U-Pb Age of Detrital Zircons from Lower Cretaceous in Eastern Tethyan Himalaya and Its Paleogeography
-
摘要: 东特提斯喜马拉雅在中生代位于东冈瓦纳大陆的结合部位,其古地理对于了解东冈瓦纳大陆裂解至关重要.对东特提斯喜马拉雅塔嘎地区沉积地层进行了详细的碎屑锆石U-Pb年代学研究.结果表明,东特提斯喜马拉雅塔嘎地区采样剖面沉积下限为126.6±2.7 Ma.碎屑锆石年龄谱显示东特提斯喜马拉雅塔嘎地区采样地层主要包含~520 Ma、~890 Ma和~1 200 Ma的特征峰值年龄,对比结果表明东特提斯喜马拉雅塔嘎地区沉积地层碎屑锆石年龄谱与印度东部和澳大利亚西南部地层碎屑锆石年龄谱具有一定的相似性.结合东冈瓦纳岩浆活动记录以及该剖面下部玄武岩年龄,东特提斯喜马拉雅塔嘎地区地层沉积于东特提斯喜马拉雅从东冈瓦纳大陆分离时期,其物质来源可能为印度东部、澳大利亚西南部以及南极大陆.Abstract: The eastern Tethyan Himalaya is located at the combination area of eastern Gondwana during the Mesozoic, and its paleogeography plays a vital role in understanding the breakup of eastern Gondwana. A detailed chronological study of detrital zircons was carried out on the sedimentary strata in Taga area. The zircon U-Pb isotope results show that the youngest age is 126.6±2.7 Ma, suggesting that the lower limit of sampling section was the Early Cretaceous. The U-Pb age spectra of detrital zircons reveal three major age peaks at~520 Ma, ~890 Ma, and~1 200 Ma, of which the comparison with those from adjacent areas indicates similar age populations with eastern India and southwestern Australia. New results, together with the surrounding magmatic activity and the age of basalts in the lower part of sampling section, support that the studied section should be developed during the separation of the eastern Tethyan Himalayan from eastern Gondwana, and the main provenance of the sampling section might be from eastern India, southwestern Australia, and Antarctic.
-
Key words:
- eastern Tethyan Himalaya /
- eastern Gondwana /
- detrital zircon /
- paleogeography
-
图 1 青藏高原地质简图(a)和研究区地质简图(b)
图a、b分别修改自朱弟成等(2012)和云南省地质调查院(2004)
Fig. 1. Geological sketches of the Tibetan Plateau (a) and study area (b)
图 5 塔嘎地区及邻区碎屑锆石年龄对比
a. Lewis and Sircombe(2013);b. Lewis(2017); c. Liu et al.(2020); d.本文; e、f. McQuarrie et al.(2008); g. Hughes et al.(2015); h. Turner et al.(2014); i. Joy et al.(2015)
Fig. 5. Comparison of detrital zircon ages of samples from the Taga area and its surrounding areas
-
[1] Bian, W. W., Yang, T. S., Ma, Y. M., et al., 2019. Paleomagnetic and Geochronological Results from the Zhela and Weimei Formations Lava Flows of the Eastern Tethyan Himalaya: New Insights into the Breakup of Eastern Gondwana. Journal of Geophysical Research: Solid Earth, 124(1): 44-64. https://doi.org/10.1029/2018jb016403 [2] Black, L. P., Kamo, S. L., Williams, I. S., et al., 2003. The Application of SHRIMP to Phanerozoic Geochronology: A Critical Appraisal of Four Zircon Standards. Chemical Geology, 200(1-2): 171-188. https://doi.org/10.1016/s0009-2541(03)00166-9 [3] Bureau of Geology Mineral Resources of Xizang Autonomous Region, 1993. Regional Geology of Xizang (Tibet) Autonomous Region. Geological Publishing House, Beijing, 160-195 (in Chinese). [4] Cao, H. W., Huang, Y., Li, G. M., et al., 2018. Late Triassic Sedimentary Records in the Northern Tethyan Himalaya: Tectonic Link with Greater India. Geoscience Frontiers, 9(1): 273-291. https://doi.org/10.1016/j.gsf.2017.04.001 [5] Dai, J.G., Yin, A., Liu, W.C., et al., 2008. Nd Isotopic Compositions of the Tethyan Himalayan Sequence in Southeastern Tibet. Science China Earth Sciences, 51(9): 1306-1316. https://doi.org/10.1007/s11430-008-0103-7 [6] Dickinson, W. R., Gehrels, G. E., 2009. Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata: A Test against a Colorado Plateau Mesozoic Database. Earth and Planetary Science Letters, 288(1-2): 115-125. https://doi.org/10.1016/j.epsl.2009.09.013 [7] Ding, F., Gao, J.G., Xu, K.Z., 2020. Geochemistry, Geochronology and Geological Significances of the Basic Dykes in Rongbu Area, Southern Tibet. Acta Petrologica Sinica, 36(2): 391-408 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.02.04 [8] Direen, N. G., Cohen, B. E., Maas, R., et al., 2017. Naturaliste Plateau: Constraints on the Timing and Evolution of the Kerguelen Large Igneous Province and Its Role in Gondwana Breakup. Australian Journal of Earth Sciences, 64(7): 851-869. https://doi.org/10.1080/08120099.2017.1367326 [9] Fu, J.G., Li, G.M., Wang, G.H., et al., 2018. Timing of E-W Extension Deformation in North Himalaya: Evidences from Ar-Ar Age in the Cuonadong Dome, South Tibet. Earth Science, 43(8): 2638-2650 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808008.htm [10] Gehrels, G., Kapp, P., DeCelles, P., et al., 2011. Detrital Zircon Geochronology of Pre-Tertiary Strata in the Tibetan-Himalayan Orogen. Tectonics, 30(5): TC5016. https://doi.org/10.1029/2011tc002868 [11] Hu, X.M., Jansa, L., Chen, L., et al., 2010. Provenance of Lower Cretaceous Wölong Volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the Final Breakup of Eastern Gondwana. Sedimentary Geology, 233(3-4): 193-205. https://doi.org/10.1016/j.sedgeo.2009.11.008 [12] Hu, X. M., Jansa, L., Wang, C. S., 2008. Upper Jurassic-Lower Cretaceous Stratigraphy in South-Eastern Tibet: A Comparison with the Western Himalayas. Cretaceous Research, 29(2): 301-315. https://doi.org/10.1016/j.cretres.2007.05.005 [13] Hughes, N. C., Myrow, P. M., McKenzie, N. R., et al., 2015. Age and Implications of the Phosphatic Birmania Formation, Rajasthan, India. Precambrian Research, 267: 164-173. https://doi.org/10.1016/j.precamres.2015.06.012 [14] Joy, S., Jelsma, H., Tappe, S., et al., 2015. SHRIMP U-Pb Zircon Provenance of the Sullavai Group of Pranhita-Godavari Basin and Bairenkonda Quartzite of Cuddapah Basin, with Implications for the Southern Indian Proterozoic Tectonic Architecture. Journal of Asian Earth Sciences, 111: 827-839. https://doi.org/10.1016/j.jseaes.2015.07.023 [15] Lewis, C. J., 2017. SHRIMP U-Pb Detrital Zircon Ages from GSWA Harvey 1, Western Australia: July 2013-June 2015. Geoscience Australia, Canberra. https://doi.org/10.11636/record.2017.020 [16] Lewis, C.J., Sircombe, K.N., 2013. Use of U-Pb Geochronology to Delineate Provenance of North West Shelf Sediments, Australia. In: Keep, M., Moss, S.J., eds., The Sedimentary Basins of Western Australia IV: Proceedings of the Petroleum Exploration Society of Australia Symposium. WA, Perth. [17] Li, G.W., 2019. The Provenance Analysis of Late Triassic Sedimentary Sequences in Tethyan Himalaya: The Tectonic Attribute of Materials at the Convergent Margin. Scientia Sinica Terrae, 49(9): 1452-1454 (in Chinese). doi: 10.1360/SSTe-2019-0027 [18] Li, S.Z., Yang, Z., Zhao, S.J., et al., 2016. Global Early Paleozoic Orogens (Ⅰ): Collision-Type Orogeny. Journal of Jilin University (Earth Science Edition), 46(4): 945-967 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201604001.htm [19] Liu, Q.S., Wei, Y.S., Zhang, B.S., et al., 2019. Genesis and Tectonic Significance of Quartz Sandstones in the Southern Subzone of Tethyan Himalayas: A Case Study on the Paleocene Jidula Formation in Gamba Area, Southern Tibet. Geoscience, 33(3): 561-573 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ201903009.htm [20] Liu, Y. M., Dai, J. G., Wang, C. S., et al., 2020. Provenance and Tectonic Setting of Upper Triassic Turbidites in the Eastern Tethyan Himalaya: Implications for Early-Stage Evolution of the Neo-Tethys. Earth-Science Reviews, 200: 103030. https://doi.org/10.1016/j.earscirev.2019.103030 [21] Ludwig, K.R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [22] Ma, Y.M., Yang, T.S., Bian, W.W., et al., 2016. Early Cretaceous Paleomagnetic and Geochronologic Results from the Tethyan Himalaya: Insights into the Neotethyan Paleogeography and the India-Asia Collision. Scientific Reports, 6: 21605. https://doi.org/10.1038/srep21605 [23] McQuarrie, N., Robinson, D., Long, S., et al., 2008. Preliminary Stratigraphic and Structural Architecture of Bhutan: Implications for the along Strike Architecture of the Himalayan System. Earth and Planetary Science Letters, 272(1-2): 105-117. https://doi.org/10.1016/j.epsl.2008.04.030 [24] Myrow, P. M., Hughes, N. C., Goodge, J. W., et al., 2010. Extraordinary Transport and Mixing of Sediment across Himalayan Central Gondwana during the Cambrian-Ordovician. Geological Society of America Bulletin, 122(9-10): 1660-1670. https://doi.org/10.1130/b30123.1 [25] Olierook, H. K. H., Merle, R. E., Jourdan, F., 2017. Toward a Greater Kerguelen Large Igneous Province: Evolving Mantle Source Contributions in and around the Indian Ocean. Lithos, 282-283: 163-172. https://doi.org/10.1016/j.lithos.2017.03.007 [26] Rao, D. G., Krishna, K. S., Sar, D., 1997. Crustal Evolution and Sedimentation History of the Bay of Bengal since the Cretaceous. Journal of Geophysical Research: Solid Earth, 102(B8): 17747-17768. https://doi.org/10.1029/96jb01339 [27] Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1-2): 123-138. https://doi.org/10.1016/s0009-2541(01)00355-2 [28] Shi, Y. R., Hou, C. Y., Anderson, J. L., et al., 2018. Zircon SHRIMP U-Pb Age of Late Jurassic OIB-Type Volcanic Rocks from the Tethyan Himalaya: Constraints on the Initial Activity Time of the Kerguelen Mantle Plume. Acta Geochimica, 37(3): 441-455. https://doi.org/10.1007/s11631-017-0239-2 [29] Song, Y., Qian, Z.Y., Zhang, J.X., et al., 2018. Morphology of Detrital Zircon and Its Application in Provenance Analysis: Example from Cretaceous Continental Scientific Drilling Borehole in Songliao Basin. Earth Science, 43(6): 1997-2006 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201806017.htm [30] Torsvik, T. H., van der Voo, R., Preeden, U., et al., 2012. Phanerozoic Polar Wander, Palaeogeography and Dynamics. Earth-Science Reviews, 114(3-4): 325-368. https://doi.org/10.1016/j.earscirev.2012.06.007 [31] Turner, C. C., Meert, J. G., Pandit, M. K., et al., 2014. A Detrital Zircon U-Pb and Hf Isotopic Transect across the Son Valley Sector of the Vindhyan Basin, India: Implications for Basin Evolution and Paleogeography. Gondwana Research, 26(1): 348-364. https://doi.org/10.1016/j.gr.2013.07.009 [32] Wang, N.W., Liu, G.F., Chen, G.M., 1983. Regional Stratigraphy of Yamzhoyumco Area, Southern Xizang (Tibet). Tibet Plateau Geological Papers, (6): 7-26, 326-330 (in Chinese). [33] Williams, S. E., Whittaker, J. M., Granot, R., et al., 2013. Early India-Australia Spreading History Revealed by Newly Detected Mesozoic Magnetic Anomalies in the Perth Abyssal Plain. Journal of Geophysical Research: Solid Earth, 118(7): 3275-3284. https://doi.org/10.1002/jgrb.50239 [34] Xie, C.M., Song, Y.H., Wang, M., et al., 2019. Age and Provenance of Sumdo Formation in Central Gangdise, Tibetan Plateau: Detrital Zircon U-Pb Geochronological Evidence. Earth Science, 44(7): 2224-2233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201907003.htm [35] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [36] Yunnan Geological Survey Institute, 2004. 1: 250 000 Scale Longzi County Regional Geological Survey Report. China University of Geosciences Press, Wuhan, 62-81 (in Chinese). [37] Zhu, D. C., Chung, S. L., Mo, X. X., et al., 2009. The 132 Ma Comei-Bunbury Large Igneous Province: Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia. Geology, 37(7): 583-586. https://doi.org/10.1130/g30001a.1 [38] Zhu, D.C., Xia, Y., Qiu, B.B., et al., 2013. Why do We Need to Propose the Early Cretaceous Comei Large Igneous Province in Southeastern Tibet? Acta Petrologica Sinica, 29(11): 3659-3670 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201311001.htm [39] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1): 1-15 (in Chinese with English abstract). http://www.researchgate.net/publication/260835521_Origin_and_Paleozoic_Tectonic_Evolution_of_the_Lhasa_Terrane [40] 丁枫, 高建国, 徐琨智, 2020. 西藏南部绒布地区基性岩脉岩石地球化学、年代学特征及地质意义. 岩石学报, 36(2): 391-408. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202002004.htm [41] 付建刚, 李光明, 王根厚, 等, 2018. 北喜马拉雅E-W向伸展变形时限: 来自藏南错那洞穹隆Ar-Ar年代学证据. 地球科学, 43(8): 2638-2650. doi: 10.3799/dqkx.2018.530 [42] 李广伟, 2019. 喜马拉雅地区上三叠统沉积物来源——汇聚板块边缘物质构造属性. 中国科学: 地球科学, 49(9): 1452-1454. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201909010.htm [43] 李三忠, 杨朝, 赵淑娟, 等, 2016. 全球早古生代造山带(Ⅰ): 碰撞型造山. 吉林大学学报(地球科学版), 46(4): 945-967. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604001.htm [44] 刘庆山, 魏玉帅, 张宝森, 等, 2019. 古新世特提斯喜马拉雅南亚带石英砂岩成因及其构造意义: 以藏南岗巴地区古新统基堵拉组为例. 现代地质, 33(3): 561-573. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201903009.htm [45] 宋鹰, 钱禛钰, 张俊霞, 等, 2018. 碎屑锆石形态学分类体系及其在物源分析中的应用: 以松辽盆地松科一井为例. 地球科学, 43(6): 1997-2006. doi: 10.3799/dqkx.2018.607 [46] 王乃文, 刘桂芳, 陈国铭, 1983. 西藏南部羊卓雍错区域地层研究. 青藏高原地质文集, (6): 7-26, 326-330. [47] 西藏自治区地质矿产局, 1993. 西藏自治区区域地质志. 北京: 地质出版社, 160-195. [48] 解超明, 宋宇航, 王明, 等, 2019. 冈底斯中部松多岩组形成时代及物源: 来自碎屑锆石U-Pb年代学证据. 地球科学, 44(7): 2224-2233. doi: 10.3799/dqkx.2019.024 [49] 云南省地质调查院, 2004. 1: 250 000隆子县幅区域地质调查报告. 武汉: 中国地质大学出版社, 62-81. [50] 朱弟成, 夏瑛, 裘碧波, 等, 2013. 为什么要提出西藏东南部早白垩世措美大火成岩省. 岩石学报, 29(11): 3659-3670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311001.htm [51] 朱弟成, 赵志丹, 牛耀龄, 等, 2012. 拉萨地体的起源和古生代构造演化. 高校地质学报, 18(1): 1-15 https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201003.htm -
dqkxzx-46-8-2850-附表.doc