Sedimentary Characteristics of Doushantuo Formation in Shennongjia Area: Implications for "West Hubei Trough"
-
摘要: 华南埃迪卡拉系陡山沱组沉积古地理仍有争议,其中鄂西克拉通内盆地“鄂西海槽”的存在与展布问题是关键.对“鄂西海槽”分布关键位置的神农架地区陡山沱组开展了地层学和沉积学研究,结果显示:神农架东部地区陡山沱组的岩性组合与黄陵背斜北部樟村坪地区陡山沱组相似,发育鸟眼和球粒等沉积构造,指示了台地环境;神农架西部地区陡山沱组主要由砂岩、粉砂岩和泥岩组成,产出粒序和平行层理等组成的不完整鲍玛序列,指示斜坡或较深水环境.综合前人研究,指出“鄂西海槽”与“鄂中台地”的边界从神农架地区中部经黄陵背斜西北延伸到其东南,神农架东部和黄陵背斜东北部地区位于台地内,神农架西部和黄陵背斜西南部地区位于海槽内.Abstract: Paleogeographic reconstruction of the Ediacaran Doushantuo Formation in South China is controversial, and one of the key problems is the existence and distribution of the "West Hubei Trough". In this paper it presents stratigraphic and sedimentological evidence of the Doushantuo Formation from the Shennongjia area (Hubei Province) for the existence of "West Hubei Trough" and its sedimentary facies in Shennongjia area. Lithological features of the Doushantuo Formation in the eastern Shennongjia area are similar to those in the Zhangcunping area, northern Huangling anticline near Three Gorges. Sedimentary structures such as "bird eyes" and peloids indicate that the Doushantuo Formation in the eastern Shennongjia area was deposited in a shallow platform environment. The Doushantuo Formation in the western Shennongjia area is mainly composed of interbedded sandstone, siltstone and mudstone. In addition, sedimentary structures, such as incomplete Bouma sequences containing normal graded bedding and parallel bedding, indicate a slope or relatively deeper water environment of the western Shennongjia area. In combination with previous studies, our results indicate that the boundary between the "West Hubei Trough" and the "Central Hubei Platform" extends from the middle Shennongjia area to the northwest of Huangling anticline area as well as to its southeast. The eastern Shennongjia and northeast Huangling anticline were both located in platform facies, whereas the western Shennongjia and southwest Huangling anticline were located in deeper water facies of the "West Hubei Trough".
-
Key words:
- Shennongjia /
- Doushantuo Formation /
- Ediacaran /
- paleogeographic reconstruction /
- "West Hubei Trough" /
- sedimentology
-
图 1 研究区地质及剖面位置图
a. 扬子板块大地构造背景图,改自Wang and Li(2003)和胡军等(2020);b. 神农架地区地质图及研究剖面(龙溪、莲花、石家河、木鱼和高桥河)所在位置,改自Qiu et al.(2011)
Fig. 1. Geological settings of the study area and locations of study sections
图 4 莲花剖面地层位置和典型镜下照片(单偏光)
a. 重结晶严重,呈中晶结构的盖帽白云岩;b. 陡山沱组二段磷矿和泥晶白云岩互层;c. 陡山沱组二段磷质内碎屑、碎屑石英和泥晶白云岩岩屑组成的碎屑型磷块岩;d. 陡山沱组二段磷质内碎屑和泥晶白云岩;e. 陡山沱组三段含鸟眼构造的泥晶白云岩;f. 陡山沱组三段上部含球粒泥晶白云岩(粒泥岩);g. 灯影组蛤蟆井段颗粒支撑亮晶胶结的鲕粒岩;h. 灯影组石板滩段含鸟眼构造和藻纹层的泥晶灰岩,鸟眼为亮晶方解石充填. 图例见图 3
Fig. 4. Stratigraphic position and typical microscopic photos of thin sections (polarized light) from the Lianhua Section in eastern Shennongjia area
图 7 木鱼剖面陡山沱组地层位置和岩石典型镜下照片(单偏光)
a. 重结晶严重,呈粉晶结构的盖帽白云岩;b、c. 石英杂砂岩,主要由石英碎屑、杂基和不透明矿物碎屑组成,碎屑粒度在0.2~0.005 mm(砂屑-粉砂)之间,分选较差,颗粒呈棱角状-次棱角状,整体呈杂基支撑;d. 较粗的碎屑岩中由杂基组成的呈拉长型、定向性泥砾;e. 杂砂岩与含水平层理的粉砂岩互层;f. 粉砂岩与泥岩互层. 图例见图 6
Fig. 7. Stratigraphic position and typical microscopic photos (polarized light) of thin sections of the Doushantuo Formation at the Muyu Section in western Shennongjia area
图 9 神农架地区研究剖面和邻区陡山沱组地层对比
鄂西地区地质图和高竹剖面地层柱状图改自Wang et al.(2020)和Jiang et al.(2011);宋洛剖面地层柱状图改自周晓峰等(2020);ZK312钻孔地层柱状图改自安志辉等(2018)
Fig. 9. Stratigraphic comparisons of the Doushantuo Formation in the Shennongjia and adjacent areas
图 10 鄂西地区埃迪卡拉纪陡山沱组沉积时期古地理重建
黄陵背斜地区、重庆北部地区古地理参考安志辉(2016)、Wang et al.(2020)和周晓峰等(2020)
Fig. 10. Paleogeographic reconstruction of West Hubei Province during the deposition of the Ediacaran Doushantuo Formation
-
[1] An, Z.H., 2016. Stratigraphy and Paleogeography of Ediacaran around Huangling Anticline (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [2] An, Z. H., Jiang, G. Q., Tong, J. N., et al., 2015. Stratigraphic Position of the Ediacaran Miaohe Biota and Its Constrains on the Age of the Upper Doushantuo δ13C Anomaly in the Yangtze Gorges Area, South China. Precambrian Research, 271: 243-253. https://doi.org/10.1016/j.precamres.2015.10.007 [3] An, Z.H., Tong, J.N., Ye, Q., et al., 2014. Neoproterozoic Stratigraphic Sequence and Sedimentary Evolution at Qinglinkou Section, East Yangtze Gorges Area. Earth Science, 39(7): 795-806 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201407003.htm [4] An, Z.H., Tong, J.N., Ye, Q., et al., 2018. Stratigraphic Division and Correlation of Ediacaran Doushantuo Formation in Zhangcunping Area, Yichang, Hubei Province. Earth Science, 43(7): 2206-2221 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807002.htm [5] Bouma, A. H., 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam. [6] Cao, R.J., Tang, T.F., Xue, Y.S., et al., 1989. Research on Sinian Strata with Ore Deposits in the Yangzi (Yangtze) Region, China. In: Nanjing Institute of Geology and Palaeontology, Academia Sinica, ed., Upper Precambrian of the Yangzi (Yangtze) Region, China. Nanjing University Press, Nanjing (in Chinese). [7] Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186: 173-194. https://doi.org/10.1016/j.earscirev.2017.06.001 [8] Chang, B., Li, C., Liu, D., et al., 2020. Massive Formation of Early Diagenetic Dolomite in the Ediacaran Ocean: Constraints on the "Dolomite Problem". Proceedings of the National Academy of Sciences of the United States of America, 117(25): 14005-14014. https://doi.org/10.1073/pnas.1916673117 [9] Chen, C., 2020. A Study on the Macroscopic Carbonaceous Compressions from the Miaohe Member at Lianhua Section, East Shennongjia, West Hubei Province and Its Stratigraphic Correlation (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [10] Chen, Z., Zhou, C. M., Yuan, X. L., et al., 2019. Death March of a Segmented and Trilobate Bilaterian Elucidates Early Animal Evolution. Nature, 573(7774): 412-415. https://doi.org/10.1038/S41586-019-1522-7 [11] Condon, D., Zhu, M.Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95-98. https://doi.org/10.1126/science.1107765 [12] Duan, J.B., Mei, Q.H., Li, B.S., et al., 2019. Sinian-Early Cambrian Tectonic-Sedimentary Evolution in Sichuan Basin. Earth Science, 44(3): 738-755 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201903005.htm [13] Hu, J., Li, C., Tong, J. N., et al., 2020. Glacial Origin of the Cryogenian Nantuo Formation in Eastern Shennongjia Area (South China): Implications for Macroalgal Survival. Precambrian Research, 351: 105969. https://doi.org/10.1016/j.precamres.2020.105969 [14] Hu, J., Sun, S.Y., Gu, H.D., et al., 2020. Subglacial Sedimentary Characteristics of the Bottom of Nantuo Formation in Three Gorges Area and Its Implications. Earth Science, 46(7): 2515-2528 (in Chinese with English abstract). [15] Jiang, G.Q., Kennedy, M. J., Christie-Blick, N., et al., 2006. Stratigraphy, Sedimentary Structures, and Textures of the Late Neoproterozoic Doushantuo Cap Carbonate in South China. Journal of Sedimentary Research, 76(7): 978-995. https://doi.org/10.2110/jsr.2006.086 [16] Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831-849. https://doi.org/10.1016/j.gr.2011.01.006 [17] Li, C., Hardisty, D. S., Luo, G., et al., 2017. Uncovering the Spatial Heterogeneity of Ediacaran Carbon Cycling. Geobiology, 15(2): 211-224. https://doi.org/10.1111/gbi.12222 [18] Li, C., Shi, W., Cheng, M., et al., 2020. The Redox Structure of Ediacaran and Early Cambrian Oceans and Its Controls. Science Bulletin, 65(24): 2141-2149. https://doi.org/10.1016/j.scib.2020.09.023 [19] Li, C., Zhu, M. Y., Chu, X. L., 2016. Preface: Atmospheric and Oceanic Oxygenation and Evolution of Early Life on Earth: New Contributions from China. Journal of Earth Science, 27(2): 167-169. https://doi.org/10.1007/s12583-016-0697-1 [20] Li, H.K., Zhang, C.L., Xiang, Z.Q., et al., 2013. Zircon and Baddeleyite U-Pb Geochronology of the Shennongjia Group in the Yangtze Craton and Its Tectonic Significance. Acta Petrologica Sinica, 29(2): 673-697 (in Chinese with English abstract). http://www.researchgate.net/publication/286123963_Zircon_and_baddeleyite_U-Pb_geochronology_of_the_Shennongjia_Group_in_the_Yangtze_Craton_and_its_tectonic_significance [21] Li, W.Z., Zhang, J.Y., Li, H.H., et al., 2020. Distribution Characteristics of Intracratonic Rift and Its Exploration Significance in Western Hubei and Eastern Chongqing Area. Natural Gas Geoscience, 31(5): 675-685 (in Chinese with English abstract). [22] Liu, B.Q., Shao, L.Y., Wang, W.C., et al., 2020. Sedimentary Characteristics and Depositional Model of Deep-Water Deposits Dominated by Gravity Flow: A Case Study from the Lower Triassic in the Gonghe Basin. Acta Geologica Sinica, 94(4): 1106-1127 (in Chinese with English abstract). [23] McFadden, K. A., Huang, J., Chu, X.L., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. PNAS, 105(9): 3197-3202. https://doi.org/10.1073/pnas.0708336105 [24] Meng, Q. R., Qu, H. J., Hu, J. M., et al., 2007. Triassic Deep-Marine Sedimentation in the Western Qinling and Songpan Terrane. Science China Earth Sciences, 50(2): 246-263. https://doi.org/10.1007/s11430-007-6009-y [25] Qiu, X. F., Ling, W. L., Liu, X. M., et al., 2011. Recognition of Grenvillian Volcanic Suite in the Shennongjia Region and Its Tectonic Significance for the South China Craton. Precambrian Research, 191(3-4): 101-119. https://doi.org/10.1016/j.precamres.2011.09.011 [26] Shanmugam, G., 1997. The Bouma Sequence and the Turbidite Mind Set. Earth-Science Reviews, 42(4): 201-229. https://doi.org/10.1016/s0012-8252(97)81858-2 [27] Tian, L., Song, H. Y., Ye, Q., et al., 2020. Recurrent Anoxia Recorded in Shallow Marine Facies at Zhangcunping (Western Hubei, China) throughout the Ediacaran to Earliest Cambrian. Precambrian Research, 340: 105617. https://doi.org/10.1016/j.precamres.2020.105617 [28] Wang, H., Li, Z. W., Liu, S. G., et al., 2020. Ediacaran Extension along the Northern Margin of the Yangtze Platform, South China: Constraints from the Lithofacies and Geochemistry of the Doushantuo Formation. Marine and Petroleum Geology, 112: 104056. https://doi.org/10.1016/j.marpetgeo.2019.104056 [29] Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/s0301-9268(02)00209-7 [30] Wang, Y. F., Zhai, G. Y., Lu, Y. C., et al., 2019. Sedimentary Lithofacies Characteristics and Sweet-Spot Interval Characterization of the Sinian Doushantuo Formation in Upper Yangtze Platform, South China. China Geology, 2(3): 261-275. https://doi.org/10.31035/cg2018119 [31] Wang, Z.C., Liu, J.J., Jiang, H., et al., 2019. Lithofacies Paleogeography and Exploration Significance of Sinian Doushantuo Depositional Stage in the Middle-Upper Yangtze Region, Sichuan Basin, SW China. Petroleum Exploration and Development, 46(1): 39-51 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=80696568504849574849484853 [32] Xia, W.J., Du, S.G., Xu, X.H., et al., 1994. Sinian Lithofacies, Paleogeography and Mineralization in South China. Geological Publishing House, Beijing, 50-61(in Chinese). [33] Yang, A.H., Zhu, M.Y., Zhang, J.M., et al., 2015. Sequence Stratigraphic Subdivision and Correlation of the Ediacaran (Sinian) Doushantuo Formation of Yangtze Plate, South China. Journal of Palaeogeography, 17(1): 1-20 (in Chinese with English abstract). http://www.researchgate.net/publication/284609442_Sequence_stratigraphic_subdivision_and_correlation_of_the_Ediacaran_Sinian_Doushantuo_Formation_of_Yangtze_Plate_South_China [34] Ye, Q., Tong, J. N., An, Z. H., et al., 2019. A Systematic Description of New Macrofossil Material from the Upper Ediacaran Miaohe Member in South China. Journal of Systematic Palaeontology, 17(3): 183-238. https://doi.org/10.1080/14772019.2017.1404499 [35] Zhang, S. H., Li, H. Y., Jiang, G. Q., et al., 2015. New Paleomagnetic Results from the Ediacaran Doushantuo Formation in South China and Their Paleogeographic Implications. Precambrian Research, 259: 130-142. https://doi.org/10.1016/j.precamres.2014.09.018 [36] Zhao, G. C., Cawood, P.A., 2012. Precambrian Geology of China. Precambrian Research, 222-223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017 [37] Zhou, C. M., Xiao, S. H., Wang, W., et al., 2017. The Stratigraphic Complexity of the Middle Ediacaran Carbon Isotopic Record in the Yangtze Gorges Area, South China, and Its Implications for the Age and Chemostratigraphic Significance of the Shuram Excursion. Precambrian Research, 288: 23-38. https://doi.org/10.1016/j.precamres.2016.11.007 [38] Zhou, X.F., Yang, F.L., Yang, R.Q., et al., 2020. Tectonic-Lithofacies Palaeogeographic Reconstruction of the Yangtze Craton of the Ediacaran Doushantuo Formation and Its Oil and Gas Significance. Journal of Palaeogeography (Chinese Edition), 22(4): 647-662 (in Chinese with English abstract). [39] Zhu, M. Y., Lu, M., Zhang, J. M., et al., 2013. Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 225: 7-28. https://doi.org/10.1016/j.precamres.2011.07.019 [40] Zhu, M. Y., Zhang, J. M., Yang, A. H., 2007. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 7-61. https://doi.org/10.1016/j.palaeo.2007.03.025 [41] 安志辉, 2016. 黄陵周缘埃迪卡拉纪地层对比及沉积古地理演变(博士学位论文). 武汉: 中国地质大学. [42] 安志辉, 童金南, 叶琴, 等, 2014. 峡东青林口地区新元古代地层序列及沉积演变. 地球科学, 39(7): 795-806. doi: 10.3799/dqkx.2014.075 [43] 安志辉, 童金南, 叶琴, 等, 2018. 湖北宜昌樟村坪地区陡山沱组地层划分与对比. 地球科学, 43(7): 2206-2221. doi: 10.3799/dqkx.2018.155 [44] 曹瑞骥, 唐天福, 薛耀松, 等, 1989. 扬子区震旦纪含矿地层研究. 见: 中国科学院南京地质古生物研究所主编, 扬子区上前寒武系. 南京: 南京大学出版社. [45] 陈晨, 2020. 鄂西神农架东区莲花村剖面埃迪卡拉纪晚期庙河段宏体碳质压膜化石及地层对比研究(硕士学位论文). 武汉: 中国地质大学. [46] 段金宝, 梅庆华, 李毕松, 等, 2019. 四川盆地震旦纪-早寒武世构造-沉积演化过程. 地球科学, 44(3): 738-755. doi: 10.3799/dqkx.2018.335 [47] 胡军, 孙思远, 谷昊东, 等, 2020. 峡东南华系南沱组底部冰川底碛沉积特征及其意义. 地球科学, 46(7): 2515-2528. doi: 10.3799/dqkx.2020.179 [48] 李怀坤, 张传林, 相振群, 等, 2013. 扬子克拉通神农架群锆石和斜锆石U-Pb年代学及其构造意义. 岩石学报, 29(2): 673-697. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302023.htm [49] 李文正, 张建勇, 李浩涵, 等, 2020. 鄂西-渝东地区克拉通内裂陷分布特征及油气勘探意义. 天然气地球科学, 31(5): 675-685. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202005009.htm [50] 刘炳强, 邵龙义, 王伟超, 等, 2020. 重力流主导的深水沉积特征及其模式: 以共和盆地下三叠统为例. 地质学报, 94(4): 1106-1127. doi: 10.3969/j.issn.0001-5717.2020.04.007 [51] 汪泽成, 刘静江, 姜华, 等, 2019. 中-上扬子地区震旦纪陡山沱组沉积期岩相古地理及勘探意义. 石油勘探与开发, 46(1): 39-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901004.htm [52] 夏文杰, 杜森官, 徐新煌, 等, 1994. 中国南方震旦纪岩相古地理与成矿作用. 北京: 地质出版社, 50-61. [53] 杨爱华, 朱茂炎, 张俊明, 等, 2015. 扬子板块埃迪卡拉系(震旦系)陡山沱组层序地层划分与对比. 古地理学报, 17(1): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201501001.htm [54] 周晓峰, 杨风丽, 杨瑞青, 等, 2020. 扬子克拉通埃迪卡拉系陡山沱组构造-岩相古地理恢复及油气意义. 古地理学报, 22(4): 647-662. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202004005.htm