• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黄骅坳陷中生界砂岩地球化学特征及意义

    李晨 陈世悦 楼达 付立新 鄢继华

    李晨, 陈世悦, 楼达, 付立新, 鄢继华, 2021. 黄骅坳陷中生界砂岩地球化学特征及意义. 地球科学, 46(8): 2903-2918. doi: 10.3799/dqkx.2020.325
    引用本文: 李晨, 陈世悦, 楼达, 付立新, 鄢继华, 2021. 黄骅坳陷中生界砂岩地球化学特征及意义. 地球科学, 46(8): 2903-2918. doi: 10.3799/dqkx.2020.325
    Li Chen, Chen Shiyue, Lou Da, Fu Lixin, Yan Jihua, 2021. Geochemical Characteristics and Signatures of Mesozoic Sandstones from Huanghua Depression. Earth Science, 46(8): 2903-2918. doi: 10.3799/dqkx.2020.325
    Citation: Li Chen, Chen Shiyue, Lou Da, Fu Lixin, Yan Jihua, 2021. Geochemical Characteristics and Signatures of Mesozoic Sandstones from Huanghua Depression. Earth Science, 46(8): 2903-2918. doi: 10.3799/dqkx.2020.325

    黄骅坳陷中生界砂岩地球化学特征及意义

    doi: 10.3799/dqkx.2020.325
    基金项目: 

    国家重大科技专项 2016ZX05006-007

    详细信息
      作者简介:

      李晨(1992-), 男, 博士研究生, 主要从事沉积学方面研究. ORCID: 0000-0002-8776-6820. E-mail: phill_lee@163.com

      通讯作者:

      陈世悦, E-mail: chenshiyue@vip.sina.com

    • 中图分类号: P595

    Geochemical Characteristics and Signatures of Mesozoic Sandstones from Huanghua Depression

    • 摘要: 中生代黄骅坳陷位于华北克拉通汇聚与破坏的中心,为各物源的汇集地,记录了华北中生代盆地的构造及物源演化.对研究区中生界砂岩进行了主、微量元素测试分析,结果显示,样品SiO2、Al2O3、Na2O、K2O和Fe2O3T平均含量分别为66.98%、13.65%、2.74%、3.03%和3.26%,砂岩为岩屑砂岩、长石砂岩和杂砂岩.砂岩CIA和ICV的平均值分别为56.12和0.94,均经历了一定的化学风化及再旋回作用.砂岩的母岩为长英质火成岩和再旋回沉积岩,并混杂少量基性火成岩.由三叠纪到白垩纪,中生界砂岩物源逐渐由华北北缘大陆弧演化为燕山造山带和黄骅坳陷内的岩浆作用及古隆起.

       

    • 图  1  黄骅坳陷构造位置

      Fig.  1.  Geotectonic location of Huanghua Depression

      图  2  黄骅坳陷中生界综合柱状图

      Fig.  2.  Lithostratigraphy of Mesozoic in Huanghua Depression

      图  3  中生界砂岩镜下特征

      a.中下三叠统中砂岩(正交光);b.侏罗系下部粗砂岩(正交光);c.侏罗系上部粗砂岩(正交光);d.下白垩统细砂岩(正交光)

      Fig.  3.  The micrograph features of Mesozoic sandstones

      图  4  中生界砂岩主量元素平均上地壳标准化蛛网图(上地壳标准值据Hu and Gao, 2008

      Fig.  4.  Major elements spider diagram normalized to average UCC for Mesozoic sandstones(normalized values from Hu and Gao, 2008)

      图  5  中生界砂岩主量(a)、微量(b)元素主成分分析双标图

      Fig.  5.  Biplot of principle component analysis of major elements (a) and trace elements (b) for Mesozoic sandstones

      图  6  中生界砂岩微量元素平均上地壳标准化蛛网图(上地壳标准值据Hu and Gao, 2008

      Fig.  6.  Trace elements spider diagram normalized to average UCC for Mesozoic sandstones(normalized values from Hu and Gao, 2008)

      图  7  中生界砂岩稀土元素球粒陨石标准化蛛网图

      球粒陨石标准化数据据Boynton(1984);PAAS数据据McLennan and Taylor(1991);UCC数据据Hu and Gao(2008)

      Fig.  7.  REE spider diagram normalized to chondrite for Mesozoic sandstones

      图  8  中生界砂岩类型图

      Fig.  8.  Type plot for Mesozoic sandstones

      图  9  中生界砂岩风化条件图解

      a.据Nesbitt and Young(1984),平均上地壳数据(UCC)据Hu and Gao(2008);b.碱性金属和碱土金属在风化过程中的迁移性对比图(Garzanti et al., 2013),αAlE值根据平均上地壳数据标准化(Hu and Gao, 2008

      Fig.  9.  Weathering condition plots for Mesozoic sandstones

      图  10  中生界砂岩Al2O3-Zr-TiO2三角图(Garcia et al., 1991

      Fig.  10.  Al2O3-Zr-TiO2 ternary plot for Mesozoic sandstones(Garcia et al., 1991)

      图  11  中生界砂岩成分及分选与再旋回变化

      a. 据McLennan et al.(1993),紫色箭头表示由岩浆分异导致的成分变化,黄色箭头表示由锆石增多导致的分选与再旋回变化,黑色方块的玄武岩、安山岩、长英质火山岩及花岗岩数据据Condie(1993),平均上地壳标准值据Hu and Gao(2008);b. 据Roser and Korsch(1999),N表示平均上地壳标准化

      Fig.  11.  Variations of composition, sorting and recycling for Mesozoic sandstones

      图  12  中生界砂岩物源判别图

      a. 据Roser and Korsch(1988),其中F1 =-1.773TiO2+0.607Al2O3+0.760Fe2O3T-1.500MgO+0.616CaO+0.509Na2O-1.224K2O-9.090,F2 = 0.445TiO2+0.070Al2O3-0.250Fe2O3T-1.142MgO+0.438CaO+1.475Na2O+1.426K2O-6.861;b. 据Floyd and Leveridge(1987)

      Fig.  12.  Provenance discrimination diagrams for Mesozoic sandstones

      图  13  中生界砂岩物源判别图

      a. 据McLennan et al.(1993);b. 据Gu et al.(2002)

      Fig.  13.  Provenance discrimination diagrams for the Mesozoic sandstones

      图  14  中生界砂岩Eu/Eu*-GdN/YbN图解(McLennan and Taylor, 1991

      Fig.  14.  Eu/Eu* versus GdN/YbN plot for Mesozoic sandstones(McLennan and Taylor, 1991)

      图  15  中生界砂岩碎屑锆石年龄概率分布

      a.中生界砂岩碎屑锆石年龄概率曲线;b. 中生界砂岩碎屑锆石年龄累计概率曲线. 数据来自Li et al.(2013)朱吉昌等(2020)

      Fig.  15.  Probability distribution of detrital zircon ages for Mesozoic sandstones

      图  16  中生界砂岩构造环境判别图

      and Crook(1986). ACM. 主动大陆边缘;PM. 被动大陆边缘;OIA. 大洋岛弧:CIA. 大陆岛弧

      Fig.  16.  Tectonic setting discrimination plots of Mesozoic sandstones

      表  1  中生界砂岩元素比值物源特征

      Table  1.   Provenance characteristics of the element ratio of Mesozoic sandstones

      微量元素比值 中生界砂岩元素比值范围 中生界砂岩元素比值平均值 长英质物源元素比值 镁铁质物源元素比值 平均上地壳元素比值
      Eu/Eu* 0.56~0.99 0.81 0.40~0.94 0.71~0.95 0.70
      (La/Lu)N 1.18~4.66 1.84 3.00~27.00 1.10~7.00 10.38
      La/Sc 3.01~8.25 4.66 2.50~16.30 0.43~0.86 2.20
      Th/Sc 0.62~1.95 1.08 0.84~20.50 0.05~0.22 0.75
      Th/Co 0.30~2.88 0.98 0.04~3.25 0.04~1.40 0.61
      Cr/Th 2.65~6.95 5.18 4.00~15.00 25.00~500.00 8.76
      La/Co 1.33~12.20 4.20 1.80~13.80 0.14~0.38 1.79
      注:长英质物源及镁铁质物源数据据Cullers and Pidkovyrov(2000);平均上地壳数据据Hu and Gao(2008).
      下载: 导出CSV
    • [1] Aitchison, J., 1986. The Statistical Analysis of Compositional Data. Chapman and Hall, London.
      [2] Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/bf00375292
      [3] Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
      [4] Cao, X. Z., Flament, N., Müller, D., et al., 2018. The Dynamic Topography of Eastern China since the Latest Jurassic Period. Tectonics, 37(5): 1274-1291. https://doi.org/10.1029/2017tc004830
      [5] Condie, K. C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 104(1-4): 1-37. https://doi.org/10.1016/0009-2541(93)90140-e
      [6] Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9
      [7] Cullers, R. L., Podkovyrov, V. N., 2000. Geochemistry of the Mesoproterozoic Lakhanda Shales in Southeastern Yakutia, Russia: Implications for Mineralogical and Provenance Control, and Recycling. Precambrian Research, 104(1-2): 77-93. https://doi.org/10.1016/s0301-9268(00)00090-5
      [8] Dong, S.W., Zhang, Y.Q., Chen, X.H., et al., 2008. The Formation and Deformational Characteristics of East Asia Multi-Direction Convergent Tectonic System in Late Jurassic. Acta Geoscientica Sinica, 29(3): 306-317 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200803006.htm
      [9] Floyd, P. A., Leveridge, B. E., 1987. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society, 144(4): 531-542. https://doi.org/10.1144/gsjgs.144.4.0531
      [10] Filzmoser, P., Hron, K., Reimann, C., 2009. Principal Component Analysis for Compositional Data with Outliers. Environmetrics, 20(6): 621-632. https://doi.org/10.1002/env.966
      [11] Garcia, D., Coelho, J., Perrin, M., 1991. Fractionation between TiO2 and Zr as a Measure of Sorting within Shale and Sandstone Series (Northern Portugal). European Journal of Mineralogy, 3(2): 401-414. https://doi.org/10.1127/ejm/3/2/0401
      [12] Garzanti, E., Padoan, M., Setti, M., et al., 2013. Weathering Geochemistry and Sr-Nd Fingerprints of Equatorial Upper Nile and Congo Muds. Geochemistry, Geophysics, Geosystems, 14(2): 292-316. https://doi.org/10.1002/ggge.20060
      [13] Gu, X. X., Liu, J. M., Zheng, M. H., et al., 2002. Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence. Journal of Sedimentary Research, 72(3): 393-407. https://doi.org/10.1306/081601720393
      [14] Hu, Z. C., Gao, S., 2008. Upper Crustal Abundances of Trace Elements: A Revision and Update. Chemical Geology, 253(3-4): 205-221. https://doi.org/10.1016/j.chemgeo.2008.05.010
      [15] Huang, D. Y., 2019. Jurassic Integrative Stratigraphy and Timescale of China. Scientia Sinica Terrae, 49(1): 227-256 (in Chinese). doi: 10.1360/N072017-00443
      [16] Li, H. Y., Xu, Y. G., Liu, Y. M., et al., 2013. Detrital Zircons Reveal No Jurassic Plateau in the Eastern North China Craton. Gondwana Research, 24(2): 622-634. https://doi.org/10.1016/j.gr.2012.12.007
      [17] Li, S. Z., Jahn, B. M., Zhao, S. J., et al., 2017. Triassic Southeastward Subduction of North China Block to South China Block: Insights from New Geological, Geophysical and Geochemical Data. Earth-Science Reviews, 166: 270-285. https://doi.org/10.1016/j.earscirev.2017.01.009
      [18] Li, S.Z., Suo, Y.H., Dai, L.M., et al., 2010. Development of the Bohai Bay Basin and Destruction of the North China Craton. Earth Science Frontiers, 17(4): 64-89 (in Chinese with English abstract). http://www.researchgate.net/publication/284685931_Development_of_the_Bohai_Bay_Basin_and_destruction_of_the_North_China_Craton
      [19] Lindsey, D.A., 1999. An Evaluation of Alternative Chemical Classifications of Sandstones (Open-File Report). U.S. Geological Survey, Denver.
      [20] McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. In: Johnsson, M.J., Basu, A., eds., Processes Controlling the Composition of Clastic Sediments. Special Paper of the Geological Society of America, 284: 21-40. https://doi.org/10.1130/spe284-p21
      [21] McLennan, S. M., Taylor, S. R., 1991. Sedimentary Rocks and Crustal Evolution: Tectonic Setting and Secular Trends. The Journal of Geology, 99(1): 1-21. https://doi.org/10.1086/629470
      [22] Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      [23] Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
      [24] Pettijohn, F.J., Potter, P.E., 1972. Sand and Sandstone. Springer, New York.
      [25] Roser, B. P., Korsch, R. J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67(1-2): 119-139. https://doi.org/10.1016/0009-2541(88)90010-1
      [26] Roser, B. P., Korsch, R. J., 1999. Geochemical Characterization, Evolution and Source of a Mesozoic Accretionary Wedge: The Torlesse Terrane, New Zealand. Geological Magazine, 136(5): 493-512. https://doi.org/10.1017/s0016756899003003
      [27] Song, G.Z., Xu, M., Li, L., et al., 2019. Yanshanian Tectonic Inversion and the Response of Sequence Stratigraphic Patterns in Eastern Yihezhuang Salient, Jiyang Depression, Bohai Bay Basin. Earth Science, 44(2): 489-503 (in Chinese with English abstract).
      [28] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
      [29] Templ, M., Hron, K., Filzmoser, P., 2011. RobCompositions: An R-Package for Robust Statistical Analysis of Compositional Data. In: Pawlowsku-Glahn, V., Buccianti, A., eds., Compositional Data Analysis. John Wiley & Sons, London. https://doi.org/10.1002/9781119976462.ch25
      [30] van de Kamp, P. C., Leake, B. E., 1985. Petrography and Geochemistry of Feldspathic and Mafic Sediments of the Northeastern Pacific Margin. Transactions of the Royal Society of Edinburgh: Earth Sciences, 76(4): 411-449. https://doi.org/10.1017/s0263593300010646
      [31] von Eynatten, H., Critelli, S., Ingersoll, R. V., et al., 2012. Introduction to the Special Issue "Actualistic Models of Sediment Generation". Sedimentary Geology, 280: 1-3. https://doi.org/10.1016/j.sedgeo.2012.07.020
      [32] Wang, C.S., Hu, X.M., 2005. Cretaceous World and Oceanic Red Beds. Earth Science Frontiers, 12(2): 11-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200502001.htm
      [33] Wu, F.Y., Yang, J.H., Liu, X.M., 2005. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 11(3): 305-317 (in Chinese with English abstract). http://www.researchgate.net/publication/286695037_Geochronological_framework_of_the_Mesozoic_granitic_magmatism_in_the_Liaodong_Peninsula_Northeast_China
      [34] Wu, Q.X., Wei, A.J., Wang, Y.C., et al., 2018. Tectonic Difference and Genetic Mechanism of Buried Hill in Southern Bohai Area. Earth Science, 43(10): 3698-3708 (in Chinese with English abstract). http://www.researchgate.net/publication/329983802_Tectonic_Difference_and_Genetic_Mechanism_of_Buried_Hill_in_Southern_Bohai_Area
      [35] Yi, Z. Y., Liu, Y. Q., Meert, J. G., 2019. A True Polar Wander Trigger for the Great Jurassic East Asian Aridification. Geology, 47(12): 1112-1116. https://doi.org/10.1130/g46641.1
      [36] Zhang, F.P., Wu, Z.P., Li, W., et al., 2019. Structural Characteristics and Its Tectonic Evolution of Huanghua Depression during the Indosinian-Yanshanian. Journal of China University of Mining & Technology, 48(4): 842-857 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201904017.htm
      [37] Zhang, S. H., Zhao, Y., Song, B., et al., 2007. Carboniferous Granitic Plutons from the Northern Margin of the North China Block: Implications for a Late Palaeozoic Active Continental Margin. Journal of the Geological Society, 164(2): 451-463. https://doi.org/10.1144/0016-76492005-190
      [38] Zhu, J. C., Feng, Y. L., Meng, Q. R., et al., 2020. Late Mesozoic Tectonostratigraphic Division and Correlation of the Bohai Bay Basin: Implications for the Yanshanian Orogeny. Scientia Sinica Terrae, 50(1): 28-49 (in Chinese). http://www.cqvip.com/QK/60111X/201911/7100270184.html
      [39] Zhu, R. X., Xu, Y. G., 2019. The Subduction of the West Pacific Plate and the Destruction of the North China Craton. Scientia Sinica Terrae, 49(9): 1346-1356 (in Chinese). doi: 10.1360/N072018-00282
      [40] 董树文, 张岳桥, 陈宣华, 等, 2008. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征. 地球学报, 29(3): 306-317. doi: 10.3321/j.issn:1006-3021.2008.03.005
      [41] 黄迪颖, 2019. 中国侏罗纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 227-256. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901011.htm
      [42] 李三忠, 索艳慧, 戴黎明, 等, 2010. 渤海湾盆地形成与华北克拉通破坏. 地学前缘, 17(4): 64-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201004009.htm
      [43] 宋广增, 徐蒙, 李磊, 等, 2019. 济阳坳陷义和庄凸起东部燕山期构造负反转及层序地层样式响应. 地球科学, 44(2): 489-503. doi: 10.3799/dqkx.2018.519
      [44] 王成善, 胡修棉, 2005. 白垩纪世界与大洋红层. 地学前缘, 12(2): 11-21. doi: 10.3321/j.issn:1005-2321.2005.02.003
      [45] 吴福元, 杨进辉, 柳小明, 2005. 辽东半岛中生代花岗质岩浆作用的年代学格架. 高校地质学报, 11(3): 305-317. doi: 10.3969/j.issn.1006-7493.2005.03.003
      [46] 吴庆勋, 韦阿娟, 王粤川, 等, 2018. 渤海南部地区潜山构造差异与成因机制. 地球科学, 43(10): 3698-3708. doi: 10.3799/dqkx.2018.578
      [47] 张飞鹏, 吴智平, 李伟, 等, 2019. 黄骅坳陷印支-燕山期构造特征及其演化过程. 中国矿业大学学报, 48(4): 842-857. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201904017.htm
      [48] 朱吉昌, 冯有良, 孟庆任, 等, 2020. 渤海湾盆地晚中生代构造地层划分及对比: 对燕山运动的启示. 中国科学: 地球科学, 50(1): 28-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202001002.htm
      [49] 朱日祥, 徐义刚, 2019. 西太平洋板块俯冲与华北克拉通破坏. 中国科学: 地球科学, 49(9): 1346-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201909003.htm
    • dqkxzx-46-8-2903-附表.xlsx
    • 加载中
    图(16) / 表(1)
    计量
    • 文章访问数:  483
    • HTML全文浏览量:  171
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-01
    • 网络出版日期:  2021-09-14
    • 刊出日期:  2021-08-15

    目录

      /

      返回文章
      返回