Genesis and Enrichment of Sedimentary Rare Earth in Weining Area, Guizhou Province
-
摘要: 贵州威宁地区宣威组底部稀土含矿岩系的成因类型一直有较大争议.在野外实地调查的基础上,运用矿物学、岩相古地理与地球化学等手段进行了系统性研究.结果显示,区内二叠系宣威组底部稀土含矿岩系广泛分布,连续性好,含矿段厚度为2~16 m,并伴生有铌、锆、镓等元素;稀土氧化物平均品位0.15%,最高可达1.60%.主量、微量和稀土元素分析表明威宁地区稀土含矿岩系中含有来自玄武岩及火山灰的典型矿物,稀土配分模式与玄武岩相比具有继承性,研究区化学风化作用较强、成分成熟度较高代表其经过长距离搬运,遭受了改造;峨眉山玄武岩为该稀土层提供了主要物质来源,稀土层受源岩成分的控制,经历了沉积分选及再循环作用,还遭受了来自上地壳的中酸性岩浆物质源区的混染.其成因机制可能为在晚二叠世炎热、潮湿、强风化的环境中,玄武岩经过风化剥蚀后,搬运至沉积基底低洼处的三角洲平原亚相中的洪泛平原微相环境,与火山灰一同沉积沉淀,在风化和淋滤作用下稀土等元素以离子形式被解析出来,从而被吸附性强的高岭石等黏土矿物吸附于表面,或进入矿物晶格,形成富稀土层.Abstract: The genetic types of the rare earth ore-bearing rocks at the bottom of Xuanwei Formation in Weining area,Guizhou Province are controversial. In order to clarify the genetic mechanism and concentration regularity,through field investigation combined with mineralogy,lithofacies paleogeographic features and geochemistry,systematic research has been carried out. The results show that the rare earth ore-bearing rocks at the bottom of the Xuanwei Formation of Permian are widely distributed with good continuity and the thickness of ore-bearing sections varies from 2 to 16 m,and associated with niobium,zirconium,gallium and other elements. The average grade of rare earth oxide element is 0.15%,and the highest grade is up to 1.6%. The analyses of major,trace and rare earth elements shows that the rare earth ore-bearing rocks in Weining area contain typical minerals from basalt and volcanic ash,the rare earth element distribution patterns are inherited from basalt. The chemical weathering in the study area is stronger,and the higher maturity of the ingredients means that it has been transformed after being transported for a long distance. The Emeishan basalt provides the main material source for the rare earth layer. The rare earth layer is controlled by the composition of the source rock,has undergone sedimentary separation and recycling,and has suffered from the mixing of intermediate-acid magmatic material source region from the upper crust.The genetic mechanism is suggested as that the basalt was weathered and denuded in the hot,humid and strongly weathered environment during the Late Permian,after weathering and denudation,the basalt was transported to the flood plain microfacies in the delta plain subfacies between the volcanic depressions,and deposited with the volcanic ash. Under weathering and leaching,the rare earth elements were resolved as ions,and then they were adsorbed on the surface of clay minerals such as kaolinite with strong adsorption ability,or entered into the crystal lattice to form the rare-earth rich layer.
-
Key words:
- Weining /
- rare earth element /
- sedimentary /
- lithofacies paleogeography /
- metallogenic model /
- genetic mechanism
-
图 1 滇东-黔西吴家坪期构造背景与沉积环境(a)(Wang et al., 2020)和研究区地质图(b)
Fig. 1. Tectonic setting and sedimentary environment of Wujiaping Period in eastern Yunnan and western Guizhou (a) (Wang et al., 2020) and the geological map of the study area (b)
图 9 A-CN-K图解(a)和ICV-CIA图解(b)
图a底图据徐小涛和邵龙义(2018);实线a和实线b代表未发生钾交代作用的泥质岩风化趋势,实线c代表高岭石向伊利石转变的过程,实线d代表发生钾交代作用的风化趋势,m代表母岩中K2O的比例. 图b底图据Yang et al.(2012)
Fig. 9. A-CN-K diagram (a) and ICV-CIA diagram (b)
图 10 Th/Sc-Zr/Sc图解
底图据McLennan et al.(1993);峨眉山高钛玄武岩数据引自Xu et al.(2001).UCC.上地壳;PAAS.澳大利亚后太古代平均页岩
Fig. 10. Th/Sc-Zr/Sc diagram
图 11 全岩球粒陨石标准化稀土配分模式(标准化数值据Sun and McDonough, 1989)
Fig. 11. Whole rock chondrite-normalized rare earth patterns (standard values according to Sun and McDonough, 1989)
图 13 威宁地区宣威组稀土含矿岩系与玄武岩判别图解
a. 砂岩-泥岩的主量元素限定物源区特征图解(底图据Roser and Korsch, 1988);b. La/Yb-ΣREE判别图(底图据Allègre and Minster, 1978)
Fig. 13. Discrimination diagrams of rare earth rich clay rocks and basalts in Xuanwei Formation, Weining area
表 1 威宁地区宣威组稀土含矿岩系全岩X衍射定量分析结果
Table 1. The quantitative analysis results of X-ray diffraction of the rare earth ore-bearing rocks of Xuanwei Formation in Weining area
样品编号 岩性 ΣREE(10-6) 矿物含量(%) 高岭石 赤铁矿 磁铁矿 绿泥石 锐钛矿 方钠石 钠长石 方石英 PM104-4H1 铁质黏土岩 388.52 33.0 22.8 7.5 28.3 8.6 PM104-5H1 铝土质黏土岩 1
144.5190.0 6.2 3.6 PM104-14H1 铝土质黏土岩 1
633.7182.0 4.8 4.7 7.2 -
[1] Allègre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1-25. https://doi.org/10.1016/0012-821x(78)90123-1 [2] Asiedu, D. K., Dampare, S. B., Sakyi, P. A., et al., 2004. Geochemistry of Paleoproterozoic Metasedimentary Rocks from the Birim Diamondiferous Field, Southern Ghana: Implications for Provenance and Crustal Evolution at the Archean-Proterozoic Boundary. Geochemical Journal, 38(3): 215-228. https://doi.org/10.2343/geochemj.38.215 [3] Chung, S. L., Jahn, B. M., 1995. Plume-Lithosphere Interaction in Generation of the Emeishan Flood Basalts at the Permian-Triassic Boundary. Geology, 23(10): 889-892. https://doi.org/10.1130/0091-7613(1995)0230889:pliigo>2.3.co;2 doi: 10.1130/0091-7613(1995)0230889:pliigo>2.3.co;2 [4] Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9 [5] Dai, W., Xu, Y.J., Du, Y.S., et al., 2017. Geochemistry and Its Tectonic Significance of the Clastic Rock in the Neoproterozoic Xiajiang Group, Southeast Guizhou, South China. Geological Review, 63(5): 1153-1168 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201705004.htm [6] Guo, Y. T., 1990. Late Permian Paleoclimate of Western Guizhou. Coal Geology of China, 2(3): 18-20 (in Chinese). [7] He, B., Xu, Y. G., Chung, S. L., et al., 2003. Sedimentary Evidence for a Rapid, Kilometer-Scale Crustal Doming Prior to the Eruption of the Emeishan Flood Basalts. Earth and Planetary Science Letters, 213(3-4): 391-405. https://doi.org/10.1016/s0012-821x(03)00323-6 [8] He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U-Pb Dating of Silicic Ignimbrites, Post-Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3-4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021 [9] He, B., Xu, Y. G., Wang, Y. M., et al., 2006. Sedimentation and Lithofacies Paleogeography in Southwestern China before and after the Emeishan Flood Volcanism: New Insights into Surface Response to Mantle Plume Activity. The Journal of Geology, 114(1): 117-132. https://doi.org/10.1086/498103 [10] Ji, G.Y., Zhang, H.P., Li, Q.L., et al., 2018. Current Status of Rare Earth Resources in China and Strategies for Its Sustainable Development. China Mining Magazine, 27(8): 9-16 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_china-mining-magazine_thesis/0201216501894.html [11] Li, F.L., Qu, X.Y., Liu, L., et al., 2009. Sedimentary Environment on Upper Permian Linxi Group in Inner Mongolia. Acta Sedimentologica Sinica, 27(2): 265-272 (in Chinese with English abstract). http://www.researchgate.net/publication/285809057_Sedimentary_environment_on_Upper_Permian_Linxi_Group_in_Inner_Mongolia [12] Liu, Y. J., Cao, L. M., Li, Z. L., et al., 1984. Elemental Geochemistry. Science Press, Beijing (in Chinese). [13] Liu, Y.P., Cheng, G.F., Liu, K., et al., 2017. Ore-Forming Role and Its Model of a Sedimentary (Accumulation) Type of Iron Deposits from Basalt-Paleo-Weathering Crust in Western Guizhou. Geological Science and Technology Information, 36(4): 107-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201704013.htm [14] Li, Y.J., Zhang, Z.W., Zhou, L.J., et al., 2013. Geochemical Feature and Genesis of the Kulijing Bauxite Deposit, Guizhou Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 32(5): 558-566 (in Chinese with English abstract). http://www.researchgate.net/publication/318787805_Geochemical_feature_and_genesis_of_the_Kulijing_bauxite_deposit_Guizhou_Province_China [15] McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295-303. https://doi.org/10.1086/648222 [16] McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Processes Controlling the Composition of Clastic Sediments. Geological Society of America, 21-40. https://doi.org/10.1130/spe284-p21 [17] Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0 [18] Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3 [19] Patino, L. C., Velbel, M. A., Price, J. R., et al., 2003. Trace Element Mobility during Spheroidal Weathering of Basalts and Andesites in Hawaii and Guatemala. Chemical Geology, 202(3-4): 343-364. https://doi.org/10.1016/j.chemgeo.2003.01.002 [20] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [21] Roser, B. P., Korsch, R. J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67(1-2): 119-139. https://doi.org/10.1016/0009-2541(88)90010-1 [22] Ryan, C., 2019. Rare Earth Elements: Market Issues and Outlook. Adamas Intelligence, Amsterdam. [23] Shao, L.Y., Gao, C. X., Zhang, C., et al., 2013. Sequence-Palaeogeography and Coal Accumulation of Late Permian in Southwestern China. Acta Sedimentologica Sinica, 31(5): 856-866 (in Chinese with English abstract). http://www.cqvip.com/QK/95994X/201305/47368757.html [24] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [25] Tian, J.C., Zeng, Y.F., 1995. The Revolution of the Isotopic Composition of Strontium in the Permian Paleo-Ocean in South China. Acta Sedimentologica Sinica, 13(4): 125-130 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB504.013.htm [26] Viers, J., Dupré, B., Polvé, M., et al., 1997. Chemical Weathering in the Drainage Basin of a Tropical Watershed (Nsimi-Zoetele Site, Cameroon): Comparison between Organic-Poor and Organic-Rich Waters. Chemical Geology, 140(3-4): 181-206. https://doi.org/10.1016/s0009-2541(97)00048-x [27] Wan, F. D., Zhu, X. Q., Han, T., et al., 2010. Modeling Experimental Study on Weathering-Leaching of Emeishan Basalt and Its Relation with Metallogenesis. Chinese Journal of Geochemistry, 29(2): 212-216. https://doi.org/10.1007/s11631-010-0212 [28] Wang, D.H., Wang, R.J., Li, J.K., et al., 2013. The Progress in the Strategic Research and Survey of Rare Earth, Rare Metal and Rare-Scattered Elements Mineral Resources. Geology in China, 40(2): 361-370 (in Chinese with English abstract). http://www.researchgate.net/publication/287900257_The_progress_in_the_strategic_research_and_survey_of_rare_earth_rare_metal_and_rare-scattered_elements_mineral_resources [29] Wang, Q.Y., Mou, C.L., He, J., et al., 2018. Provenance Analysis and Tectonic Setting Judgment in Shanglan Formation of Middle Triassic in Weixi Area. Earth Science, 43(8): 2811-2832 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808021.htm [30] Wang, W., Yang, R.D., Bao, M., et al., 2006. Discussion on the Mineralization Associated with the Weathering Crust on E'meishan Basalt in Guizhou Province, China. Journal of Guizhou University (Natural Science Edition), 23(4): 366-370 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDI200604009.htm [31] Wang, X. T., Shao, L. Y., Eriksson, K. A., et al., 2020. Evolution of a Plume-Influenced Source-to-Sink System: An Example from the Coupled Central Emeishan Large Igneous Province and Adjacent Western Yangtze Cratonic Basin in the Late Permian, SW China. Earth-Science Reviews, 207: 103224. https://doi.org/10.1016/j.earscirev.2020.103224 [32] Xie, H., Yi, H.S., Zhang, C., et al., 2015. Compilation and Geological Implication of the Quantitative Lithofacies Map of Xialei Manganese Deposit, Guangxi. Metal Mine, (3): 128-132 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_metal-mine_thesis/0201215236510.html [33] Xu, X.T., Shao, L.Y., 2018. Limiting Factors in Utilization of Chemical Index of Alteration of Mudstones to Quantify the Degree of Weathering in Provenance. Journal of Palaeogeography (Chinese Edition), 20(3): 515-522 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-palaeogeography-chinese-edition_thesis/0201253364674.html [34] Xu, Y., Dai, Z.M., Gong, D.X., et al., 2018. Study on the Occurrence State of Rare Earth Elements of Rare Earth-Enriched Rocks in the Permian Xuanwei Formation in Guizhou Province. Multipurpose Utilization of Mineral Resources, (6): 90-94, 101 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_multipurpose-utilization-mineral-resources_thesis/0201271779196.html [35] Xu, Y. G., Chung, S. L., Jahn, B. M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3-4): 145-168. https://doi.org/10.1016/s0024-4937(01)00055-x [36] Xu, Y. G., Chung, S. L., Shao, H., et al., 2010. Silicic Magmas from the Emeishan Large Igneous Province, Southwest China: Petrogenesis and Their Link with the End-Guadalupian Biological Crisis. Lithos, 119(1-2): 47-60. https://doi.org/10.1016/j.lithos.2010.04.013 [37] Yang, X. F., He, D. F., Wang, Q. C., et al., 2012. Provenance and Tectonic Setting of the Carboniferous Sedimentary Rocks of the East Junggar Basin, China: Evidence from Geochemistry and U-Pb Zircon Geochronology. Gondwana Research, 22(2): 567-584. https://doi.org/10.1016/j.gr.2011.11.001 [38] Yuan, Z. X., Li, J. K., Ying, L. J., 2007. REE Mineralization Type Worthy of Attention. Mineral Deposits, 26(5): 581-582 (in Chinese). [39] Zeng, L. X., 1989. Discovery of Ion Adsorbed Rare Earth Ore in Western Guizhou. Guizhou Geology, 6(3): 272 (in Chinese). [40] Zhang, H., 2014. Geological and Geochemical Characteristics and Metallogenic Mechanism of REE Deposits, Northwestern Guizhou (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [41] Zhang, Z. W., Yang, X. Y., Li, S., et al., 2010. Geochemical Characteristics of the Xuanwei Formation in West Guizhou: Significance of Sedimentary Environment and Mineralization. Chinese Journal of Geochemistry, 29(4): 355-364. https://doi.org/10.1007/s11631-010-0467-1 [42] Zhao, C.J., Kang, Z.H., Hou, Y.H., et al., 2020. Geochemical Characteristics of Rare Earth Elements and Their Geological Significance of Permian Shales in Lower Yangtze Area. Earth Science, 45(11): 4118-4127 (in Chinese with English abstract). [43] Zhao, X.M., Liu, S.D., Zhang, Q.X., et al., 2011. Geochemical Characters of the Nanhua System in Changyang, Western Hubei Province and Its Implication for Climate and Sequence Correlation. Acta Geologica Sinica, 85(4): 576-585 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dizhixb201104013 [44] Zhou, L.J., 2012. Geological and Geochemical Characteristics of Sedimentary Kaolinite Claystone Rare Earth Deposits in Western Guizhou (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract). [45] 戴维, 徐亚军, 杜远生, 等, 2017. 黔东南新元古代下江群碎屑岩地球化学特征及其大地构造意义. 地质论评, 63(5): 1153-1168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201705004.htm [46] 郭英廷, 1990. 贵州西部晚二叠世古气候. 中国煤田地质, 2(3): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT199003003.htm [47] 季根源, 张洪平, 李秋玲, 等, 2018. 中国稀土矿产资源现状及其可持续发展对策. 中国矿业, 27(8): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201808002.htm [48] 李福来, 曲希玉, 刘立, 等, 2009. 内蒙古东北部上二叠统林西组沉积环境. 沉积学报, 27(2): 265-272. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200902009.htm [49] 刘英俊, 曹励明, 李兆麟, 等, 1984. 元素地球化学. 北京: 科学出版社. [50] 刘幼平, 程国繁, 刘坤, 等, 2017. 贵州西部地区"玄武岩-古风化壳沉积(堆积)型"铁矿成矿作用与成矿模式. 地质科技情报, 36(4): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704013.htm [51] 李玉娇, 张正伟, 周灵洁, 等, 2013. 贵州省苦李井铝土矿地球化学特征及成因探讨. 矿物岩石地球化学通报, 32(5): 558-566. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201305005.htm [52] 邵龙义, 高彩霞, 张超, 等, 2013. 西南地区晚二叠世层序——古地理及聚煤特征. 沉积学报, 31(5): 856-866. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305011.htm [53] 田景春, 曾允孚, 1995. 中国南方二叠纪古海洋锶同位素演化. 沉积学报, 13(4): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB504.013.htm [54] 王登红, 王瑞江, 李建康, 等, 2013. 中国三稀矿产资源战略调查研究进展综述. 中国地质, 40(2): 361-370. doi: 10.3969/j.issn.1000-3657.2013.02.001 [55] 王启宇, 牟传龙, 贺娟, 等, 2018. 维西地区中三叠统上兰组物源分析及构造背景判断. 地球科学, 43(8): 2811-2832. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201808021.htm [56] 王伟, 杨瑞东, 鲍淼, 等, 2006. 贵州峨眉山玄武岩区风化壳与成矿关系. 贵州大学学报(自然科学版), 23(4): 366-370. doi: 10.3969/j.issn.1000-5269.2006.04.010 [57] 谢华, 伊海生, 张超, 等, 2015. 广西下雷锰矿区定量岩相图编制及其意义. 金属矿山, (3): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201503031.htm [58] 徐小涛, 邵龙义, 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515-522. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201803014.htm [59] 徐莺, 戴宗明, 龚大兴, 等, 2018. 贵州某地二叠系宣威组富稀土岩系稀土元素赋存状态研究. 矿产综合利用, (6): 90-94, 101. doi: 10.3969/j.issn.1000-6532.2018.06.018 [60] 袁忠信, 李建康, 应立娟, 2007. 一个值得注意的REE矿化类型. 矿床地质, 26(5): 581-582. doi: 10.3969/j.issn.0258-7106.2007.05.011 [61] 曾励训, 1989. 贵州西部发现离子吸附型稀土矿. 贵州地质, 6(3): 272. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ198903010.htm [62] 张海, 2014. 黔西北地区稀土矿床地质地球化学特征及其成矿机制研究(博士学位论文). 成都: 成都理工大学. [63] 赵晨君, 康志宏, 侯阳红, 等, 2020. 下扬子二叠系泥页岩稀土元素地球化学特征及地质意义. 地球科学, 45(11): 4118-4127. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202011016.htm [64] 赵小明, 刘圣德, 张权绪, 等, 2011. 鄂西长阳南华系地球化学特征的气候指示意义及地层对比. 地质学报, 85(4): 576-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104014.htm [65] 周灵洁, 2012. 贵州西部沉积型高岭石质粘土岩稀土矿床的地质和地球化学特征(硕士学位论文). 北京: 中国科学院大学. -
dqkxzx-46-8-2711-附表.doc