以南的影响范围,在内蒙古多伦火山盆地羊盘沟地区开展了流纹斑岩锆石U-Pb同位素年代学、岩石地球化学及区域对比研究.结果显示,其形成时代为144.2±0.6 Ma,属于早白垩世早期.主量元素SiO2含量为73.25%~76.72%,K2O含量为4.64%~7.87%,K2O/Na2O值在1.15~3.82之间,A/CNK值为0.79~0.99;副矿物为磁铁矿、锆石和磷灰石等,属准铝质高钾钙碱性—钾玄岩系列A2型流纹岩类;稀土元素总量高(320.76×10-6~415.70×10-6),富集轻稀土元素、大离子亲石元素K和Rb、高场强元素Zr和Hf以及元素U、Th等,亏损重稀土元素、大离子亲石元素Ba和Sr、高场强元素Nb和Ta以及元素P、Ti等,显著Eu负异常(δEu=0.08~0.15).表明流纹斑岩形成于后碰撞构造环境,是早白垩世蒙古—鄂霍次克洋闭合后某个伸展事件下的产物,因此,蒙古—鄂霍次克构造体系在中国的影响范围向东南至少延伸至蒙东南—冀北一带,且对应的蒙古—鄂霍次克洋东段的闭合完成时间应早于144.2 Ma.Abstract: In order to understand the long-range function of the Mongolian-Okhotsk tectonic system and its influence range to the south in China. Zircon U-Pb isotopic geochronology, rock geochemistry and regional correlation of rhyolite porphyry were carried out in yangpangou area, Duolun volcanic basin, Inner Mongolia. Zircon LA-ICP-MS U-Pb isotopic dating shows that the age of its formation is 144.2±0.6 Ma, belonging to the early Early Cretaceous. The content of SiO2 is 73.25%-76.72%, K2O is 4.64%-7.87%, K2O/Na2O is 1.15-3.82, and A/CNK is 0.79-0.99. The accessory minerals are mainly magnetite, zircon and apatite. It belongs to the type A2 rhyolite of the quasi aluminous high potassium Ca-alkaline shoshonite series. The total amount of rare-earth elements is high (320.76×10-6-415.70×10-6). Light rare-earth elements, large ion lithophile elements K, Rb and high field strength elements U, Th, Zr and Hf are enriched. Heavy rare-earth elements, large ion lithophile elements Ba, Sr and high field strength elements P, Ti, Nb, Ta are deficient. Eu negative abnormality is significant (δEu=0.08-0.15). The above characteristics indicate that the rhyolite porphyry was formed in the background of post-collision, reflecting the post-collisional extension event after the closure of Mongolia-Okhotsk Ocean in Early Cretaceous. Therefore, the influence range of the Mongolia-Okhotsk tectonic system in China extends to the southeast at least to the southeast of Inner Mongolia to the north of Hebei, and the completion time of the corresponding Mongolia-Okhotsk Ocean east section should be earlier than 144.2 Ma.
-
Key words:
- Mongolia-Okhotsk Ocean /
- rhyolite porphyry /
- Mesozoic /
- post-collision /
- the southeast of Inner Mongolia /
- geochemistry
-
图 1 羊盘沟地区构造位置图(a)及地质简图(b)
图a据张长厚等(2006)、许文良等(2013)修改. 1.第四系;2.白音高老组;3.满克头鄂博组;4.白音高老期流纹斑岩;5.白音高老期正长斑岩;6.流纹质熔结凝灰岩;7.流纹质含角砾凝灰岩;8.石英粗面质含角砾凝灰岩;9流纹岩;10.流纹斑岩;11.正长斑岩;12.地质界线;13.岩性界线;14.喷发不整合界线,15.区域断裂;16.正断层;17.钻孔位置
Fig. 1. Structural location (a) and geological sketch map (b) of Yangpangou area
图 7 羊盘沟地区流纹斑岩稀土球粒陨石元素标准化分布型式图(a)和微量元素原始地幔标准化蛛网图(b)
Fig. 7. Chondrite-normalized REE (a) and primitive mantle-normalized (b) diagrams of rhyolitic porphyry in Yangpangou area
图 8 羊盘沟地区流纹斑岩(K2O+Na2O)/CaO-Zr+Nb+Ce+Y图解(a)、FeOT/MgO-Zr+Nb+Ce+Y图解(b)、(K2O+Na2O)/CaO-10 000Ga/Al图解(c)和Ce-10 000Ga/Al图解(d)
A. A型;I & S. I、S型;FG. 分异的I、S型;OTG. 未分异的I、S型
Fig. 8. (K2O+Na2O)/CaO vs. Zr+Nb+Ce+Y (a)、FeOT/MgO vs. Zr+Nb+Ce+Y (b)、(K2O+Na2O)/CaO vs. 10 000Ga/Al (c) and Ce vs. 10 000Ga/Al (d) diagrams of rhyolitic porphyry in Yangpangou area
图 10 羊盘沟地区流纹斑岩δEu-Sr源区判别图解
Fig. 10. The δEu vs. Sr diagram of rhyolitic porphyry in Yangpangou area
图 11 东北地区早白垩世早期和中晚侏罗世火山岩分布
Fig. 11. Distribution map of early Early Cretaceous and Middle-Late Jurassic volcanic rocks in NE China
图 12 羊盘沟地区流纹斑岩Rb-Y+Nb(a)和Nb-Y(a)构造环境判别图解
Fig. 12. Rb vs. Y+Nb (a) and Nb vs. Y (b) diagrams of rhyolitic porphyry in Yangpangou area
图 13 早白垩世早期蒙东南‒冀北地区构造环境示意
据张超(2020)修改
Fig. 13. Schematic diagram of tectonic setting for the area between the southeast of Inner Mongolia and the north of Hebei during early Early Cretaceous
表 1 羊盘沟地区流纹斑岩锆石LA⁃ICP⁃MS U⁃Pb同位素定年数据
Table 1. Zircon U⁃Pb dating of rhyolitic porphyry in Yangpangou area
测点号 元素含量(10-6) Th/U 同位素比值 同位素年龄(Ma) 谐和度(%) Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 测值 1σ 测值 1σ 测值 1σ 测值 1σ 测值 1σ 测值 1σ 1 17 305 645 0.47 0.048 5 0.000 8 0.151 3 0.002 7 0.022 5 0.000 2 124.2 40.7 143.0 2.4 143.6 1.3 99 2 19 363 676 0.54 0.049 2 0.000 9 0.153 1 0.002 8 0.022 6 0.000 2 166.8 38.0 144.7 2.4 143.9 1.3 99 3 75 1 590 431 3.69 0.066 6 0.001 1 0.224 7 0.007 0 0.024 2 0.000 3 833.3 33.3 205.8 5.8 154.4 1.7 71 4 27 433 1 021 0.42 0.050 4 0.000 7 0.157 0 0.002 3 0.022 5 0.000 2 213.0 33.3 148.0 2.0 143.6 1.1 96 5 67 1 242 521 2.39 0.049 7 0.000 6 0.164 7 0.003 0 0.023 9 0.000 2 183.4 21.3 154.8 2.7 152.4 1.4 98 6 30 502 1 124 0.45 0.050 4 0.000 7 0.157 3 0.002 4 0.022 6 0.000 2 213.0 33.3 148.4 2.1 143.8 1.2 96 7 38 849 1 402 0.61 0.067 0 0.001 4 0.196 7 0.004 1 0.021 2 0.000 2 838.9 42.6 182.3 3.5 135.1 1.0 70 8 21 376 766 0.49 0.049 4 0.000 9 0.154 5 0.002 8 0.022 7 0.000 2 164.9 40.7 145.9 2.5 144.4 1.3 98 9 38 882 1 302 0.68 0.049 6 0.000 8 0.160 7 0.002 5 0.023 4 0.000 2 176.0 35.2 151.4 2.2 149.4 1.3 98 10 42 695 1 568 0.44 0.049 7 0.000 8 0.155 6 0.002 5 0.022 6 0.000 2 189.0 37.0 146.9 2.2 144.2 1.2 98 11 27 543 972 0.56 0.048 8 0.000 8 0.151 9 0.002 6 0.022 5 0.000 2 200.1 40.7 143.6 2.3 143.6 1.3 99 12 20 351 740 0.47 0.049 1 0.000 9 0.152 2 0.002 7 0.022 5 0.000 2 150.1 44.4 143.9 2.4 143.4 1.2 99 13 10 207 384 0.54 0.050 6 0.001 1 0.156 9 0.003 4 0.022 5 0.000 2 233.4 50.0 148.0 3.0 143.2 1.4 96 14 39 631 1 443 0.44 0.049 9 0.000 8 0.156 4 0.002 4 0.022 6 0.000 2 190.8 37.0 147.5 2.1 144.2 1.2 97 15 12 254 432 0.59 0.049 6 0.001 1 0.154 9 0.003 6 0.022 6 0.000 2 189.0 53.7 146.2 3.1 144.1 1.3 98 16 11 223 406 0.55 0.047 8 0.001 0 0.153 0 0.003 1 0.023 2 0.000 2 100.1 78.7 144.6 2.7 147.7 1.3 97 17 32 717 1 192 0.60 0.050 0 0.000 8 0.154 9 0.002 4 0.022 4 0.000 2 194.5 32.4 146.3 2.1 142.9 1.2 97 18 17 316 619 0.51 0.048 4 0.000 8 0.150 0 0.002 5 0.022 5 0.000 2 116.8 45.4 141.9 2.2 143.4 1.3 98 19 8 193 266 0.73 0.049 4 0.001 3 0.151 9 0.003 8 0.022 5 0.000 2 164.9 65.7 143.6 3.4 143.5 1.6 99 20 17 385 573 0.67 0.066 3 0.001 5 0.207 7 0.005 1 0.022 5 0.000 2 814.5 48.9 191.6 4.3 143.7 1.3 71 21 24 512 894 0.57 0.050 2 0.000 8 0.156 1 0.002 5 0.022 5 0.000 2 205.6 38.9 147.3 2.2 143.5 1.2 97 22 8 215 293 0.73 0.048 4 0.001 2 0.150 0 0.003 9 0.022 5 0.000 3 116.8 59.3 141.9 3.4 143.4 1.8 98 23 15 353 542 0.65 0.049 8 0.001 0 0.155 9 0.003 2 0.022 7 0.000 2 183.4 13.9 147.1 2.8 144.6 1.5 98 24 20 342 764 0.45 0.049 5 0.000 8 0.154 0 0.002 6 0.022 5 0.000 2 172.3 38.9 145.4 2.3 143.6 1.3 98 25 18 369 672 0.55 0.048 2 0.000 9 0.149 9 0.002 6 0.022 6 0.000 2 109.4 42.6 141.8 2.3 143.9 1.2 98 26 7 203 248 0.82 0.050 2 0.001 4 0.155 6 0.004 5 0.022 5 0.000 3 205.6 97.2 146.8 4.0 143.3 1.6 97 27 16 333 577 0.58 0.048 1 0.001 0 0.150 5 0.003 1 0.022 7 0.000 2 105.6 50.0 142.4 2.8 144.6 1.3 98 28 58 1 353 1 173 1.15 0.049 4 0.000 6 0.158 8 0.002 2 0.023 2 0.000 2 168.6 25.9 149.6 2.0 148.1 1.0 98 29 9 153 331 0.46 0.049 4 0.001 2 0.154 5 0.003 8 0.022 7 0.000 2 168.6 62.0 145.8 3.3 144.8 1.4 99 30 14 285 524 0.54 0.048 5 0.000 9 0.151 0 0.002 8 0.022 5 0.000 2 124.2 40.7 142.8 2.5 143.5 1.2 99 表 2 羊盘沟地区流纹斑岩地球化学分析结果
Table 2. Geochemical dating of rhyolitic porphyry in Yangpangou area
样品号 YP-1 YP-2 YP-3 YP-4 YP-5 H-ZKYP7-1 H-ZKYP7-2 H-ZKYP7-3 SiO2 73.25 73.25 74.06 74.70 76.72 73.75 74.86 74.24 TiO2 0.22 0.20 0.20 0.19 0.14 0.21 0.23 0.21 Al2O3 12.65 12.50 12.33 12.05 11.41 12.50 12.22 12.36 FeOT 2.73 2.69 1.61 1.62 1.63 2.15 2.15 2.01 MnO 0.36 0.34 0.28 0.27 0.21 0.06 0.07 0.09 MgO 0.09 0.08 0.21 0.19 0.16 0.24 0.19 0.11 CaO 0.54 0.71 1.65 1.68 1.12 0.98 0.72 2.26 Na2O 2.08 2.06 2.42 3.18 2.98 2.20 2.80 4.05 K2O 7.87 7.87 6.82 5.69 5.43 7.87 6.73 4.64 P2O5 0.03 0.03 0.03 0.02 0.01 0.04 0.04 0.03 LOI 1.05 0.98 1.90 1.86 1.43 1.30 0.96 2.34 DI 92.64 92.35 90.42 90.83 93.07 93.08 93.68 90.26 A/CNK 0.99 0.95 0.86 0.84 0.89 0.90 0.93 0.79 A/NK 1.07 1.06 1.09 1.06 1.06 1.04 1.04 1.06 La 94.8 91.0 88.3 89.6 70.7 96.8 83.7 88.6 Ce 180 177 168 172 141 182 158 166 Pr 19.15 18.85 17.40 17.90 15.10 19.90 17.40 18.00 Nd 66.3 65.1 59.9 61.8 52.2 71.7 63.4 66.2 Sm 12.05 11.60 10.75 11.50 10.30 12.50 11.10 11.20 Eu 0.530 0.430 0.400 0.430 0.250 0.409 0.388 0.334 Gd 9.33 9.39 8.61 8.61 8.47 11.10 9.69 9.80 Tb 1.42 1.54 1.36 1.42 1.46 1.69 1.46 1.49 Dy 8.01 8.59 7.55 7.62 8.25 8.26 6.93 7.38 Ho 1.53 1.74 1.46 1.50 1.74 1.51 1.22 1.34 Er 4.24 5.04 4.12 4.55 4.99 4.34 3.54 3.91 Tm 0.70 0.74 0.67 0.67 0.76 0.58 0.47 0.54 Yb 4.22 4.56 4.03 4.00 4.80 4.33 3.50 4.01 Lu 0.68 0.72 0.62 0.61 0.74 0.58 0.48 0.55 ΣREE 402.96 395.80 372.67 381.71 320.76 415.70 361.28 379.35 (La/Yb)N 15.18 13.49 14.81 15.14 9.95 15.11 16.16 14.93 δEu 0.15 0.12 0.12 0.13 0.08 0.10 0.11 0.10 Rb 323 313 265 219 209 272 220 143 Ba 270 274 241 164 142 215 217 162 Th 31.0 33.2 31.8 30.5 32.8 30.7 28.2 30.6 U 6.54 5.60 150.00 36.50 32.90 3.20 4.50 5.12 Ta 2.30 2.40 2.20 2.10 2.30 2.28 2.23 2.18 Nb 24.7 25.0 22.9 23.0 24.4 28.9 29.6 25.6 Sr 23.9 23.8 27.6 23.7 19.7 22.4 21.2 42.0 Zr 443 451 426 402 348 174 163 172 Hf 12.10 12.50 11.40 11.10 10.40 7.46 7.03 7.61 Y 44.3 48.8 40.8 42.4 47.5 43.4 36.1 38.6 Ga 24.4 23.2 23.6 23.1 22.7 24.3 24.2 21.8 Rb/Sr 13.51 13.15 9.60 9.24 10.61 12.14 10.38 3.40 Ti/Y 30.14 24.94 28.73 27.48 17.93 28.69 38.23 32.60 Ti/Zr 3.01 2.70 2.75 2.90 2.45 7.16 8.47 7.32 注:主量元素单位为%;稀土和微量元素单位为10-6;主量元素数据经过烧失量校正. -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X [2] Bussien, D., Gombojav, N., Winkler, W., et al., 2011. The Mongol-Okhotsk Belt in Mongolia-An Appraisal of the Geodynamic Development by the Study of Sandstone Provenance and Detrital Zircons. Tectonophysics, 510(1-2): 132-150. https://doi.org/10.1016/j.tecto.2011.06.024 [3] Cao, H. H., Xu, W. L., Pei, F. P., et al., 2013. Zircon U-Pb Geochronology and Petrogenesis of the Late Paleozoic-Early Mesozoic Intrusive Rocks in the Eastern Segment of the Northern Margin of the North China Block. Lithos, 170-171: 191-207. https://doi.org/10.1016/j.lithos.2013.03.006 [4] Deng, J. F., Qiu, R. Z., Xiao, Q. H., et al., 2004. Input of Material and Heat from Convective Mantle into Continent and Continental Metallogenesis. Mineral Deposits, 23(S1): 24-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ2004S1007.htm [5] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 [6] Fan, W. M., Guo, F., Wang, Y. J., et al., 2003. Late Mesozoic Calc-Alkaline Volcanism of Post-Orogenic Extension in the Northern Da Hinggan Mountains, Northeastern China. Journal of Volcanology and Geothermal Research, 121(1-2): 115-135. https://doi.org/10.1016/S0377-0273(02)00415-8 [7] Foley, S., Peccerillo, A., 1992. Potassic and Ultrapotassic Magmas and Their Origin. Lithos, 28(3-6): 181-185. https://doi.org/10.1016/0024-4937(92)90005-J [8] Ge, W.C., Sui, Z.M., Wu, F.Y., et al., 2007. Zircon U-Pb Ages, Hf Isotopic Characteristics and Their Implications of the Early Paleozoic Granites in the Northeastern Da Hinggan Mts., Northeastern China. Acta Petrologica Sinica, 23(2): 423-440 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702022.htm [9] Gou, J., Sun, D.Y., Zhao, Z.H., et al., 2010. Zircon LA-ICP-MS U-Pb Dating and Petrogenesis of Rhyolites in Baiyingaolao Formation from the Southern Manzhouli, Inner-Mongolia. Acta Petrologica Sinica, 26(1): 333-344 (in Chinese with English abstract). http://www.oalib.com/paper/1472934 [10] Guan, Q. B., Liu, Z. H., 2017. Chronology and Geochemistry of Late Mesozoic Volcanic Rocks and Subvolcanic Rocks in Balinyouqi Area, South Section of Daxing'anling Mountains. Proceedings of the 16th Annual Meeting of China Society of Mineralogy and Petrochemistry, Guiyang (in Chinese). [11] He, G. Q., Liu, C., Deng, J. F., et al., 2020. Records of the Late Jurassic Magmatic Arc in Heihe Area, Heilongjiang Province: Discussion on the Relationship with Mongolia-Okhotsk Ocean. Earth Science, 45(7): 2524-2537 (in Chinese with English abstract). [12] Hu, Z. H., Cheng, Z. X., Zhang, Y. L., 2020. U-Pb Ages and Geochemical Characteristics of Volcanic Rocks in the Baiyingaolao Formation of Hesigewula Ranch, Dongwuqi, Inner Mongolia. Geololgy and Exploration, 56(2): 359-371 (in Chinese with English abstract). [13] Huang, S. Q., Dong, S. W., Hu, J. M., et al., 2016. The Formation and Tectonic Evolution of the Mongol-Okhotsk Belt. Acta Geologica Sinica, 90(9): 2192-2205 (in Chinese with English abstract). http://www.researchgate.net/publication/324681010_The_formation_and_tectonic_evolution_of_the_Mongol-Okhotsk_belt [14] Huo, Y. H., 1986. Tectonic Environment of Mesozoic Volcanic Rocks in the Coastal Areas of SE China. Geochemistry, 5(3): 195-204. https://doi.org/10.1007/BF02864871 [15] Jiang, X. J., Liu, Z. H., Xu, Z. Y., et al., 2013. LA-ICP-MS Zircon U-Pb Dating of Wulanhada Middle Permian Alkali-Feldspar Granites in Xianghuang Banner, Central Inner Mongolia and Its Geochemical Characteristics. Geological Bulletin of China, 32(11): 1760-1768 (in Chinese with English abstract). http://www.researchgate.net/publication/281331580_LA-ICP-MS_zircon_U-Pb_dating_of_Wulanhada_middle_Permian_alkali-feldspar_granites_in_Xianghuang_Banner_central_Inner_Mongolia_and_its_geochemical_characteristics [16] Jiang, X. J., Yan, P. B., Xue, W., et al., 2017. Geochemical Characteristics of Rhyolite Porphyry and Relationship between the Rock and Enriched Uranium in Hetaoba, Inner Mongolia. Geoscience, 31(2): 225-233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201702002.htm [17] Johannes, W., Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61049-3 [18] Li, H. K., Geng, J. Z., Hao, S., et al., 2009. Determination of Zircon U-Pb Isotopic Age by Laser Ablation Multi Receiver Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP MS). Acta Mineralogica Sinica, 29(S1): 600-601 (in Chinese). [19] Li, J. Y., He, Z. J., Mo, S. G., et al., 1999. The Late Mesozoic Orogenic Processes of Mongolia-Okhotsk Orogeny: Evidence from Field Investigations into Deformation of the Mohe area, NE China. Journal of Geoscientific Research in Northeast Asia, 2(2): 172-178. http://www.cqvip.com/QK/87465A/199902/3000794141.html [20] Li, J. Y., Qu, J. F., Zhang, J., et al., 2013. New Developments on the Reconstruction of Phanerozoic Geological History and Research of Metallogenic Geological Settings of the Northern China Orogenic Region. Geological Bulletin of China, 32(2-3): 207-219 (in Chinese with English abstract). http://www.researchgate.net/publication/290583551_New_developments_on_the_reconstruction_of_phanerozoic_geological_history_and_research_of_metallogenic_geological_settings_of_the_Northern_China_orogenic_region [21] Li, Y., Ding, L. L., Xu, W. L., et al., 2015. Geochronology and Geochemistry of Muscovite Granite in Sunwu Area, NE China: Implications for the Timing of Closure of the Mongol-Okhotsk Ocean. Acta Petrologica Sinica, 31(1): 56-66 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252015454.html [22] Li, Y., Wang, J., Han, Z. B., et al., 2017. Zircon U-Pb Dating and Petrogenesis of the Early Jurassic Rhyolite in Badaguan Area, Northern Da Hinggan Mountains. Geology in China, 44(2): 346-357 (in Chinese with English abstract). http://www.researchgate.net/publication/320189200_Zircon_U-Pb_dating_and_petrogenesis_of_the_Early_Jurassic_rhyolite_in_Badaguan_area_northern_da_hinggan_mountains [23] Lin, Q., Ge, W. C., Cao, L., et al., 2003. Geochemistry of Mesozoic Volcanicr Ocks in Da Hinggan Ling: The Bimodal Volcanic Rocks. Geochimica, 32(3): 208-222 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200303001.htm [24] Liu, S., Hu, R. Z., Gao, S., et al., 2008. U-Pb Zircon Age, Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints on Age and Origin of Alkaline Intrusions and Associated Mafic Dikes from Sulu Orogenic Belt, Eastern China. Lithos, 106(3-4): 365-379. https://doi.org/10.1016/j.lithos.2008.09.004 [25] Ludwig, K. R., 1991. Isoplot-A Plotting and Regression Program for Radio-Genic-Isotope Data. US Geological Survey, Reston. [26] Meng, E., Xu, W. L., Yang, D. B., et al., 2011. Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications. Acta Petrologica Sinica, 27(4): 1209-1226 (in Chinese with English abstract). http://www.oalib.com/paper/1475699 [27] Miao, L. C., Zhang, F. Q., Zhu, M. S., et al., 2015. Zircon SHRIMP U-Pb Dating of Metamorphic Complexes in the Conjunction of the Greater and Lesser Xing'an Ranges, NE China: Timing of Formation and Metamorphism and Tectonic Implications. Journal of Asian Earth Sciences, 114: 634-648. https://doi.org/10.1016/j.jseaes.2014.09.035 [28] Parfenov, L. M., Popeko, L. I., Tomurtogoo, O., 2001. Problems of Tectonics of the Mongol-Okhotsk Orogenic Belt. Geology of the Pacific Ocean, 16(5): 797-830. http://www.researchgate.net/publication/279625129_Problems_of_tectonics_of_the_Mongol-Okhotsk_orogenic_belt [29] Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2 doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2 [30] Pearce, J. A., 1983. The Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenoliths. Shiva, Nantwich. [31] Pei, F. P., Xu, W. L., Yang, D. B., et al., 2009. Heterogeneity of Late Mesozoic Deep Lithosphere Beneath the Northeastern North China Craton: Evidence from Elemental and Sr-Nd Isotopic Geochemistry of Mesozoic Volcanic Rocks in the Southern Jilin Province, China. Acta Petrologica Sinica, 25(8): 1962-1974 (in Chinese with English abstract). http://www.ysxb.ac.cn/cjstp/ch/reader/create_pdf.aspx?file_no=20090820&flag=1&journal_id=ysxb&year_id=2009 [32] Ren, Q., 2015. New Paleomagnetic Results from the Volcanic Rocks of Tioajishan Formation in the Yanshan Area of the North China and Their Tectonic Implications (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [33] Shao, J. A., Zhang, L. Q., Mu, B. L., 2011. Distribution of Uranium and Molybdenum Deposits and Their Relations with Medium Massifs in Central Asian Orogenic Zone. Journal of Jilin University (Earth Science Edition), 41(6): 1667-1675 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201106002.htm [34] Sun, D. Y., Gou, J., Ren, Y. S., et al., 2011. Zircon U-Pb Dating and Study on Geochemistry of Volcanic Rocks in Manitu Formation from Southern Manchuria, Inner Mongolia. Acta Petrologica Sinica, 27(10): 3083-3094 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=39860741 [35] Sun, D. Y., Wu, F. Y., Zhang, Y. B., et al., 2004. The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone-Evidence from the Dayushan Granitic Pluton, Jilin Province. Journal of Jilin University (Earth Science Edition), 34(2): 174-181 (in Chinese with English abstract). http://www.researchgate.net/publication/284701794_The_final_closing_time_of_the_west_Lamulun_River-Changchun-Yanji_plate_suture_zone_Evidence_from_the_Dayushan_granitic_pluton_Jilin_Province [36] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19 [37] Tan, H. Y., He, Z. H., Chen, F., et al., 2017. Zircon U-Pb Ages and Geochemical Characteristics of Volcanic Rocks in Baiyingaolao Formation of Suolun Area within Central Da Hinggan Mountains and Their Tectonic Implications. Geological Bulletin of China, 36(5): 893-908 (in Chinese with English abstract). http://www.researchgate.net/publication/319008952_Zircon_U-Pb_ages_and_geochemical_characteristics_of_volcanic_rocks_in_Baiyingaolao_Formation_of_Suolun_area_within_central_Da_Hinggan_Mountains_and_their_tectonic_implications [38] Tang, Z. Y., 2019. Petrogenesis and Geodynamic Mechanism of the Mesozoic Volcanic Rocks in the Central Great Xing'an Range (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [39] Wang, F., Zhou, X. H., Zhang, L. C., et al., 2006. Late Mesozoic Volcanism in the Great Xing'an Range (NE China): Timing and Implications for the Dynamic Setting of NE Asia. Earth and Planetary Science Letters, 251(1-2): 179-198. https://doi.org/10.1016/j.epsl.2006.09.007 [40] Wang, J. G., He, Z. H., Xu, W. L., 2013. Petrogenesis of Riebeckite Rhyolitesin the Southern Da Hinggan Mts: Geohronological and Geochemical Evidence. Acta Petrologica Sinica, 29(3): 853-863 (in Chinese with English abstract). http://www.oalib.com/paper/1475455 [41] Wang, W., 2014. Geochronology and Geochemistry of the Early Jurassic Volcanic Rocks in the Manzhouli-Erguna Area, NE China (Dissertation). Jilin University, Changchun (in Chineses with English abstract). [42] Wang, Y., Xu, Z. Y., Liu, Z. H., et al., 2017. Formation Mechanism of Baiyingaolao Volcanic Rocks in Wenbuqi Area of Da Hinggan Mountains. Global Geology, 36(3): 714-725 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SJDZ201703007&dbcode=CJFD&year=2017&dflag=pdfdown [43] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 [44] Williams, I. S., Buick, I. S., Cartwright, I., 1996. An Extended Episode of Early Mesoproterozoic Metamorphic Fluid Flow in the Reynolds Range, Central Australia. Journal of Metamorphic Geology, 14(1): 29-47. https://doi.org/10.1111/j.1525-1314.1996.00029.x [45] Wilson, M., 1989. Igneous Petrogenesis. Springer, Dordrecht. [46] Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). http://www.researchgate.net/profile/Yong-Fei_Zheng/publication/279707410_Discussions_on_the_petrogenesis_of_granites/links/55ceace208ae6a881384a0c7.pdf [47] Wu, F.Y., Sun, D.Y., Li, H., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9 [48] Wu, G., Chen, Y. J., Sun, F. Y., et al., 2008. Geochemistry of the Late Jurassic Granitoids in the Northern End Area of Da Hinggan Mountains and Their Geological and Prospecting Implications. Acta Petrologica Sinica, 24(4): 899-910 (in Chinese with English abstract). http://www.cqvip.com/QK/71135X/201107/27734160.html [49] Xiao, W. J., Song, D. F., Windley, B. F., et al., 2019. Research Progress of Accretive Orogeny and Mineralization in Central Asia. Science in China (Series D), 49(10): 1512-1545 (in Chinese). http://www.cqvip.com/qk/94579x/20195/7002173885.html [50] Xu, B., Zhao, P., Wang, Y. Y., et al., 2015. The Pre-Devonian Tectonic Framework of Xing'an-Mongolia Orogenic Belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183-196. https://doi.org/10.1016/j.jseaes.2014.07.020 [51] Xu, M. J., Xu, W. L., Meng, E., et al., 2011. LA-ICP-MS Zircon U-Pb Chronology and Geochemistry of Mesozoic Volcanic Rocks from the Shanghulin-Xiangyang Basins in Ergun Area, Northeastern Inner Mongolia. Geological Bulletin of China, 30(9): 1321-1338 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252284611.html [52] Xu, M. J., Xu, W. L., Wang, F., et al., 2013. Geochronology and Geochemistry of the Early Jurassic Granitoids in the Central Lesser Xing'an Range, NE China and Its Tectonic Implications. Acta Petrologica Sinica, 29(2): 354-368 (in Chinese with English abstract). [53] Xu, W. L., Ji, W. Q., Pei, F. P., et al., 2009. Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China: Chronology, Geochemistry, and Tectonic Implications. Journal of Asian Earth Sciences, 34(3): 392-402. https://doi.org/10.1016/j.jseaes.2008.07.001 [54] Xu, W. L., Pei, F. P., Gao, F. H., et al., 2008. Ziron U-Pb Age from Basement Granites in Yishu Graben and Its Tectonic Implications. Earth Science, 33(2): 145-150 (in Chinese with English abstract). [55] Xu, W. L., Sun, C. Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract). [56] Xu, W. L., Wang, F., Pei, F. P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract). [57] Ying, J. F., Zhou, X. H., Zhang, L. C., et al., 2010. Geochronological and Geochemical Incestigation of the Late Mesozoic Volcanic Rocks from the Northern Great Xing'an Range and Their Tectonic Implications. International Journal of Earth Sciences, 99(2): 357-378. https://doi.org/10.1007/s00531-008-0395-z [58] Zhang, C., 2020. Late Mesozoic Magmatism and Tectonic Setting of Bairin Left Banner-Jarud Banner Area in the Southern Great Xing'an Range (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [59] Zhang, C. H., Zhang, Y., Li, H. L., et al., 2006. Late Mesozoic Thrust Tectonics Framework in the Western Part of the Yanshan Orogenic Belt and the Western Hills of Beijing: Characteristics and Significance. Earth Science Frontiers, 13(2): 165-183 (in Chinese with English abstract). [60] Zhang, L. C., Chen, Z. G., Zhou, X. H., et al., 2007. Characteristics of Deep Sources and Tectonic-Magmatic Evolution of the Early Cretaceous Voleanics in Genhe Area, Da-Hinggan Mountains: Constraints of Sr-Nd-Pb-Hf Isotopic Geochemistries. Acta Petrologica Sinica, 23(11): 2823-2835 (in Chinese with English abstract). [61] Zhang, Q., Ran, H., Li, C. D., 2012. A-Type Granite: What is the Essence?. Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201204015.htm [62] Zhang, Q., Wang, Y., Pan, G. Q., et al., 2008. Sources of Granites: some Crucial Questions on Granite Study (4). Acta Petrologica Sinica, 24(6): 1193-1204 (in Chinese with English abstract). http://www.researchgate.net/publication/285897167_Sources_of_granites_Some_crucial_questions_on_granite_study_4 [63] Zhang, X. X., Gao, Y. F., Lei, S. H., 2016. Geochemisty and Petrogenesis of the Rhyolites from the Baiyingaolao Formation in the Honggeer Area, Central Inner Mongolia. Geoscience, 30(5): 950-960 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201605002.htm [64] Zhang, Y. Q., Dong, S. W., Zhao, Y., et al., 2008. Jurassic Tectonics of North China: A Synthetic View. Acta Geologica Sinica (English Edition), 82(2): 310-326. https://doi.org/10.1111/j.1755-6724.2008.tb00581.x [65] Zhao, D. P., Lei, J. S., Tang, R. Y., 2004. Theorigin of Changbai Volcano in the Northeast China: Seismic Tomographic Imaging Evidence. Chinese Science Bulletin, 49(14): 1439-1446 (in Chinese with English abstract). doi: 10.1360/csb2004-49-14-1439 [66] Zhao, S. J., Yu, H. Y., Shen, L., et al., 2018. Determination and Geological Significance of Chaihe Formation of the Lower Jurassic in North Daxing'anling Range. Geological Bulletin of China, 37(7): 1302-1314 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201807014.htm [67] Zhao, S. Y., Han, Y. D., Zhu, C. Y., et al., 2004. Geochemical Characteristics and Geological Significance of Intermediate and Intermediate-Acid Volcanic Rocks in the Northern Sector of the Da Hinggan Volcanic Eruptionzone. Journal of Geomechanics, 10(3): 276-287 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200403009.htm [68] Zorin, Y. A., 1999. Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region (Russia) and Mongolia. Tectonophysics, 306(1): 33-56. https://doi.org/10.1016/S0040-1951(99)00042-6 [69] 邓晋福, 邱瑞照, 肖庆辉, 等, 2004. 对流地幔输入大陆与大陆成矿作用. 矿床地质, 23(S1): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2004S1007.htm [70] 葛文春, 隋振民, 吴福元, 等, 2007. 大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义. 岩石学报, 23(2): 423-440. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702022.htm [71] 苟军, 孙德有, 赵忠华, 等, 2010. 满洲里南部白音高老组流纹岩锆石U-Pb定年及岩石成因. 岩石学报, 26(1): 333-344. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201001038.htm [72] 关庆彬, 刘正宏, 2017. 大兴安岭南段巴林右旗地区晚中生代火山岩、次火山岩年代学及地球化学研究. 中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会, 贵阳. [73] 贺国奇, 刘翠, 邓晋福, 等, 2020. 黑龙江黑河地区晚侏罗世岩浆弧的火成岩记录: 与蒙古-鄂霍茨克洋关系探讨. 地球科学, 45(7): 2524-2537. doi: 10.3799/dqkx.2020.050 [74] 胡振华, 程招勋, 张跃龙. 2020. 内蒙古贺斯格乌拉牧场白音高老组火山岩U-Pb年龄及地球化学特征. 地质与勘探, 56(2): 359-371. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202002011.htm [75] 黄始琪, 董树文, 胡健民, 等, 2016. 蒙古-鄂霍次克构造带的形成与演化. 地质学报, 90(9): 2192-2205. doi: 10.3969/j.issn.0001-5717.2016.09.008 [76] 蒋孝君, 刘正宏, 徐仲元, 等, 2013. 内蒙古镶黄旗乌兰哈达中二叠世碱长花岗岩LA-ICP-MS锆石U-Pb年龄和地球化学特征. 地质通报, 32(11): 1760-1768. doi: 10.3969/j.issn.1671-2552.2013.11.008 [77] 蒋孝君, 剡鹏兵, 薛伟, 等, 2017. 内蒙古核桃坝地区流纹斑岩的地球化学特征及与铀富集的关系. 现代地质, 31(2): 225-233. doi: 10.3969/j.issn.1000-8527.2017.02.002 [78] 李怀坤, 耿建珍, 郝爽, 等, 2009. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究. 矿物学报, 29(S1): 600-601. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1311.htm [79] 李锦轶, 曲军峰, 张进, 等, 2013. 中国北方造山区显生宙地质历史重建与成矿地质背景研究进展. 地质通报, 32(2-3): 207-219. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1000.htm [80] 李宇, 丁磊磊, 许文良, 等, 2015. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古-鄂霍茨克洋闭合时间的限定. 岩石学报, 31(1): 56-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501004.htm [81] 李研, 王建, 韩志滨, 等, 2017. 大兴安岭北段八大关地区早侏罗世流纹岩锆石U-Pb定年与岩石成因. 中国地质, 44(2): 346-357. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702011.htm [82] 林强, 葛文春, 曹林, 等, 2003. 大兴安岭中生代双峰式火山岩的地球化学特征. 地球化学, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002 [83] 孟恩, 许文良, 杨德彬, 等, 2011. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义. 岩石学报, 27(4): 1209-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104029.htm [84] 裴福萍, 许文良, 杨德彬, 等, 2009. 华北克拉通东北缘岩石圈深部物质组成的不均一性: 来自吉林南部中生代火山岩元素及Sr-Nd同位素地球化学的证据. 岩石学报, 25(8): 1962-1974. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908022.htm [85] 任强, 2015. 华北燕山地区上侏罗统髫髻山组火山岩古地磁新结果及其大地构造意义(硕士学位论文), 北京: 中国地质大学. [86] 邵济安, 张履桥, 牟保磊, 2011. 中亚造山带东段铀、钼矿床分布与中间地块的关系. 吉林大学学报(地球科学版), 41(6): 1667-1675. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106002.htm [87] 孙德有, 苟军, 任云生, 等, 2011. 满洲里南部玛尼吐组火山岩锆石U-Pb年龄与地球化学研究. 岩石学报, 27(10): 3083-3094. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201110024.htm [88] 孙德有, 吴福元, 张艳斌, 等, 2004. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据. 吉林大学学报(地球科学版), 34(2): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200402003.htm [89] 谭皓元, 和钟铧, 陈飞, 等, 2017. 大兴安岭中段索伦地区白音高老组火山岩锆石U-Pb年龄、地球化学特征及构造意义. 地质通报, 36(5): 893-908. doi: 10.3969/j.issn.1671-2552.2017.05.021 [90] 唐宗源, 2019. 大兴安岭中段中生代火山岩成因及地球动力学机制(博士学位论文). 长春: 吉林大学. [91] 王建国, 和钟铧, 许文良, 2013. 大兴安岭南部钠闪石流纹岩的岩石成因: 年代学和地球化学证据. 岩石学报, 29(3): 853-863. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303010.htm [92] 王伟, 2014. 满洲里-额尔古纳地区早侏罗世火山岩的年代学与地球化学研究(硕士学位论文). 长春: 吉林大学. [93] 王阳, 徐仲元, 刘正宏, 等, 2017. 大兴安岭温布其地区白音高老组火山岩的形成机制. 世界地质, 36(3): 714-725. doi: 10.3969/j.issn.1004-5589.2017.03.007 [94] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [95] 武广, 陈衍景, 孙丰月, 等, 2008. 大兴安岭北端晚侏罗世花岗岩类地球化学及其地质和找矿意义. 岩石学报, 24(4): 899-910. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804029.htm [96] 肖文交, 宋东方, Windley, B. F., 等, 2019. 中亚增生造山过程与成矿作用研究进展. 中国科学(D辑), 49(10): 1512-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910003.htm [97] 徐美君, 许文良, 孟恩, 等, 2011. 内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征. 地质通报, 30(9): 1321-1338. doi: 10.3969/j.issn.1671-2552.2011.09.001 [98] 徐美君, 许文良, 王枫, 等, 2013. 小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义. 岩石学报, 29(2): 354-368. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302003.htm [99] 许文良, 裴福萍, 高福红, 等, 2008. 伊舒地堑基底花岗岩的锆石U-Pb年代学及其构造意义. 地球科学, 33(2): 145-150. doi: 10.3321/j.issn:1000-2383.2008.02.001 [100] 许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036 [101] 许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm [102] 张超, 2020. 大兴安岭南段巴林左旗-扎鲁特旗地区晚中生代岩浆作用及其构造背景(博士学位论文). 长春: 吉林大学. [103] 张长厚, 张勇, 李海龙, 等, 2006. 燕山西段及北京西山晚中生代逆冲构造格局及其地质意义. 地学前缘, 13(2): 165-183. doi: 10.3321/j.issn:1005-2321.2006.02.015 [104] 张连昌, 陈志广, 周新华, 等, 2007. 大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化: Sr-Nd-Pb-Hf同位素地球化学制约. 岩石学报, 23(11): 2823-2835. doi: 10.3969/j.issn.1000-0569.2007.11.013 [105] 张旗, 冉皞, 李承东, 2012. A型花岗岩的实质是什么?. 岩石矿物学杂志, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014 [106] 张旗, 王焰, 潘国强, 等, 2008. 花岗岩源岩问题——关于花岗岩研究的思考之四. 岩石学报, 24(6): 1193-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806004.htm [107] 张祥信, 高永丰, 雷世和, 2016. 内蒙古中部红格尔地区白音高老组流纹岩地球化学特征及成因. 现代地质, 30(5): 950-960. doi: 10.3969/j.issn.1000-8527.2016.05.002 [108] 赵大鹏, 雷建设, 唐荣余. 2004. 中国东北长白山火山的起源: 地震层析成像证据. 科学通报, 49(14): 1439-1446. doi: 10.3321/j.issn:0023-074X.2004.14.017 [109] 赵胜金, 于海洋, 申亮, 等, 2018. 大兴安岭北段下侏罗统柴河组的厘定及地质意义. 地质通报, 37(7): 1302-1314. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201807014.htm [110] 赵书跃, 韩彦东, 朱春燕, 等, 2004. 大兴安岭火山喷发带北段中性、中酸性火山岩地球化学特征及其地质意义. 地质力学学报, 10(3): 276-287. doi: 10.3969/j.issn.1006-6616.2004.03.009